aboutsummaryrefslogtreecommitdiffstats
path: root/jpeg
diff options
context:
space:
mode:
Diffstat (limited to 'jpeg')
-rw-r--r--jpeg/README2
-rw-r--r--jpeg/jinclude.h91
-rw-r--r--jpeg/jpegint.h392
-rw-r--r--jpeg/jpeglib.h1096
-rw-r--r--jpeg/transupp.c928
-rw-r--r--jpeg/transupp.h135
6 files changed, 2644 insertions, 0 deletions
diff --git a/jpeg/README b/jpeg/README
new file mode 100644
index 0000000..76e7464
--- /dev/null
+++ b/jpeg/README
@@ -0,0 +1,2 @@
+some source files copyed over from
+The Independent JPEG Group's JPEG software
diff --git a/jpeg/jinclude.h b/jpeg/jinclude.h
new file mode 100644
index 0000000..0a4f151
--- /dev/null
+++ b/jpeg/jinclude.h
@@ -0,0 +1,91 @@
+/*
+ * jinclude.h
+ *
+ * Copyright (C) 1991-1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file exists to provide a single place to fix any problems with
+ * including the wrong system include files. (Common problems are taken
+ * care of by the standard jconfig symbols, but on really weird systems
+ * you may have to edit this file.)
+ *
+ * NOTE: this file is NOT intended to be included by applications using the
+ * JPEG library. Most applications need only include jpeglib.h.
+ */
+
+
+/* Include auto-config file to find out which system include files we need. */
+
+#include "jconfig.h" /* auto configuration options */
+#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
+
+/*
+ * We need the NULL macro and size_t typedef.
+ * On an ANSI-conforming system it is sufficient to include <stddef.h>.
+ * Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
+ * pull in <sys/types.h> as well.
+ * Note that the core JPEG library does not require <stdio.h>;
+ * only the default error handler and data source/destination modules do.
+ * But we must pull it in because of the references to FILE in jpeglib.h.
+ * You can remove those references if you want to compile without <stdio.h>.
+ */
+
+#ifdef HAVE_STDDEF_H
+#include <stddef.h>
+#endif
+
+#ifdef HAVE_STDLIB_H
+#include <stdlib.h>
+#endif
+
+#ifdef NEED_SYS_TYPES_H
+#include <sys/types.h>
+#endif
+
+#include <stdio.h>
+
+/*
+ * We need memory copying and zeroing functions, plus strncpy().
+ * ANSI and System V implementations declare these in <string.h>.
+ * BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
+ * Some systems may declare memset and memcpy in <memory.h>.
+ *
+ * NOTE: we assume the size parameters to these functions are of type size_t.
+ * Change the casts in these macros if not!
+ */
+
+#ifdef NEED_BSD_STRINGS
+
+#include <strings.h>
+#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
+#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
+
+#else /* not BSD, assume ANSI/SysV string lib */
+
+#include <string.h>
+#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
+#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
+
+#endif
+
+/*
+ * In ANSI C, and indeed any rational implementation, size_t is also the
+ * type returned by sizeof(). However, it seems there are some irrational
+ * implementations out there, in which sizeof() returns an int even though
+ * size_t is defined as long or unsigned long. To ensure consistent results
+ * we always use this SIZEOF() macro in place of using sizeof() directly.
+ */
+
+#define SIZEOF(object) ((size_t) sizeof(object))
+
+/*
+ * The modules that use fread() and fwrite() always invoke them through
+ * these macros. On some systems you may need to twiddle the argument casts.
+ * CAUTION: argument order is different from underlying functions!
+ */
+
+#define JFREAD(file,buf,sizeofbuf) \
+ ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
+#define JFWRITE(file,buf,sizeofbuf) \
+ ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
diff --git a/jpeg/jpegint.h b/jpeg/jpegint.h
new file mode 100644
index 0000000..95b00d4
--- /dev/null
+++ b/jpeg/jpegint.h
@@ -0,0 +1,392 @@
+/*
+ * jpegint.h
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides common declarations for the various JPEG modules.
+ * These declarations are considered internal to the JPEG library; most
+ * applications using the library shouldn't need to include this file.
+ */
+
+
+/* Declarations for both compression & decompression */
+
+typedef enum { /* Operating modes for buffer controllers */
+ JBUF_PASS_THRU, /* Plain stripwise operation */
+ /* Remaining modes require a full-image buffer to have been created */
+ JBUF_SAVE_SOURCE, /* Run source subobject only, save output */
+ JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */
+ JBUF_SAVE_AND_PASS /* Run both subobjects, save output */
+} J_BUF_MODE;
+
+/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
+#define CSTATE_START 100 /* after create_compress */
+#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */
+#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */
+#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */
+#define DSTATE_START 200 /* after create_decompress */
+#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */
+#define DSTATE_READY 202 /* found SOS, ready for start_decompress */
+#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/
+#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */
+#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */
+#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */
+#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */
+#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */
+#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */
+#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */
+
+
+/* Declarations for compression modules */
+
+/* Master control module */
+struct jpeg_comp_master {
+ JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
+ JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
+ JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
+
+ /* State variables made visible to other modules */
+ boolean call_pass_startup; /* True if pass_startup must be called */
+ boolean is_last_pass; /* True during last pass */
+};
+
+/* Main buffer control (downsampled-data buffer) */
+struct jpeg_c_main_controller {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, process_data, (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail));
+};
+
+/* Compression preprocessing (downsampling input buffer control) */
+struct jpeg_c_prep_controller {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf,
+ JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail,
+ JSAMPIMAGE output_buf,
+ JDIMENSION *out_row_group_ctr,
+ JDIMENSION out_row_groups_avail));
+};
+
+/* Coefficient buffer control */
+struct jpeg_c_coef_controller {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
+ JSAMPIMAGE input_buf));
+};
+
+/* Colorspace conversion */
+struct jpeg_color_converter {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+ JMETHOD(void, color_convert, (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows));
+};
+
+/* Downsampling */
+struct jpeg_downsampler {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+ JMETHOD(void, downsample, (j_compress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION in_row_index,
+ JSAMPIMAGE output_buf,
+ JDIMENSION out_row_group_index));
+
+ boolean need_context_rows; /* TRUE if need rows above & below */
+};
+
+/* Forward DCT (also controls coefficient quantization) */
+struct jpeg_forward_dct {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+ /* perhaps this should be an array??? */
+ JMETHOD(void, forward_DCT, (j_compress_ptr cinfo,
+ jpeg_component_info * compptr,
+ JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+ JDIMENSION start_row, JDIMENSION start_col,
+ JDIMENSION num_blocks));
+};
+
+/* Entropy encoding */
+struct jpeg_entropy_encoder {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
+ JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data));
+ JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
+};
+
+/* Marker writing */
+struct jpeg_marker_writer {
+ JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
+ JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
+ JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
+ JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
+ JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
+ /* These routines are exported to allow insertion of extra markers */
+ /* Probably only COM and APPn markers should be written this way */
+ JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker,
+ unsigned int datalen));
+ JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val));
+};
+
+
+/* Declarations for decompression modules */
+
+/* Master control module */
+struct jpeg_decomp_master {
+ JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));
+
+ /* State variables made visible to other modules */
+ boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */
+};
+
+/* Input control module */
+struct jpeg_input_controller {
+ JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
+ JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
+ JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));
+
+ /* State variables made visible to other modules */
+ boolean has_multiple_scans; /* True if file has multiple scans */
+ boolean eoi_reached; /* True when EOI has been consumed */
+};
+
+/* Main buffer control (downsampled-data buffer) */
+struct jpeg_d_main_controller {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, process_data, (j_decompress_ptr cinfo,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+};
+
+/* Coefficient buffer control */
+struct jpeg_d_coef_controller {
+ JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
+ JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
+ JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
+ JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
+ JSAMPIMAGE output_buf));
+ /* Pointer to array of coefficient virtual arrays, or NULL if none */
+ jvirt_barray_ptr *coef_arrays;
+};
+
+/* Decompression postprocessing (color quantization buffer control) */
+struct jpeg_d_post_controller {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf,
+ JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+};
+
+/* Marker reading & parsing */
+struct jpeg_marker_reader {
+ JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
+ /* Read markers until SOS or EOI.
+ * Returns same codes as are defined for jpeg_consume_input:
+ * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+ */
+ JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
+ /* Read a restart marker --- exported for use by entropy decoder only */
+ jpeg_marker_parser_method read_restart_marker;
+
+ /* State of marker reader --- nominally internal, but applications
+ * supplying COM or APPn handlers might like to know the state.
+ */
+ boolean saw_SOI; /* found SOI? */
+ boolean saw_SOF; /* found SOF? */
+ int next_restart_num; /* next restart number expected (0-7) */
+ unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */
+};
+
+/* Entropy decoding */
+struct jpeg_entropy_decoder {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
+ JBLOCKROW *MCU_data));
+
+ /* This is here to share code between baseline and progressive decoders; */
+ /* other modules probably should not use it */
+ boolean insufficient_data; /* set TRUE after emitting warning */
+};
+
+/* Inverse DCT (also performs dequantization) */
+typedef JMETHOD(void, inverse_DCT_method_ptr,
+ (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col));
+
+struct jpeg_inverse_dct {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ /* It is useful to allow each component to have a separate IDCT method. */
+ inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
+};
+
+/* Upsampling (note that upsampler must also call color converter) */
+struct jpeg_upsampler {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, upsample, (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf,
+ JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+
+ boolean need_context_rows; /* TRUE if need rows above & below */
+};
+
+/* Colorspace conversion */
+struct jpeg_color_deconverter {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows));
+};
+
+/* Color quantization or color precision reduction */
+struct jpeg_color_quantizer {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
+ JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPARRAY output_buf,
+ int num_rows));
+ JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
+};
+
+
+/* Miscellaneous useful macros */
+
+#undef MAX
+#define MAX(a,b) ((a) > (b) ? (a) : (b))
+#undef MIN
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+
+
+/* We assume that right shift corresponds to signed division by 2 with
+ * rounding towards minus infinity. This is correct for typical "arithmetic
+ * shift" instructions that shift in copies of the sign bit. But some
+ * C compilers implement >> with an unsigned shift. For these machines you
+ * must define RIGHT_SHIFT_IS_UNSIGNED.
+ * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
+ * It is only applied with constant shift counts. SHIFT_TEMPS must be
+ * included in the variables of any routine using RIGHT_SHIFT.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define SHIFT_TEMPS INT32 shift_temp;
+#define RIGHT_SHIFT(x,shft) \
+ ((shift_temp = (x)) < 0 ? \
+ (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
+ (shift_temp >> (shft)))
+#else
+#define SHIFT_TEMPS
+#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
+#endif
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jinit_compress_master jICompress
+#define jinit_c_master_control jICMaster
+#define jinit_c_main_controller jICMainC
+#define jinit_c_prep_controller jICPrepC
+#define jinit_c_coef_controller jICCoefC
+#define jinit_color_converter jICColor
+#define jinit_downsampler jIDownsampler
+#define jinit_forward_dct jIFDCT
+#define jinit_huff_encoder jIHEncoder
+#define jinit_phuff_encoder jIPHEncoder
+#define jinit_marker_writer jIMWriter
+#define jinit_master_decompress jIDMaster
+#define jinit_d_main_controller jIDMainC
+#define jinit_d_coef_controller jIDCoefC
+#define jinit_d_post_controller jIDPostC
+#define jinit_input_controller jIInCtlr
+#define jinit_marker_reader jIMReader
+#define jinit_huff_decoder jIHDecoder
+#define jinit_phuff_decoder jIPHDecoder
+#define jinit_inverse_dct jIIDCT
+#define jinit_upsampler jIUpsampler
+#define jinit_color_deconverter jIDColor
+#define jinit_1pass_quantizer jI1Quant
+#define jinit_2pass_quantizer jI2Quant
+#define jinit_merged_upsampler jIMUpsampler
+#define jinit_memory_mgr jIMemMgr
+#define jdiv_round_up jDivRound
+#define jround_up jRound
+#define jcopy_sample_rows jCopySamples
+#define jcopy_block_row jCopyBlocks
+#define jzero_far jZeroFar
+#define jpeg_zigzag_order jZIGTable
+#define jpeg_natural_order jZAGTable
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/* Compression module initialization routines */
+EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo,
+ boolean transcode_only));
+EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_phuff_encoder JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo));
+/* Decompression module initialization routines */
+EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_phuff_decoder JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
+/* Memory manager initialization */
+EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo));
+
+/* Utility routines in jutils.c */
+EXTERN(long) jdiv_round_up JPP((long a, long b));
+EXTERN(long) jround_up JPP((long a, long b));
+EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row,
+ JSAMPARRAY output_array, int dest_row,
+ int num_rows, JDIMENSION num_cols));
+EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
+ JDIMENSION num_blocks));
+EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero));
+/* Constant tables in jutils.c */
+#if 0 /* This table is not actually needed in v6a */
+extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
+#endif
+extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
+
+/* Suppress undefined-structure complaints if necessary. */
+
+#ifdef INCOMPLETE_TYPES_BROKEN
+#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */
+struct jvirt_sarray_control { long dummy; };
+struct jvirt_barray_control { long dummy; };
+#endif
+#endif /* INCOMPLETE_TYPES_BROKEN */
diff --git a/jpeg/jpeglib.h b/jpeg/jpeglib.h
new file mode 100644
index 0000000..d1be8dd
--- /dev/null
+++ b/jpeg/jpeglib.h
@@ -0,0 +1,1096 @@
+/*
+ * jpeglib.h
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file defines the application interface for the JPEG library.
+ * Most applications using the library need only include this file,
+ * and perhaps jerror.h if they want to know the exact error codes.
+ */
+
+#ifndef JPEGLIB_H
+#define JPEGLIB_H
+
+/*
+ * First we include the configuration files that record how this
+ * installation of the JPEG library is set up. jconfig.h can be
+ * generated automatically for many systems. jmorecfg.h contains
+ * manual configuration options that most people need not worry about.
+ */
+
+#ifndef JCONFIG_INCLUDED /* in case jinclude.h already did */
+#include "jconfig.h" /* widely used configuration options */
+#endif
+#include "jmorecfg.h" /* seldom changed options */
+
+
+/* Version ID for the JPEG library.
+ * Might be useful for tests like "#if JPEG_LIB_VERSION >= 60".
+ */
+
+#define JPEG_LIB_VERSION 62 /* Version 6b */
+
+
+/* Various constants determining the sizes of things.
+ * All of these are specified by the JPEG standard, so don't change them
+ * if you want to be compatible.
+ */
+
+#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */
+#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */
+#define NUM_QUANT_TBLS 4 /* Quantization tables are numbered 0..3 */
+#define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */
+#define NUM_ARITH_TBLS 16 /* Arith-coding tables are numbered 0..15 */
+#define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */
+#define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */
+/* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard;
+ * the PostScript DCT filter can emit files with many more than 10 blocks/MCU.
+ * If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU
+ * to handle it. We even let you do this from the jconfig.h file. However,
+ * we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe
+ * sometimes emits noncompliant files doesn't mean you should too.
+ */
+#define C_MAX_BLOCKS_IN_MCU 10 /* compressor's limit on blocks per MCU */
+#ifndef D_MAX_BLOCKS_IN_MCU
+#define D_MAX_BLOCKS_IN_MCU 10 /* decompressor's limit on blocks per MCU */
+#endif
+
+
+/* Data structures for images (arrays of samples and of DCT coefficients).
+ * On 80x86 machines, the image arrays are too big for near pointers,
+ * but the pointer arrays can fit in near memory.
+ */
+
+typedef JSAMPLE FAR *JSAMPROW; /* ptr to one image row of pixel samples. */
+typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */
+typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */
+
+typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */
+typedef JBLOCK FAR *JBLOCKROW; /* pointer to one row of coefficient blocks */
+typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */
+typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */
+
+typedef JCOEF FAR *JCOEFPTR; /* useful in a couple of places */
+
+
+/* Types for JPEG compression parameters and working tables. */
+
+
+/* DCT coefficient quantization tables. */
+
+typedef struct {
+ /* This array gives the coefficient quantizers in natural array order
+ * (not the zigzag order in which they are stored in a JPEG DQT marker).
+ * CAUTION: IJG versions prior to v6a kept this array in zigzag order.
+ */
+ UINT16 quantval[DCTSIZE2]; /* quantization step for each coefficient */
+ /* This field is used only during compression. It's initialized FALSE when
+ * the table is created, and set TRUE when it's been output to the file.
+ * You could suppress output of a table by setting this to TRUE.
+ * (See jpeg_suppress_tables for an example.)
+ */
+ boolean sent_table; /* TRUE when table has been output */
+} JQUANT_TBL;
+
+
+/* Huffman coding tables. */
+
+typedef struct {
+ /* These two fields directly represent the contents of a JPEG DHT marker */
+ UINT8 bits[17]; /* bits[k] = # of symbols with codes of */
+ /* length k bits; bits[0] is unused */
+ UINT8 huffval[256]; /* The symbols, in order of incr code length */
+ /* This field is used only during compression. It's initialized FALSE when
+ * the table is created, and set TRUE when it's been output to the file.
+ * You could suppress output of a table by setting this to TRUE.
+ * (See jpeg_suppress_tables for an example.)
+ */
+ boolean sent_table; /* TRUE when table has been output */
+} JHUFF_TBL;
+
+
+/* Basic info about one component (color channel). */
+
+typedef struct {
+ /* These values are fixed over the whole image. */
+ /* For compression, they must be supplied by parameter setup; */
+ /* for decompression, they are read from the SOF marker. */
+ int component_id; /* identifier for this component (0..255) */
+ int component_index; /* its index in SOF or cinfo->comp_info[] */
+ int h_samp_factor; /* horizontal sampling factor (1..4) */
+ int v_samp_factor; /* vertical sampling factor (1..4) */
+ int quant_tbl_no; /* quantization table selector (0..3) */
+ /* These values may vary between scans. */
+ /* For compression, they must be supplied by parameter setup; */
+ /* for decompression, they are read from the SOS marker. */
+ /* The decompressor output side may not use these variables. */
+ int dc_tbl_no; /* DC entropy table selector (0..3) */
+ int ac_tbl_no; /* AC entropy table selector (0..3) */
+
+ /* Remaining fields should be treated as private by applications. */
+
+ /* These values are computed during compression or decompression startup: */
+ /* Component's size in DCT blocks.
+ * Any dummy blocks added to complete an MCU are not counted; therefore
+ * these values do not depend on whether a scan is interleaved or not.
+ */
+ JDIMENSION width_in_blocks;
+ JDIMENSION height_in_blocks;
+ /* Size of a DCT block in samples. Always DCTSIZE for compression.
+ * For decompression this is the size of the output from one DCT block,
+ * reflecting any scaling we choose to apply during the IDCT step.
+ * Values of 1,2,4,8 are likely to be supported. Note that different
+ * components may receive different IDCT scalings.
+ */
+ int DCT_scaled_size;
+ /* The downsampled dimensions are the component's actual, unpadded number
+ * of samples at the main buffer (preprocessing/compression interface), thus
+ * downsampled_width = ceil(image_width * Hi/Hmax)
+ * and similarly for height. For decompression, IDCT scaling is included, so
+ * downsampled_width = ceil(image_width * Hi/Hmax * DCT_scaled_size/DCTSIZE)
+ */
+ JDIMENSION downsampled_width; /* actual width in samples */
+ JDIMENSION downsampled_height; /* actual height in samples */
+ /* This flag is used only for decompression. In cases where some of the
+ * components will be ignored (eg grayscale output from YCbCr image),
+ * we can skip most computations for the unused components.
+ */
+ boolean component_needed; /* do we need the value of this component? */
+
+ /* These values are computed before starting a scan of the component. */
+ /* The decompressor output side may not use these variables. */
+ int MCU_width; /* number of blocks per MCU, horizontally */
+ int MCU_height; /* number of blocks per MCU, vertically */
+ int MCU_blocks; /* MCU_width * MCU_height */
+ int MCU_sample_width; /* MCU width in samples, MCU_width*DCT_scaled_size */
+ int last_col_width; /* # of non-dummy blocks across in last MCU */
+ int last_row_height; /* # of non-dummy blocks down in last MCU */
+
+ /* Saved quantization table for component; NULL if none yet saved.
+ * See jdinput.c comments about the need for this information.
+ * This field is currently used only for decompression.
+ */
+ JQUANT_TBL * quant_table;
+
+ /* Private per-component storage for DCT or IDCT subsystem. */
+ void * dct_table;
+} jpeg_component_info;
+
+
+/* The script for encoding a multiple-scan file is an array of these: */
+
+typedef struct {
+ int comps_in_scan; /* number of components encoded in this scan */
+ int component_index[MAX_COMPS_IN_SCAN]; /* their SOF/comp_info[] indexes */
+ int Ss, Se; /* progressive JPEG spectral selection parms */
+ int Ah, Al; /* progressive JPEG successive approx. parms */
+} jpeg_scan_info;
+
+/* The decompressor can save APPn and COM markers in a list of these: */
+
+typedef struct jpeg_marker_struct FAR * jpeg_saved_marker_ptr;
+
+struct jpeg_marker_struct {
+ jpeg_saved_marker_ptr next; /* next in list, or NULL */
+ UINT8 marker; /* marker code: JPEG_COM, or JPEG_APP0+n */
+ unsigned int original_length; /* # bytes of data in the file */
+ unsigned int data_length; /* # bytes of data saved at data[] */
+ JOCTET FAR * data; /* the data contained in the marker */
+ /* the marker length word is not counted in data_length or original_length */
+};
+
+/* Known color spaces. */
+
+typedef enum {
+ JCS_UNKNOWN, /* error/unspecified */
+ JCS_GRAYSCALE, /* monochrome */
+ JCS_RGB, /* red/green/blue */
+ JCS_YCbCr, /* Y/Cb/Cr (also known as YUV) */
+ JCS_CMYK, /* C/M/Y/K */
+ JCS_YCCK /* Y/Cb/Cr/K */
+} J_COLOR_SPACE;
+
+/* DCT/IDCT algorithm options. */
+
+typedef enum {
+ JDCT_ISLOW, /* slow but accurate integer algorithm */
+ JDCT_IFAST, /* faster, less accurate integer method */
+ JDCT_FLOAT /* floating-point: accurate, fast on fast HW */
+} J_DCT_METHOD;
+
+#ifndef JDCT_DEFAULT /* may be overridden in jconfig.h */
+#define JDCT_DEFAULT JDCT_ISLOW
+#endif
+#ifndef JDCT_FASTEST /* may be overridden in jconfig.h */
+#define JDCT_FASTEST JDCT_IFAST
+#endif
+
+/* Dithering options for decompression. */
+
+typedef enum {
+ JDITHER_NONE, /* no dithering */
+ JDITHER_ORDERED, /* simple ordered dither */
+ JDITHER_FS /* Floyd-Steinberg error diffusion dither */
+} J_DITHER_MODE;
+
+
+/* Common fields between JPEG compression and decompression master structs. */
+
+#define jpeg_common_fields \
+ struct jpeg_error_mgr * err; /* Error handler module */\
+ struct jpeg_memory_mgr * mem; /* Memory manager module */\
+ struct jpeg_progress_mgr * progress; /* Progress monitor, or NULL if none */\
+ void * client_data; /* Available for use by application */\
+ boolean is_decompressor; /* So common code can tell which is which */\
+ int global_state /* For checking call sequence validity */
+
+/* Routines that are to be used by both halves of the library are declared
+ * to receive a pointer to this structure. There are no actual instances of
+ * jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct.
+ */
+struct jpeg_common_struct {
+ jpeg_common_fields; /* Fields common to both master struct types */
+ /* Additional fields follow in an actual jpeg_compress_struct or
+ * jpeg_decompress_struct. All three structs must agree on these
+ * initial fields! (This would be a lot cleaner in C++.)
+ */
+};
+
+typedef struct jpeg_common_struct * j_common_ptr;
+typedef struct jpeg_compress_struct * j_compress_ptr;
+typedef struct jpeg_decompress_struct * j_decompress_ptr;
+
+
+/* Master record for a compression instance */
+
+struct jpeg_compress_struct {
+ jpeg_common_fields; /* Fields shared with jpeg_decompress_struct */
+
+ /* Destination for compressed data */
+ struct jpeg_destination_mgr * dest;
+
+ /* Description of source image --- these fields must be filled in by
+ * outer application before starting compression. in_color_space must
+ * be correct before you can even call jpeg_set_defaults().
+ */
+
+ JDIMENSION image_width; /* input image width */
+ JDIMENSION image_height; /* input image height */
+ int input_components; /* # of color components in input image */
+ J_COLOR_SPACE in_color_space; /* colorspace of input image */
+
+ double input_gamma; /* image gamma of input image */
+
+ /* Compression parameters --- these fields must be set before calling
+ * jpeg_start_compress(). We recommend calling jpeg_set_defaults() to
+ * initialize everything to reasonable defaults, then changing anything
+ * the application specifically wants to change. That way you won't get
+ * burnt when new parameters are added. Also note that there are several
+ * helper routines to simplify changing parameters.
+ */
+
+ int data_precision; /* bits of precision in image data */
+
+ int num_components; /* # of color components in JPEG image */
+ J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
+
+ jpeg_component_info * comp_info;
+ /* comp_info[i] describes component that appears i'th in SOF */
+
+ JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
+ /* ptrs to coefficient quantization tables, or NULL if not defined */
+
+ JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
+ JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
+ /* ptrs to Huffman coding tables, or NULL if not defined */
+
+ UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
+ UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
+ UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
+
+ int num_scans; /* # of entries in scan_info array */
+ const jpeg_scan_info * scan_info; /* script for multi-scan file, or NULL */
+ /* The default value of scan_info is NULL, which causes a single-scan
+ * sequential JPEG file to be emitted. To create a multi-scan file,
+ * set num_scans and scan_info to point to an array of scan definitions.
+ */
+
+ boolean raw_data_in; /* TRUE=caller supplies downsampled data */
+ boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
+ boolean optimize_coding; /* TRUE=optimize entropy encoding parms */
+ boolean CCIR601_sampling; /* TRUE=first samples are cosited */
+ int smoothing_factor; /* 1..100, or 0 for no input smoothing */
+ J_DCT_METHOD dct_method; /* DCT algorithm selector */
+
+ /* The restart interval can be specified in absolute MCUs by setting
+ * restart_interval, or in MCU rows by setting restart_in_rows
+ * (in which case the correct restart_interval will be figured
+ * for each scan).
+ */
+ unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */
+ int restart_in_rows; /* if > 0, MCU rows per restart interval */
+
+ /* Parameters controlling emission of special markers. */
+
+ boolean write_JFIF_header; /* should a JFIF marker be written? */
+ UINT8 JFIF_major_version; /* What to write for the JFIF version number */
+ UINT8 JFIF_minor_version;
+ /* These three values are not used by the JPEG code, merely copied */
+ /* into the JFIF APP0 marker. density_unit can be 0 for unknown, */
+ /* 1 for dots/inch, or 2 for dots/cm. Note that the pixel aspect */
+ /* ratio is defined by X_density/Y_density even when density_unit=0. */
+ UINT8 density_unit; /* JFIF code for pixel size units */
+ UINT16 X_density; /* Horizontal pixel density */
+ UINT16 Y_density; /* Vertical pixel density */
+ boolean write_Adobe_marker; /* should an Adobe marker be written? */
+
+ /* State variable: index of next scanline to be written to
+ * jpeg_write_scanlines(). Application may use this to control its
+ * processing loop, e.g., "while (next_scanline < image_height)".
+ */
+
+ JDIMENSION next_scanline; /* 0 .. image_height-1 */
+
+ /* Remaining fields are known throughout compressor, but generally
+ * should not be touched by a surrounding application.
+ */
+
+ /*
+ * These fields are computed during compression startup
+ */
+ boolean progressive_mode; /* TRUE if scan script uses progressive mode */
+ int max_h_samp_factor; /* largest h_samp_factor */
+ int max_v_samp_factor; /* largest v_samp_factor */
+
+ JDIMENSION total_iMCU_rows; /* # of iMCU rows to be input to coef ctlr */
+ /* The coefficient controller receives data in units of MCU rows as defined
+ * for fully interleaved scans (whether the JPEG file is interleaved or not).
+ * There are v_samp_factor * DCTSIZE sample rows of each component in an
+ * "iMCU" (interleaved MCU) row.
+ */
+
+ /*
+ * These fields are valid during any one scan.
+ * They describe the components and MCUs actually appearing in the scan.
+ */
+ int comps_in_scan; /* # of JPEG components in this scan */
+ jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
+ /* *cur_comp_info[i] describes component that appears i'th in SOS */
+
+ JDIMENSION MCUs_per_row; /* # of MCUs across the image */
+ JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
+
+ int blocks_in_MCU; /* # of DCT blocks per MCU */
+ int MCU_membership[C_MAX_BLOCKS_IN_MCU];
+ /* MCU_membership[i] is index in cur_comp_info of component owning */
+ /* i'th block in an MCU */
+
+ int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */
+
+ /*
+ * Links to compression subobjects (methods and private variables of modules)
+ */
+ struct jpeg_comp_master * master;
+ struct jpeg_c_main_controller * main;
+ struct jpeg_c_prep_controller * prep;
+ struct jpeg_c_coef_controller * coef;
+ struct jpeg_marker_writer * marker;
+ struct jpeg_color_converter * cconvert;
+ struct jpeg_downsampler * downsample;
+ struct jpeg_forward_dct * fdct;
+ struct jpeg_entropy_encoder * entropy;
+ jpeg_scan_info * script_space; /* workspace for jpeg_simple_progression */
+ int script_space_size;
+};
+
+
+/* Master record for a decompression instance */
+
+struct jpeg_decompress_struct {
+ jpeg_common_fields; /* Fields shared with jpeg_compress_struct */
+
+ /* Source of compressed data */
+ struct jpeg_source_mgr * src;
+
+ /* Basic description of image --- filled in by jpeg_read_header(). */
+ /* Application may inspect these values to decide how to process image. */
+
+ JDIMENSION image_width; /* nominal image width (from SOF marker) */
+ JDIMENSION image_height; /* nominal image height */
+ int num_components; /* # of color components in JPEG image */
+ J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
+
+ /* Decompression processing parameters --- these fields must be set before
+ * calling jpeg_start_decompress(). Note that jpeg_read_header() initializes
+ * them to default values.
+ */
+
+ J_COLOR_SPACE out_color_space; /* colorspace for output */
+
+ unsigned int scale_num, scale_denom; /* fraction by which to scale image */
+
+ double output_gamma; /* image gamma wanted in output */
+
+ boolean buffered_image; /* TRUE=multiple output passes */
+ boolean raw_data_out; /* TRUE=downsampled data wanted */
+
+ J_DCT_METHOD dct_method; /* IDCT algorithm selector */
+ boolean do_fancy_upsampling; /* TRUE=apply fancy upsampling */
+ boolean do_block_smoothing; /* TRUE=apply interblock smoothing */
+
+ boolean quantize_colors; /* TRUE=colormapped output wanted */
+ /* the following are ignored if not quantize_colors: */
+ J_DITHER_MODE dither_mode; /* type of color dithering to use */
+ boolean two_pass_quantize; /* TRUE=use two-pass color quantization */
+ int desired_number_of_colors; /* max # colors to use in created colormap */
+ /* these are significant only in buffered-image mode: */
+ boolean enable_1pass_quant; /* enable future use of 1-pass quantizer */
+ boolean enable_external_quant;/* enable future use of external colormap */
+ boolean enable_2pass_quant; /* enable future use of 2-pass quantizer */
+
+ /* Description of actual output image that will be returned to application.
+ * These fields are computed by jpeg_start_decompress().
+ * You can also use jpeg_calc_output_dimensions() to determine these values
+ * in advance of calling jpeg_start_decompress().
+ */
+
+ JDIMENSION output_width; /* scaled image width */
+ JDIMENSION output_height; /* scaled image height */
+ int out_color_components; /* # of color components in out_color_space */
+ int output_components; /* # of color components returned */
+ /* output_components is 1 (a colormap index) when quantizing colors;
+ * otherwise it equals out_color_components.
+ */
+ int rec_outbuf_height; /* min recommended height of scanline buffer */
+ /* If the buffer passed to jpeg_read_scanlines() is less than this many rows
+ * high, space and time will be wasted due to unnecessary data copying.
+ * Usually rec_outbuf_height will be 1 or 2, at most 4.
+ */
+
+ /* When quantizing colors, the output colormap is described by these fields.
+ * The application can supply a colormap by setting colormap non-NULL before
+ * calling jpeg_start_decompress; otherwise a colormap is created during
+ * jpeg_start_decompress or jpeg_start_output.
+ * The map has out_color_components rows and actual_number_of_colors columns.
+ */
+ int actual_number_of_colors; /* number of entries in use */
+ JSAMPARRAY colormap; /* The color map as a 2-D pixel array */
+
+ /* State variables: these variables indicate the progress of decompression.
+ * The application may examine these but must not modify them.
+ */
+
+ /* Row index of next scanline to be read from jpeg_read_scanlines().
+ * Application may use this to control its processing loop, e.g.,
+ * "while (output_scanline < output_height)".
+ */
+ JDIMENSION output_scanline; /* 0 .. output_height-1 */
+
+ /* Current input scan number and number of iMCU rows completed in scan.
+ * These indicate the progress of the decompressor input side.
+ */
+ int input_scan_number; /* Number of SOS markers seen so far */
+ JDIMENSION input_iMCU_row; /* Number of iMCU rows completed */
+
+ /* The "output scan number" is the notional scan being displayed by the
+ * output side. The decompressor will not allow output scan/row number
+ * to get ahead of input scan/row, but it can fall arbitrarily far behind.
+ */
+ int output_scan_number; /* Nominal scan number being displayed */
+ JDIMENSION output_iMCU_row; /* Number of iMCU rows read */
+
+ /* Current progression status. coef_bits[c][i] indicates the precision
+ * with which component c's DCT coefficient i (in zigzag order) is known.
+ * It is -1 when no data has yet been received, otherwise it is the point
+ * transform (shift) value for the most recent scan of the coefficient
+ * (thus, 0 at completion of the progression).
+ * This pointer is NULL when reading a non-progressive file.
+ */
+ int (*coef_bits)[DCTSIZE2]; /* -1 or current Al value for each coef */
+
+ /* Internal JPEG parameters --- the application usually need not look at
+ * these fields. Note that the decompressor output side may not use
+ * any parameters that can change between scans.
+ */
+
+ /* Quantization and Huffman tables are carried forward across input
+ * datastreams when processing abbreviated JPEG datastreams.
+ */
+
+ JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
+ /* ptrs to coefficient quantization tables, or NULL if not defined */
+
+ JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
+ JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
+ /* ptrs to Huffman coding tables, or NULL if not defined */
+
+ /* These parameters are never carried across datastreams, since they
+ * are given in SOF/SOS markers or defined to be reset by SOI.
+ */
+
+ int data_precision; /* bits of precision in image data */
+
+ jpeg_component_info * comp_info;
+ /* comp_info[i] describes component that appears i'th in SOF */
+
+ boolean progressive_mode; /* TRUE if SOFn specifies progressive mode */
+ boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
+
+ UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
+ UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
+ UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
+
+ unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */
+
+ /* These fields record data obtained from optional markers recognized by
+ * the JPEG library.
+ */
+ boolean saw_JFIF_marker; /* TRUE iff a JFIF APP0 marker was found */
+ /* Data copied from JFIF marker; only valid if saw_JFIF_marker is TRUE: */
+ UINT8 JFIF_major_version; /* JFIF version number */
+ UINT8 JFIF_minor_version;
+ UINT8 density_unit; /* JFIF code for pixel size units */
+ UINT16 X_density; /* Horizontal pixel density */
+ UINT16 Y_density; /* Vertical pixel density */
+ boolean saw_Adobe_marker; /* TRUE iff an Adobe APP14 marker was found */
+ UINT8 Adobe_transform; /* Color transform code from Adobe marker */
+
+ boolean CCIR601_sampling; /* TRUE=first samples are cosited */
+
+ /* Aside from the specific data retained from APPn markers known to the
+ * library, the uninterpreted contents of any or all APPn and COM markers
+ * can be saved in a list for examination by the application.
+ */
+ jpeg_saved_marker_ptr marker_list; /* Head of list of saved markers */
+
+ /* Remaining fields are known throughout decompressor, but generally
+ * should not be touched by a surrounding application.
+ */
+
+ /*
+ * These fields are computed during decompression startup
+ */
+ int max_h_samp_factor; /* largest h_samp_factor */
+ int max_v_samp_factor; /* largest v_samp_factor */
+
+ int min_DCT_scaled_size; /* smallest DCT_scaled_size of any component */
+
+ JDIMENSION total_iMCU_rows; /* # of iMCU rows in image */
+ /* The coefficient controller's input and output progress is measured in
+ * units of "iMCU" (interleaved MCU) rows. These are the same as MCU rows
+ * in fully interleaved JPEG scans, but are used whether the scan is
+ * interleaved or not. We define an iMCU row as v_samp_factor DCT block
+ * rows of each component. Therefore, the IDCT output contains
+ * v_samp_factor*DCT_scaled_size sample rows of a component per iMCU row.
+ */
+
+ JSAMPLE * sample_range_limit; /* table for fast range-limiting */
+
+ /*
+ * These fields are valid during any one scan.
+ * They describe the components and MCUs actually appearing in the scan.
+ * Note that the decompressor output side must not use these fields.
+ */
+ int comps_in_scan; /* # of JPEG components in this scan */
+ jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
+ /* *cur_comp_info[i] describes component that appears i'th in SOS */
+
+ JDIMENSION MCUs_per_row; /* # of MCUs across the image */
+ JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
+
+ int blocks_in_MCU; /* # of DCT blocks per MCU */
+ int MCU_membership[D_MAX_BLOCKS_IN_MCU];
+ /* MCU_membership[i] is index in cur_comp_info of component owning */
+ /* i'th block in an MCU */
+
+ int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */
+
+ /* This field is shared between entropy decoder and marker parser.
+ * It is either zero or the code of a JPEG marker that has been
+ * read from the data source, but has not yet been processed.
+ */
+ int unread_marker;
+
+ /*
+ * Links to decompression subobjects (methods, private variables of modules)
+ */
+ struct jpeg_decomp_master * master;
+ struct jpeg_d_main_controller * main;
+ struct jpeg_d_coef_controller * coef;
+ struct jpeg_d_post_controller * post;
+ struct jpeg_input_controller * inputctl;
+ struct jpeg_marker_reader * marker;
+ struct jpeg_entropy_decoder * entropy;
+ struct jpeg_inverse_dct * idct;
+ struct jpeg_upsampler * upsample;
+ struct jpeg_color_deconverter * cconvert;
+ struct jpeg_color_quantizer * cquantize;
+};
+
+
+/* "Object" declarations for JPEG modules that may be supplied or called
+ * directly by the surrounding application.
+ * As with all objects in the JPEG library, these structs only define the
+ * publicly visible methods and state variables of a module. Additional
+ * private fields may exist after the public ones.
+ */
+
+
+/* Error handler object */
+
+struct jpeg_error_mgr {
+ /* Error exit handler: does not return to caller */
+ JMETHOD(void, error_exit, (j_common_ptr cinfo));
+ /* Conditionally emit a trace or warning message */
+ JMETHOD(void, emit_message, (j_common_ptr cinfo, int msg_level));
+ /* Routine that actually outputs a trace or error message */
+ JMETHOD(void, output_message, (j_common_ptr cinfo));
+ /* Format a message string for the most recent JPEG error or message */
+ JMETHOD(void, format_message, (j_common_ptr cinfo, char * buffer));
+#define JMSG_LENGTH_MAX 200 /* recommended size of format_message buffer */
+ /* Reset error state variables at start of a new image */
+ JMETHOD(void, reset_error_mgr, (j_common_ptr cinfo));
+
+ /* The message ID code and any parameters are saved here.
+ * A message can have one string parameter or up to 8 int parameters.
+ */
+ int msg_code;
+#define JMSG_STR_PARM_MAX 80
+ union {
+ int i[8];
+ char s[JMSG_STR_PARM_MAX];
+ } msg_parm;
+
+ /* Standard state variables for error facility */
+
+ int trace_level; /* max msg_level that will be displayed */
+
+ /* For recoverable corrupt-data errors, we emit a warning message,
+ * but keep going unless emit_message chooses to abort. emit_message
+ * should count warnings in num_warnings. The surrounding application
+ * can check for bad data by seeing if num_warnings is nonzero at the
+ * end of processing.
+ */
+ long num_warnings; /* number of corrupt-data warnings */
+
+ /* These fields point to the table(s) of error message strings.
+ * An application can change the table pointer to switch to a different
+ * message list (typically, to change the language in which errors are
+ * reported). Some applications may wish to add additional error codes
+ * that will be handled by the JPEG library error mechanism; the second
+ * table pointer is used for this purpose.
+ *
+ * First table includes all errors generated by JPEG library itself.
+ * Error code 0 is reserved for a "no such error string" message.
+ */
+ const char * const * jpeg_message_table; /* Library errors */
+ int last_jpeg_message; /* Table contains strings 0..last_jpeg_message */
+ /* Second table can be added by application (see cjpeg/djpeg for example).
+ * It contains strings numbered first_addon_message..last_addon_message.
+ */
+ const char * const * addon_message_table; /* Non-library errors */
+ int first_addon_message; /* code for first string in addon table */
+ int last_addon_message; /* code for last string in addon table */
+};
+
+
+/* Progress monitor object */
+
+struct jpeg_progress_mgr {
+ JMETHOD(void, progress_monitor, (j_common_ptr cinfo));
+
+ long pass_counter; /* work units completed in this pass */
+ long pass_limit; /* total number of work units in this pass */
+ int completed_passes; /* passes completed so far */
+ int total_passes; /* total number of passes expected */
+};
+
+
+/* Data destination object for compression */
+
+struct jpeg_destination_mgr {
+ JOCTET * next_output_byte; /* => next byte to write in buffer */
+ size_t free_in_buffer; /* # of byte spaces remaining in buffer */
+
+ JMETHOD(void, init_destination, (j_compress_ptr cinfo));
+ JMETHOD(boolean, empty_output_buffer, (j_compress_ptr cinfo));
+ JMETHOD(void, term_destination, (j_compress_ptr cinfo));
+};
+
+
+/* Data source object for decompression */
+
+struct jpeg_source_mgr {
+ const JOCTET * next_input_byte; /* => next byte to read from buffer */
+ size_t bytes_in_buffer; /* # of bytes remaining in buffer */
+
+ JMETHOD(void, init_source, (j_decompress_ptr cinfo));
+ JMETHOD(boolean, fill_input_buffer, (j_decompress_ptr cinfo));
+ JMETHOD(void, skip_input_data, (j_decompress_ptr cinfo, long num_bytes));
+ JMETHOD(boolean, resync_to_restart, (j_decompress_ptr cinfo, int desired));
+ JMETHOD(void, term_source, (j_decompress_ptr cinfo));
+};
+
+
+/* Memory manager object.
+ * Allocates "small" objects (a few K total), "large" objects (tens of K),
+ * and "really big" objects (virtual arrays with backing store if needed).
+ * The memory manager does not allow individual objects to be freed; rather,
+ * each created object is assigned to a pool, and whole pools can be freed
+ * at once. This is faster and more convenient than remembering exactly what
+ * to free, especially where malloc()/free() are not too speedy.
+ * NB: alloc routines never return NULL. They exit to error_exit if not
+ * successful.
+ */
+
+#define JPOOL_PERMANENT 0 /* lasts until master record is destroyed */
+#define JPOOL_IMAGE 1 /* lasts until done with image/datastream */
+#define JPOOL_NUMPOOLS 2
+
+typedef struct jvirt_sarray_control * jvirt_sarray_ptr;
+typedef struct jvirt_barray_control * jvirt_barray_ptr;
+
+
+struct jpeg_memory_mgr {
+ /* Method pointers */
+ JMETHOD(void *, alloc_small, (j_common_ptr cinfo, int pool_id,
+ size_t sizeofobject));
+ JMETHOD(void FAR *, alloc_large, (j_common_ptr cinfo, int pool_id,
+ size_t sizeofobject));
+ JMETHOD(JSAMPARRAY, alloc_sarray, (j_common_ptr cinfo, int pool_id,
+ JDIMENSION samplesperrow,
+ JDIMENSION numrows));
+ JMETHOD(JBLOCKARRAY, alloc_barray, (j_common_ptr cinfo, int pool_id,
+ JDIMENSION blocksperrow,
+ JDIMENSION numrows));
+ JMETHOD(jvirt_sarray_ptr, request_virt_sarray, (j_common_ptr cinfo,
+ int pool_id,
+ boolean pre_zero,
+ JDIMENSION samplesperrow,
+ JDIMENSION numrows,
+ JDIMENSION maxaccess));
+ JMETHOD(jvirt_barray_ptr, request_virt_barray, (j_common_ptr cinfo,
+ int pool_id,
+ boolean pre_zero,
+ JDIMENSION blocksperrow,
+ JDIMENSION numrows,
+ JDIMENSION maxaccess));
+ JMETHOD(void, realize_virt_arrays, (j_common_ptr cinfo));
+ JMETHOD(JSAMPARRAY, access_virt_sarray, (j_common_ptr cinfo,
+ jvirt_sarray_ptr ptr,
+ JDIMENSION start_row,
+ JDIMENSION num_rows,
+ boolean writable));
+ JMETHOD(JBLOCKARRAY, access_virt_barray, (j_common_ptr cinfo,
+ jvirt_barray_ptr ptr,
+ JDIMENSION start_row,
+ JDIMENSION num_rows,
+ boolean writable));
+ JMETHOD(void, free_pool, (j_common_ptr cinfo, int pool_id));
+ JMETHOD(void, self_destruct, (j_common_ptr cinfo));
+
+ /* Limit on memory allocation for this JPEG object. (Note that this is
+ * merely advisory, not a guaranteed maximum; it only affects the space
+ * used for virtual-array buffers.) May be changed by outer application
+ * after creating the JPEG object.
+ */
+ long max_memory_to_use;
+
+ /* Maximum allocation request accepted by alloc_large. */
+ long max_alloc_chunk;
+};
+
+
+/* Routine signature for application-supplied marker processing methods.
+ * Need not pass marker code since it is stored in cinfo->unread_marker.
+ */
+typedef JMETHOD(boolean, jpeg_marker_parser_method, (j_decompress_ptr cinfo));
+
+
+/* Declarations for routines called by application.
+ * The JPP macro hides prototype parameters from compilers that can't cope.
+ * Note JPP requires double parentheses.
+ */
+
+#ifdef HAVE_PROTOTYPES
+#define JPP(arglist) arglist
+#else
+#define JPP(arglist) ()
+#endif
+
+
+/* Short forms of external names for systems with brain-damaged linkers.
+ * We shorten external names to be unique in the first six letters, which
+ * is good enough for all known systems.
+ * (If your compiler itself needs names to be unique in less than 15
+ * characters, you are out of luck. Get a better compiler.)
+ */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_std_error jStdError
+#define jpeg_CreateCompress jCreaCompress
+#define jpeg_CreateDecompress jCreaDecompress
+#define jpeg_destroy_compress jDestCompress
+#define jpeg_destroy_decompress jDestDecompress
+#define jpeg_stdio_dest jStdDest
+#define jpeg_stdio_src jStdSrc
+#define jpeg_set_defaults jSetDefaults
+#define jpeg_set_colorspace jSetColorspace
+#define jpeg_default_colorspace jDefColorspace
+#define jpeg_set_quality jSetQuality
+#define jpeg_set_linear_quality jSetLQuality
+#define jpeg_add_quant_table jAddQuantTable
+#define jpeg_quality_scaling jQualityScaling
+#define jpeg_simple_progression jSimProgress
+#define jpeg_suppress_tables jSuppressTables
+#define jpeg_alloc_quant_table jAlcQTable
+#define jpeg_alloc_huff_table jAlcHTable
+#define jpeg_start_compress jStrtCompress
+#define jpeg_write_scanlines jWrtScanlines
+#define jpeg_finish_compress jFinCompress
+#define jpeg_write_raw_data jWrtRawData
+#define jpeg_write_marker jWrtMarker
+#define jpeg_write_m_header jWrtMHeader
+#define jpeg_write_m_byte jWrtMByte
+#define jpeg_write_tables jWrtTables
+#define jpeg_read_header jReadHeader
+#define jpeg_start_decompress jStrtDecompress
+#define jpeg_read_scanlines jReadScanlines
+#define jpeg_finish_decompress jFinDecompress
+#define jpeg_read_raw_data jReadRawData
+#define jpeg_has_multiple_scans jHasMultScn
+#define jpeg_start_output jStrtOutput
+#define jpeg_finish_output jFinOutput
+#define jpeg_input_complete jInComplete
+#define jpeg_new_colormap jNewCMap
+#define jpeg_consume_input jConsumeInput
+#define jpeg_calc_output_dimensions jCalcDimensions
+#define jpeg_save_markers jSaveMarkers
+#define jpeg_set_marker_processor jSetMarker
+#define jpeg_read_coefficients jReadCoefs
+#define jpeg_write_coefficients jWrtCoefs
+#define jpeg_copy_critical_parameters jCopyCrit
+#define jpeg_abort_compress jAbrtCompress
+#define jpeg_abort_decompress jAbrtDecompress
+#define jpeg_abort jAbort
+#define jpeg_destroy jDestroy
+#define jpeg_resync_to_restart jResyncRestart
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/* Default error-management setup */
+EXTERN(struct jpeg_error_mgr *) jpeg_std_error
+ JPP((struct jpeg_error_mgr * err));
+
+/* Initialization of JPEG compression objects.
+ * jpeg_create_compress() and jpeg_create_decompress() are the exported
+ * names that applications should call. These expand to calls on
+ * jpeg_CreateCompress and jpeg_CreateDecompress with additional information
+ * passed for version mismatch checking.
+ * NB: you must set up the error-manager BEFORE calling jpeg_create_xxx.
+ */
+#define jpeg_create_compress(cinfo) \
+ jpeg_CreateCompress((cinfo), JPEG_LIB_VERSION, \
+ (size_t) sizeof(struct jpeg_compress_struct))
+#define jpeg_create_decompress(cinfo) \
+ jpeg_CreateDecompress((cinfo), JPEG_LIB_VERSION, \
+ (size_t) sizeof(struct jpeg_decompress_struct))
+EXTERN(void) jpeg_CreateCompress JPP((j_compress_ptr cinfo,
+ int version, size_t structsize));
+EXTERN(void) jpeg_CreateDecompress JPP((j_decompress_ptr cinfo,
+ int version, size_t structsize));
+/* Destruction of JPEG compression objects */
+EXTERN(void) jpeg_destroy_compress JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_destroy_decompress JPP((j_decompress_ptr cinfo));
+
+/* Standard data source and destination managers: stdio streams. */
+/* Caller is responsible for opening the file before and closing after. */
+EXTERN(void) jpeg_stdio_dest JPP((j_compress_ptr cinfo, FILE * outfile));
+EXTERN(void) jpeg_stdio_src JPP((j_decompress_ptr cinfo, FILE * infile));
+
+/* Default parameter setup for compression */
+EXTERN(void) jpeg_set_defaults JPP((j_compress_ptr cinfo));
+/* Compression parameter setup aids */
+EXTERN(void) jpeg_set_colorspace JPP((j_compress_ptr cinfo,
+ J_COLOR_SPACE colorspace));
+EXTERN(void) jpeg_default_colorspace JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_set_quality JPP((j_compress_ptr cinfo, int quality,
+ boolean force_baseline));
+EXTERN(void) jpeg_set_linear_quality JPP((j_compress_ptr cinfo,
+ int scale_factor,
+ boolean force_baseline));
+EXTERN(void) jpeg_add_quant_table JPP((j_compress_ptr cinfo, int which_tbl,
+ const unsigned int *basic_table,
+ int scale_factor,
+ boolean force_baseline));
+EXTERN(int) jpeg_quality_scaling JPP((int quality));
+EXTERN(void) jpeg_simple_progression JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_suppress_tables JPP((j_compress_ptr cinfo,
+ boolean suppress));
+EXTERN(JQUANT_TBL *) jpeg_alloc_quant_table JPP((j_common_ptr cinfo));
+EXTERN(JHUFF_TBL *) jpeg_alloc_huff_table JPP((j_common_ptr cinfo));
+
+/* Main entry points for compression */
+EXTERN(void) jpeg_start_compress JPP((j_compress_ptr cinfo,
+ boolean write_all_tables));
+EXTERN(JDIMENSION) jpeg_write_scanlines JPP((j_compress_ptr cinfo,
+ JSAMPARRAY scanlines,
+ JDIMENSION num_lines));
+EXTERN(void) jpeg_finish_compress JPP((j_compress_ptr cinfo));
+
+/* Replaces jpeg_write_scanlines when writing raw downsampled data. */
+EXTERN(JDIMENSION) jpeg_write_raw_data JPP((j_compress_ptr cinfo,
+ JSAMPIMAGE data,
+ JDIMENSION num_lines));
+
+/* Write a special marker. See libjpeg.doc concerning safe usage. */
+EXTERN(void) jpeg_write_marker
+ JPP((j_compress_ptr cinfo, int marker,
+ const JOCTET * dataptr, unsigned int datalen));
+/* Same, but piecemeal. */
+EXTERN(void) jpeg_write_m_header
+ JPP((j_compress_ptr cinfo, int marker, unsigned int datalen));
+EXTERN(void) jpeg_write_m_byte
+ JPP((j_compress_ptr cinfo, int val));
+
+/* Alternate compression function: just write an abbreviated table file */
+EXTERN(void) jpeg_write_tables JPP((j_compress_ptr cinfo));
+
+/* Decompression startup: read start of JPEG datastream to see what's there */
+EXTERN(int) jpeg_read_header JPP((j_decompress_ptr cinfo,
+ boolean require_image));
+/* Return value is one of: */
+#define JPEG_SUSPENDED 0 /* Suspended due to lack of input data */
+#define JPEG_HEADER_OK 1 /* Found valid image datastream */
+#define JPEG_HEADER_TABLES_ONLY 2 /* Found valid table-specs-only datastream */
+/* If you pass require_image = TRUE (normal case), you need not check for
+ * a TABLES_ONLY return code; an abbreviated file will cause an error exit.
+ * JPEG_SUSPENDED is only possible if you use a data source module that can
+ * give a suspension return (the stdio source module doesn't).
+ */
+
+/* Main entry points for decompression */
+EXTERN(boolean) jpeg_start_decompress JPP((j_decompress_ptr cinfo));
+EXTERN(JDIMENSION) jpeg_read_scanlines JPP((j_decompress_ptr cinfo,
+ JSAMPARRAY scanlines,
+ JDIMENSION max_lines));
+EXTERN(boolean) jpeg_finish_decompress JPP((j_decompress_ptr cinfo));
+
+/* Replaces jpeg_read_scanlines when reading raw downsampled data. */
+EXTERN(JDIMENSION) jpeg_read_raw_data JPP((j_decompress_ptr cinfo,
+ JSAMPIMAGE data,
+ JDIMENSION max_lines));
+
+/* Additional entry points for buffered-image mode. */
+EXTERN(boolean) jpeg_has_multiple_scans JPP((j_decompress_ptr cinfo));
+EXTERN(boolean) jpeg_start_output JPP((j_decompress_ptr cinfo,
+ int scan_number));
+EXTERN(boolean) jpeg_finish_output JPP((j_decompress_ptr cinfo));
+EXTERN(boolean) jpeg_input_complete JPP((j_decompress_ptr cinfo));
+EXTERN(void) jpeg_new_colormap JPP((j_decompress_ptr cinfo));
+EXTERN(int) jpeg_consume_input JPP((j_decompress_ptr cinfo));
+/* Return value is one of: */
+/* #define JPEG_SUSPENDED 0 Suspended due to lack of input data */
+#define JPEG_REACHED_SOS 1 /* Reached start of new scan */
+#define JPEG_REACHED_EOI 2 /* Reached end of image */
+#define JPEG_ROW_COMPLETED 3 /* Completed one iMCU row */
+#define JPEG_SCAN_COMPLETED 4 /* Completed last iMCU row of a scan */
+
+/* Precalculate output dimensions for current decompression parameters. */
+EXTERN(void) jpeg_calc_output_dimensions JPP((j_decompress_ptr cinfo));
+
+/* Control saving of COM and APPn markers into marker_list. */
+EXTERN(void) jpeg_save_markers
+ JPP((j_decompress_ptr cinfo, int marker_code,
+ unsigned int length_limit));
+
+/* Install a special processing method for COM or APPn markers. */
+EXTERN(void) jpeg_set_marker_processor
+ JPP((j_decompress_ptr cinfo, int marker_code,
+ jpeg_marker_parser_method routine));
+
+/* Read or write raw DCT coefficients --- useful for lossless transcoding. */
+EXTERN(jvirt_barray_ptr *) jpeg_read_coefficients JPP((j_decompress_ptr cinfo));
+EXTERN(void) jpeg_write_coefficients JPP((j_compress_ptr cinfo,
+ jvirt_barray_ptr * coef_arrays));
+EXTERN(void) jpeg_copy_critical_parameters JPP((j_decompress_ptr srcinfo,
+ j_compress_ptr dstinfo));
+
+/* If you choose to abort compression or decompression before completing
+ * jpeg_finish_(de)compress, then you need to clean up to release memory,
+ * temporary files, etc. You can just call jpeg_destroy_(de)compress
+ * if you're done with the JPEG object, but if you want to clean it up and
+ * reuse it, call this:
+ */
+EXTERN(void) jpeg_abort_compress JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_abort_decompress JPP((j_decompress_ptr cinfo));
+
+/* Generic versions of jpeg_abort and jpeg_destroy that work on either
+ * flavor of JPEG object. These may be more convenient in some places.
+ */
+EXTERN(void) jpeg_abort JPP((j_common_ptr cinfo));
+EXTERN(void) jpeg_destroy JPP((j_common_ptr cinfo));
+
+/* Default restart-marker-resync procedure for use by data source modules */
+EXTERN(boolean) jpeg_resync_to_restart JPP((j_decompress_ptr cinfo,
+ int desired));
+
+
+/* These marker codes are exported since applications and data source modules
+ * are likely to want to use them.
+ */
+
+#define JPEG_RST0 0xD0 /* RST0 marker code */
+#define JPEG_EOI 0xD9 /* EOI marker code */
+#define JPEG_APP0 0xE0 /* APP0 marker code */
+#define JPEG_COM 0xFE /* COM marker code */
+
+
+/* If we have a brain-damaged compiler that emits warnings (or worse, errors)
+ * for structure definitions that are never filled in, keep it quiet by
+ * supplying dummy definitions for the various substructures.
+ */
+
+#ifdef INCOMPLETE_TYPES_BROKEN
+#ifndef JPEG_INTERNALS /* will be defined in jpegint.h */
+struct jvirt_sarray_control { long dummy; };
+struct jvirt_barray_control { long dummy; };
+struct jpeg_comp_master { long dummy; };
+struct jpeg_c_main_controller { long dummy; };
+struct jpeg_c_prep_controller { long dummy; };
+struct jpeg_c_coef_controller { long dummy; };
+struct jpeg_marker_writer { long dummy; };
+struct jpeg_color_converter { long dummy; };
+struct jpeg_downsampler { long dummy; };
+struct jpeg_forward_dct { long dummy; };
+struct jpeg_entropy_encoder { long dummy; };
+struct jpeg_decomp_master { long dummy; };
+struct jpeg_d_main_controller { long dummy; };
+struct jpeg_d_coef_controller { long dummy; };
+struct jpeg_d_post_controller { long dummy; };
+struct jpeg_input_controller { long dummy; };
+struct jpeg_marker_reader { long dummy; };
+struct jpeg_entropy_decoder { long dummy; };
+struct jpeg_inverse_dct { long dummy; };
+struct jpeg_upsampler { long dummy; };
+struct jpeg_color_deconverter { long dummy; };
+struct jpeg_color_quantizer { long dummy; };
+#endif /* JPEG_INTERNALS */
+#endif /* INCOMPLETE_TYPES_BROKEN */
+
+
+/*
+ * The JPEG library modules define JPEG_INTERNALS before including this file.
+ * The internal structure declarations are read only when that is true.
+ * Applications using the library should not include jpegint.h, but may wish
+ * to include jerror.h.
+ */
+
+#ifdef JPEG_INTERNALS
+#include "jpegint.h" /* fetch private declarations */
+#include "jerror.h" /* fetch error codes too */
+#endif
+
+#endif /* JPEGLIB_H */
diff --git a/jpeg/transupp.c b/jpeg/transupp.c
new file mode 100644
index 0000000..e5ec564
--- /dev/null
+++ b/jpeg/transupp.c
@@ -0,0 +1,928 @@
+/*
+ * transupp.c
+ *
+ * Copyright (C) 1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains image transformation routines and other utility code
+ * used by the jpegtran sample application. These are NOT part of the core
+ * JPEG library. But we keep these routines separate from jpegtran.c to
+ * ease the task of maintaining jpegtran-like programs that have other user
+ * interfaces.
+ */
+
+/* Although this file really shouldn't have access to the library internals,
+ * it's helpful to let it call jround_up() and jcopy_block_row().
+ */
+#define JPEG_INTERNALS
+
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "transupp.h" /* My own external interface */
+
+
+#if TRANSFORMS_SUPPORTED
+
+/*
+ * Lossless image transformation routines. These routines work on DCT
+ * coefficient arrays and thus do not require any lossy decompression
+ * or recompression of the image.
+ * Thanks to Guido Vollbeding for the initial design and code of this feature.
+ *
+ * Horizontal flipping is done in-place, using a single top-to-bottom
+ * pass through the virtual source array. It will thus be much the
+ * fastest option for images larger than main memory.
+ *
+ * The other routines require a set of destination virtual arrays, so they
+ * need twice as much memory as jpegtran normally does. The destination
+ * arrays are always written in normal scan order (top to bottom) because
+ * the virtual array manager expects this. The source arrays will be scanned
+ * in the corresponding order, which means multiple passes through the source
+ * arrays for most of the transforms. That could result in much thrashing
+ * if the image is larger than main memory.
+ *
+ * Some notes about the operating environment of the individual transform
+ * routines:
+ * 1. Both the source and destination virtual arrays are allocated from the
+ * source JPEG object, and therefore should be manipulated by calling the
+ * source's memory manager.
+ * 2. The destination's component count should be used. It may be smaller
+ * than the source's when forcing to grayscale.
+ * 3. Likewise the destination's sampling factors should be used. When
+ * forcing to grayscale the destination's sampling factors will be all 1,
+ * and we may as well take that as the effective iMCU size.
+ * 4. When "trim" is in effect, the destination's dimensions will be the
+ * trimmed values but the source's will be untrimmed.
+ * 5. All the routines assume that the source and destination buffers are
+ * padded out to a full iMCU boundary. This is true, although for the
+ * source buffer it is an undocumented property of jdcoefct.c.
+ * Notes 2,3,4 boil down to this: generally we should use the destination's
+ * dimensions and ignore the source's.
+ */
+
+
+LOCAL(void)
+do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays)
+/* Horizontal flip; done in-place, so no separate dest array is required */
+{
+ JDIMENSION MCU_cols, comp_width, blk_x, blk_y;
+ int ci, k, offset_y;
+ JBLOCKARRAY buffer;
+ JCOEFPTR ptr1, ptr2;
+ JCOEF temp1, temp2;
+ jpeg_component_info *compptr;
+
+ /* Horizontal mirroring of DCT blocks is accomplished by swapping
+ * pairs of blocks in-place. Within a DCT block, we perform horizontal
+ * mirroring by changing the signs of odd-numbered columns.
+ * Partial iMCUs at the right edge are left untouched.
+ */
+ MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
+
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ comp_width = MCU_cols * compptr->h_samp_factor;
+ for (blk_y = 0; blk_y < compptr->height_in_blocks;
+ blk_y += compptr->v_samp_factor) {
+ buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) {
+ ptr1 = buffer[offset_y][blk_x];
+ ptr2 = buffer[offset_y][comp_width - blk_x - 1];
+ /* this unrolled loop doesn't need to know which row it's on... */
+ for (k = 0; k < DCTSIZE2; k += 2) {
+ temp1 = *ptr1; /* swap even column */
+ temp2 = *ptr2;
+ *ptr1++ = temp2;
+ *ptr2++ = temp1;
+ temp1 = *ptr1; /* swap odd column with sign change */
+ temp2 = *ptr2;
+ *ptr1++ = -temp2;
+ *ptr2++ = -temp1;
+ }
+ }
+ }
+ }
+ }
+}
+
+
+LOCAL(void)
+do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jvirt_barray_ptr *dst_coef_arrays)
+/* Vertical flip */
+{
+ JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
+ int ci, i, j, offset_y;
+ JBLOCKARRAY src_buffer, dst_buffer;
+ JBLOCKROW src_row_ptr, dst_row_ptr;
+ JCOEFPTR src_ptr, dst_ptr;
+ jpeg_component_info *compptr;
+
+ /* We output into a separate array because we can't touch different
+ * rows of the source virtual array simultaneously. Otherwise, this
+ * is a pretty straightforward analog of horizontal flip.
+ * Within a DCT block, vertical mirroring is done by changing the signs
+ * of odd-numbered rows.
+ * Partial iMCUs at the bottom edge are copied verbatim.
+ */
+ MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
+
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ comp_height = MCU_rows * compptr->v_samp_factor;
+ for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
+ dst_blk_y += compptr->v_samp_factor) {
+ dst_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ if (dst_blk_y < comp_height) {
+ /* Row is within the mirrorable area. */
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci],
+ comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ } else {
+ /* Bottom-edge blocks will be copied verbatim. */
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ }
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ if (dst_blk_y < comp_height) {
+ /* Row is within the mirrorable area. */
+ dst_row_ptr = dst_buffer[offset_y];
+ src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
+ for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
+ dst_blk_x++) {
+ dst_ptr = dst_row_ptr[dst_blk_x];
+ src_ptr = src_row_ptr[dst_blk_x];
+ for (i = 0; i < DCTSIZE; i += 2) {
+ /* copy even row */
+ for (j = 0; j < DCTSIZE; j++)
+ *dst_ptr++ = *src_ptr++;
+ /* copy odd row with sign change */
+ for (j = 0; j < DCTSIZE; j++)
+ *dst_ptr++ = - *src_ptr++;
+ }
+ }
+ } else {
+ /* Just copy row verbatim. */
+ jcopy_block_row(src_buffer[offset_y], dst_buffer[offset_y],
+ compptr->width_in_blocks);
+ }
+ }
+ }
+ }
+}
+
+
+LOCAL(void)
+do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jvirt_barray_ptr *dst_coef_arrays)
+/* Transpose source into destination */
+{
+ JDIMENSION dst_blk_x, dst_blk_y;
+ int ci, i, j, offset_x, offset_y;
+ JBLOCKARRAY src_buffer, dst_buffer;
+ JCOEFPTR src_ptr, dst_ptr;
+ jpeg_component_info *compptr;
+
+ /* Transposing pixels within a block just requires transposing the
+ * DCT coefficients.
+ * Partial iMCUs at the edges require no special treatment; we simply
+ * process all the available DCT blocks for every component.
+ */
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
+ dst_blk_y += compptr->v_samp_factor) {
+ dst_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
+ dst_blk_x += compptr->h_samp_factor) {
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
+ (JDIMENSION) compptr->h_samp_factor, FALSE);
+ for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
+ src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
+ dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
+ for (i = 0; i < DCTSIZE; i++)
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ }
+ }
+ }
+ }
+ }
+}
+
+
+LOCAL(void)
+do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jvirt_barray_ptr *dst_coef_arrays)
+/* 90 degree rotation is equivalent to
+ * 1. Transposing the image;
+ * 2. Horizontal mirroring.
+ * These two steps are merged into a single processing routine.
+ */
+{
+ JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
+ int ci, i, j, offset_x, offset_y;
+ JBLOCKARRAY src_buffer, dst_buffer;
+ JCOEFPTR src_ptr, dst_ptr;
+ jpeg_component_info *compptr;
+
+ /* Because of the horizontal mirror step, we can't process partial iMCUs
+ * at the (output) right edge properly. They just get transposed and
+ * not mirrored.
+ */
+ MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
+
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ comp_width = MCU_cols * compptr->h_samp_factor;
+ for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
+ dst_blk_y += compptr->v_samp_factor) {
+ dst_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
+ dst_blk_x += compptr->h_samp_factor) {
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
+ (JDIMENSION) compptr->h_samp_factor, FALSE);
+ for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
+ src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
+ if (dst_blk_x < comp_width) {
+ /* Block is within the mirrorable area. */
+ dst_ptr = dst_buffer[offset_y]
+ [comp_width - dst_blk_x - offset_x - 1];
+ for (i = 0; i < DCTSIZE; i++) {
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ i++;
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
+ }
+ } else {
+ /* Edge blocks are transposed but not mirrored. */
+ dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
+ for (i = 0; i < DCTSIZE; i++)
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+
+LOCAL(void)
+do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jvirt_barray_ptr *dst_coef_arrays)
+/* 270 degree rotation is equivalent to
+ * 1. Horizontal mirroring;
+ * 2. Transposing the image.
+ * These two steps are merged into a single processing routine.
+ */
+{
+ JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
+ int ci, i, j, offset_x, offset_y;
+ JBLOCKARRAY src_buffer, dst_buffer;
+ JCOEFPTR src_ptr, dst_ptr;
+ jpeg_component_info *compptr;
+
+ /* Because of the horizontal mirror step, we can't process partial iMCUs
+ * at the (output) bottom edge properly. They just get transposed and
+ * not mirrored.
+ */
+ MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
+
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ comp_height = MCU_rows * compptr->v_samp_factor;
+ for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
+ dst_blk_y += compptr->v_samp_factor) {
+ dst_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
+ dst_blk_x += compptr->h_samp_factor) {
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
+ (JDIMENSION) compptr->h_samp_factor, FALSE);
+ for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
+ dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
+ if (dst_blk_y < comp_height) {
+ /* Block is within the mirrorable area. */
+ src_ptr = src_buffer[offset_x]
+ [comp_height - dst_blk_y - offset_y - 1];
+ for (i = 0; i < DCTSIZE; i++) {
+ for (j = 0; j < DCTSIZE; j++) {
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ j++;
+ dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
+ }
+ }
+ } else {
+ /* Edge blocks are transposed but not mirrored. */
+ src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
+ for (i = 0; i < DCTSIZE; i++)
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+
+LOCAL(void)
+do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jvirt_barray_ptr *dst_coef_arrays)
+/* 180 degree rotation is equivalent to
+ * 1. Vertical mirroring;
+ * 2. Horizontal mirroring.
+ * These two steps are merged into a single processing routine.
+ */
+{
+ JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
+ int ci, i, j, offset_y;
+ JBLOCKARRAY src_buffer, dst_buffer;
+ JBLOCKROW src_row_ptr, dst_row_ptr;
+ JCOEFPTR src_ptr, dst_ptr;
+ jpeg_component_info *compptr;
+
+ MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
+ MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
+
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ comp_width = MCU_cols * compptr->h_samp_factor;
+ comp_height = MCU_rows * compptr->v_samp_factor;
+ for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
+ dst_blk_y += compptr->v_samp_factor) {
+ dst_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ if (dst_blk_y < comp_height) {
+ /* Row is within the vertically mirrorable area. */
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci],
+ comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ } else {
+ /* Bottom-edge rows are only mirrored horizontally. */
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ }
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ if (dst_blk_y < comp_height) {
+ /* Row is within the mirrorable area. */
+ dst_row_ptr = dst_buffer[offset_y];
+ src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
+ /* Process the blocks that can be mirrored both ways. */
+ for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) {
+ dst_ptr = dst_row_ptr[dst_blk_x];
+ src_ptr = src_row_ptr[comp_width - dst_blk_x - 1];
+ for (i = 0; i < DCTSIZE; i += 2) {
+ /* For even row, negate every odd column. */
+ for (j = 0; j < DCTSIZE; j += 2) {
+ *dst_ptr++ = *src_ptr++;
+ *dst_ptr++ = - *src_ptr++;
+ }
+ /* For odd row, negate every even column. */
+ for (j = 0; j < DCTSIZE; j += 2) {
+ *dst_ptr++ = - *src_ptr++;
+ *dst_ptr++ = *src_ptr++;
+ }
+ }
+ }
+ /* Any remaining right-edge blocks are only mirrored vertically. */
+ for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
+ dst_ptr = dst_row_ptr[dst_blk_x];
+ src_ptr = src_row_ptr[dst_blk_x];
+ for (i = 0; i < DCTSIZE; i += 2) {
+ for (j = 0; j < DCTSIZE; j++)
+ *dst_ptr++ = *src_ptr++;
+ for (j = 0; j < DCTSIZE; j++)
+ *dst_ptr++ = - *src_ptr++;
+ }
+ }
+ } else {
+ /* Remaining rows are just mirrored horizontally. */
+ dst_row_ptr = dst_buffer[offset_y];
+ src_row_ptr = src_buffer[offset_y];
+ /* Process the blocks that can be mirrored. */
+ for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) {
+ dst_ptr = dst_row_ptr[dst_blk_x];
+ src_ptr = src_row_ptr[comp_width - dst_blk_x - 1];
+ for (i = 0; i < DCTSIZE2; i += 2) {
+ *dst_ptr++ = *src_ptr++;
+ *dst_ptr++ = - *src_ptr++;
+ }
+ }
+ /* Any remaining right-edge blocks are only copied. */
+ for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
+ dst_ptr = dst_row_ptr[dst_blk_x];
+ src_ptr = src_row_ptr[dst_blk_x];
+ for (i = 0; i < DCTSIZE2; i++)
+ *dst_ptr++ = *src_ptr++;
+ }
+ }
+ }
+ }
+ }
+}
+
+
+LOCAL(void)
+do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jvirt_barray_ptr *dst_coef_arrays)
+/* Transverse transpose is equivalent to
+ * 1. 180 degree rotation;
+ * 2. Transposition;
+ * or
+ * 1. Horizontal mirroring;
+ * 2. Transposition;
+ * 3. Horizontal mirroring.
+ * These steps are merged into a single processing routine.
+ */
+{
+ JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
+ int ci, i, j, offset_x, offset_y;
+ JBLOCKARRAY src_buffer, dst_buffer;
+ JCOEFPTR src_ptr, dst_ptr;
+ jpeg_component_info *compptr;
+
+ MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
+ MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
+
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ comp_width = MCU_cols * compptr->h_samp_factor;
+ comp_height = MCU_rows * compptr->v_samp_factor;
+ for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
+ dst_blk_y += compptr->v_samp_factor) {
+ dst_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
+ dst_blk_x += compptr->h_samp_factor) {
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
+ (JDIMENSION) compptr->h_samp_factor, FALSE);
+ for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
+ if (dst_blk_y < comp_height) {
+ src_ptr = src_buffer[offset_x]
+ [comp_height - dst_blk_y - offset_y - 1];
+ if (dst_blk_x < comp_width) {
+ /* Block is within the mirrorable area. */
+ dst_ptr = dst_buffer[offset_y]
+ [comp_width - dst_blk_x - offset_x - 1];
+ for (i = 0; i < DCTSIZE; i++) {
+ for (j = 0; j < DCTSIZE; j++) {
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ j++;
+ dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
+ }
+ i++;
+ for (j = 0; j < DCTSIZE; j++) {
+ dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
+ j++;
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ }
+ }
+ } else {
+ /* Right-edge blocks are mirrored in y only */
+ dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
+ for (i = 0; i < DCTSIZE; i++) {
+ for (j = 0; j < DCTSIZE; j++) {
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ j++;
+ dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
+ }
+ }
+ }
+ } else {
+ src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
+ if (dst_blk_x < comp_width) {
+ /* Bottom-edge blocks are mirrored in x only */
+ dst_ptr = dst_buffer[offset_y]
+ [comp_width - dst_blk_x - offset_x - 1];
+ for (i = 0; i < DCTSIZE; i++) {
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ i++;
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
+ }
+ } else {
+ /* At lower right corner, just transpose, no mirroring */
+ dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
+ for (i = 0; i < DCTSIZE; i++)
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+
+/* Request any required workspace.
+ *
+ * We allocate the workspace virtual arrays from the source decompression
+ * object, so that all the arrays (both the original data and the workspace)
+ * will be taken into account while making memory management decisions.
+ * Hence, this routine must be called after jpeg_read_header (which reads
+ * the image dimensions) and before jpeg_read_coefficients (which realizes
+ * the source's virtual arrays).
+ */
+
+GLOBAL(void)
+jtransform_request_workspace (j_decompress_ptr srcinfo,
+ jpeg_transform_info *info)
+{
+ jvirt_barray_ptr *coef_arrays = NULL;
+ jpeg_component_info *compptr;
+ int ci;
+
+ if (info->force_grayscale &&
+ srcinfo->jpeg_color_space == JCS_YCbCr &&
+ srcinfo->num_components == 3) {
+ /* We'll only process the first component */
+ info->num_components = 1;
+ } else {
+ /* Process all the components */
+ info->num_components = srcinfo->num_components;
+ }
+
+ switch (info->transform) {
+ case JXFORM_NONE:
+ case JXFORM_FLIP_H:
+ /* Don't need a workspace array */
+ break;
+ case JXFORM_FLIP_V:
+ case JXFORM_ROT_180:
+ /* Need workspace arrays having same dimensions as source image.
+ * Note that we allocate arrays padded out to the next iMCU boundary,
+ * so that transform routines need not worry about missing edge blocks.
+ */
+ coef_arrays = (jvirt_barray_ptr *)
+ (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
+ SIZEOF(jvirt_barray_ptr) * info->num_components);
+ for (ci = 0; ci < info->num_components; ci++) {
+ compptr = srcinfo->comp_info + ci;
+ coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
+ ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
+ (JDIMENSION) jround_up((long) compptr->width_in_blocks,
+ (long) compptr->h_samp_factor),
+ (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+ (long) compptr->v_samp_factor),
+ (JDIMENSION) compptr->v_samp_factor);
+ }
+ break;
+ case JXFORM_TRANSPOSE:
+ case JXFORM_TRANSVERSE:
+ case JXFORM_ROT_90:
+ case JXFORM_ROT_270:
+ /* Need workspace arrays having transposed dimensions.
+ * Note that we allocate arrays padded out to the next iMCU boundary,
+ * so that transform routines need not worry about missing edge blocks.
+ */
+ coef_arrays = (jvirt_barray_ptr *)
+ (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
+ SIZEOF(jvirt_barray_ptr) * info->num_components);
+ for (ci = 0; ci < info->num_components; ci++) {
+ compptr = srcinfo->comp_info + ci;
+ coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
+ ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
+ (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+ (long) compptr->v_samp_factor),
+ (JDIMENSION) jround_up((long) compptr->width_in_blocks,
+ (long) compptr->h_samp_factor),
+ (JDIMENSION) compptr->h_samp_factor);
+ }
+ break;
+ }
+ info->workspace_coef_arrays = coef_arrays;
+}
+
+
+/* Transpose destination image parameters */
+
+LOCAL(void)
+transpose_critical_parameters (j_compress_ptr dstinfo)
+{
+ int tblno, i, j, ci, itemp;
+ jpeg_component_info *compptr;
+ JQUANT_TBL *qtblptr;
+ JDIMENSION dtemp;
+ UINT16 qtemp;
+
+ /* Transpose basic image dimensions */
+ dtemp = dstinfo->image_width;
+ dstinfo->image_width = dstinfo->image_height;
+ dstinfo->image_height = dtemp;
+
+ /* Transpose sampling factors */
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ itemp = compptr->h_samp_factor;
+ compptr->h_samp_factor = compptr->v_samp_factor;
+ compptr->v_samp_factor = itemp;
+ }
+
+ /* Transpose quantization tables */
+ for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
+ qtblptr = dstinfo->quant_tbl_ptrs[tblno];
+ if (qtblptr != NULL) {
+ for (i = 0; i < DCTSIZE; i++) {
+ for (j = 0; j < i; j++) {
+ qtemp = qtblptr->quantval[i*DCTSIZE+j];
+ qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i];
+ qtblptr->quantval[j*DCTSIZE+i] = qtemp;
+ }
+ }
+ }
+ }
+}
+
+
+/* Trim off any partial iMCUs on the indicated destination edge */
+
+LOCAL(void)
+trim_right_edge (j_compress_ptr dstinfo)
+{
+ int ci, max_h_samp_factor;
+ JDIMENSION MCU_cols;
+
+ /* We have to compute max_h_samp_factor ourselves,
+ * because it hasn't been set yet in the destination
+ * (and we don't want to use the source's value).
+ */
+ max_h_samp_factor = 1;
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ int h_samp_factor = dstinfo->comp_info[ci].h_samp_factor;
+ max_h_samp_factor = MAX(max_h_samp_factor, h_samp_factor);
+ }
+ MCU_cols = dstinfo->image_width / (max_h_samp_factor * DCTSIZE);
+ if (MCU_cols > 0) /* can't trim to 0 pixels */
+ dstinfo->image_width = MCU_cols * (max_h_samp_factor * DCTSIZE);
+}
+
+LOCAL(void)
+trim_bottom_edge (j_compress_ptr dstinfo)
+{
+ int ci, max_v_samp_factor;
+ JDIMENSION MCU_rows;
+
+ /* We have to compute max_v_samp_factor ourselves,
+ * because it hasn't been set yet in the destination
+ * (and we don't want to use the source's value).
+ */
+ max_v_samp_factor = 1;
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ int v_samp_factor = dstinfo->comp_info[ci].v_samp_factor;
+ max_v_samp_factor = MAX(max_v_samp_factor, v_samp_factor);
+ }
+ MCU_rows = dstinfo->image_height / (max_v_samp_factor * DCTSIZE);
+ if (MCU_rows > 0) /* can't trim to 0 pixels */
+ dstinfo->image_height = MCU_rows * (max_v_samp_factor * DCTSIZE);
+}
+
+
+/* Adjust output image parameters as needed.
+ *
+ * This must be called after jpeg_copy_critical_parameters()
+ * and before jpeg_write_coefficients().
+ *
+ * The return value is the set of virtual coefficient arrays to be written
+ * (either the ones allocated by jtransform_request_workspace, or the
+ * original source data arrays). The caller will need to pass this value
+ * to jpeg_write_coefficients().
+ */
+
+GLOBAL(jvirt_barray_ptr *)
+jtransform_adjust_parameters (j_decompress_ptr srcinfo,
+ j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jpeg_transform_info *info)
+{
+ /* If force-to-grayscale is requested, adjust destination parameters */
+ if (info->force_grayscale) {
+ /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed
+ * properly. Among other things, the target h_samp_factor & v_samp_factor
+ * will get set to 1, which typically won't match the source.
+ * In fact we do this even if the source is already grayscale; that
+ * provides an easy way of coercing a grayscale JPEG with funny sampling
+ * factors to the customary 1,1. (Some decoders fail on other factors.)
+ */
+ if ((dstinfo->jpeg_color_space == JCS_YCbCr &&
+ dstinfo->num_components == 3) ||
+ (dstinfo->jpeg_color_space == JCS_GRAYSCALE &&
+ dstinfo->num_components == 1)) {
+ /* We have to preserve the source's quantization table number. */
+ int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no;
+ jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE);
+ dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no;
+ } else {
+ /* Sorry, can't do it */
+ ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL);
+ }
+ }
+
+ /* Correct the destination's image dimensions etc if necessary */
+ switch (info->transform) {
+ case JXFORM_NONE:
+ /* Nothing to do */
+ break;
+ case JXFORM_FLIP_H:
+ if (info->trim)
+ trim_right_edge(dstinfo);
+ break;
+ case JXFORM_FLIP_V:
+ if (info->trim)
+ trim_bottom_edge(dstinfo);
+ break;
+ case JXFORM_TRANSPOSE:
+ transpose_critical_parameters(dstinfo);
+ /* transpose does NOT have to trim anything */
+ break;
+ case JXFORM_TRANSVERSE:
+ transpose_critical_parameters(dstinfo);
+ if (info->trim) {
+ trim_right_edge(dstinfo);
+ trim_bottom_edge(dstinfo);
+ }
+ break;
+ case JXFORM_ROT_90:
+ transpose_critical_parameters(dstinfo);
+ if (info->trim)
+ trim_right_edge(dstinfo);
+ break;
+ case JXFORM_ROT_180:
+ if (info->trim) {
+ trim_right_edge(dstinfo);
+ trim_bottom_edge(dstinfo);
+ }
+ break;
+ case JXFORM_ROT_270:
+ transpose_critical_parameters(dstinfo);
+ if (info->trim)
+ trim_bottom_edge(dstinfo);
+ break;
+ }
+
+ /* Return the appropriate output data set */
+ if (info->workspace_coef_arrays != NULL)
+ return info->workspace_coef_arrays;
+ return src_coef_arrays;
+}
+
+
+/* Execute the actual transformation, if any.
+ *
+ * This must be called *after* jpeg_write_coefficients, because it depends
+ * on jpeg_write_coefficients to have computed subsidiary values such as
+ * the per-component width and height fields in the destination object.
+ *
+ * Note that some transformations will modify the source data arrays!
+ */
+
+GLOBAL(void)
+jtransform_execute_transformation (j_decompress_ptr srcinfo,
+ j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jpeg_transform_info *info)
+{
+ jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays;
+
+ switch (info->transform) {
+ case JXFORM_NONE:
+ break;
+ case JXFORM_FLIP_H:
+ do_flip_h(srcinfo, dstinfo, src_coef_arrays);
+ break;
+ case JXFORM_FLIP_V:
+ do_flip_v(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
+ break;
+ case JXFORM_TRANSPOSE:
+ do_transpose(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
+ break;
+ case JXFORM_TRANSVERSE:
+ do_transverse(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
+ break;
+ case JXFORM_ROT_90:
+ do_rot_90(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
+ break;
+ case JXFORM_ROT_180:
+ do_rot_180(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
+ break;
+ case JXFORM_ROT_270:
+ do_rot_270(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
+ break;
+ }
+}
+
+#endif /* TRANSFORMS_SUPPORTED */
+
+
+/* Setup decompression object to save desired markers in memory.
+ * This must be called before jpeg_read_header() to have the desired effect.
+ */
+
+GLOBAL(void)
+jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option)
+{
+#ifdef SAVE_MARKERS_SUPPORTED
+ int m;
+
+ /* Save comments except under NONE option */
+ if (option != JCOPYOPT_NONE) {
+ jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF);
+ }
+ /* Save all types of APPn markers iff ALL option */
+ if (option == JCOPYOPT_ALL) {
+ for (m = 0; m < 16; m++)
+ jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF);
+ }
+#endif /* SAVE_MARKERS_SUPPORTED */
+}
+
+/* Copy markers saved in the given source object to the destination object.
+ * This should be called just after jpeg_start_compress() or
+ * jpeg_write_coefficients().
+ * Note that those routines will have written the SOI, and also the
+ * JFIF APP0 or Adobe APP14 markers if selected.
+ */
+
+GLOBAL(void)
+jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ JCOPY_OPTION option)
+{
+ jpeg_saved_marker_ptr marker;
+
+ /* In the current implementation, we don't actually need to examine the
+ * option flag here; we just copy everything that got saved.
+ * But to avoid confusion, we do not output JFIF and Adobe APP14 markers
+ * if the encoder library already wrote one.
+ */
+ for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) {
+ if (dstinfo->write_JFIF_header &&
+ marker->marker == JPEG_APP0 &&
+ marker->data_length >= 5 &&
+ GETJOCTET(marker->data[0]) == 0x4A &&
+ GETJOCTET(marker->data[1]) == 0x46 &&
+ GETJOCTET(marker->data[2]) == 0x49 &&
+ GETJOCTET(marker->data[3]) == 0x46 &&
+ GETJOCTET(marker->data[4]) == 0)
+ continue; /* reject duplicate JFIF */
+ if (dstinfo->write_Adobe_marker &&
+ marker->marker == JPEG_APP0+14 &&
+ marker->data_length >= 5 &&
+ GETJOCTET(marker->data[0]) == 0x41 &&
+ GETJOCTET(marker->data[1]) == 0x64 &&
+ GETJOCTET(marker->data[2]) == 0x6F &&
+ GETJOCTET(marker->data[3]) == 0x62 &&
+ GETJOCTET(marker->data[4]) == 0x65)
+ continue; /* reject duplicate Adobe */
+#ifdef NEED_FAR_POINTERS
+ /* We could use jpeg_write_marker if the data weren't FAR... */
+ {
+ unsigned int i;
+ jpeg_write_m_header(dstinfo, marker->marker, marker->data_length);
+ for (i = 0; i < marker->data_length; i++)
+ jpeg_write_m_byte(dstinfo, marker->data[i]);
+ }
+#else
+ jpeg_write_marker(dstinfo, marker->marker,
+ marker->data, marker->data_length);
+#endif
+ }
+}
diff --git a/jpeg/transupp.h b/jpeg/transupp.h
new file mode 100644
index 0000000..5c2d32a
--- /dev/null
+++ b/jpeg/transupp.h
@@ -0,0 +1,135 @@
+/*
+ * transupp.h
+ *
+ * Copyright (C) 1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains declarations for image transformation routines and
+ * other utility code used by the jpegtran sample application. These are
+ * NOT part of the core JPEG library. But we keep these routines separate
+ * from jpegtran.c to ease the task of maintaining jpegtran-like programs
+ * that have other user interfaces.
+ *
+ * NOTE: all the routines declared here have very specific requirements
+ * about when they are to be executed during the reading and writing of the
+ * source and destination files. See the comments in transupp.c, or see
+ * jpegtran.c for an example of correct usage.
+ */
+
+/* If you happen not to want the image transform support, disable it here */
+#ifndef TRANSFORMS_SUPPORTED
+#define TRANSFORMS_SUPPORTED 1 /* 0 disables transform code */
+#endif
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jtransform_request_workspace jTrRequest
+#define jtransform_adjust_parameters jTrAdjust
+#define jtransform_execute_transformation jTrExec
+#define jcopy_markers_setup jCMrkSetup
+#define jcopy_markers_execute jCMrkExec
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/*
+ * Codes for supported types of image transformations.
+ */
+
+typedef enum {
+ JXFORM_NONE, /* no transformation */
+ JXFORM_FLIP_H, /* horizontal flip */
+ JXFORM_FLIP_V, /* vertical flip */
+ JXFORM_TRANSPOSE, /* transpose across UL-to-LR axis */
+ JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */
+ JXFORM_ROT_90, /* 90-degree clockwise rotation */
+ JXFORM_ROT_180, /* 180-degree rotation */
+ JXFORM_ROT_270 /* 270-degree clockwise (or 90 ccw) */
+} JXFORM_CODE;
+
+/*
+ * Although rotating and flipping data expressed as DCT coefficients is not
+ * hard, there is an asymmetry in the JPEG format specification for images
+ * whose dimensions aren't multiples of the iMCU size. The right and bottom
+ * image edges are padded out to the next iMCU boundary with junk data; but
+ * no padding is possible at the top and left edges. If we were to flip
+ * the whole image including the pad data, then pad garbage would become
+ * visible at the top and/or left, and real pixels would disappear into the
+ * pad margins --- perhaps permanently, since encoders & decoders may not
+ * bother to preserve DCT blocks that appear to be completely outside the
+ * nominal image area. So, we have to exclude any partial iMCUs from the
+ * basic transformation.
+ *
+ * Transpose is the only transformation that can handle partial iMCUs at the
+ * right and bottom edges completely cleanly. flip_h can flip partial iMCUs
+ * at the bottom, but leaves any partial iMCUs at the right edge untouched.
+ * Similarly flip_v leaves any partial iMCUs at the bottom edge untouched.
+ * The other transforms are defined as combinations of these basic transforms
+ * and process edge blocks in a way that preserves the equivalence.
+ *
+ * The "trim" option causes untransformable partial iMCUs to be dropped;
+ * this is not strictly lossless, but it usually gives the best-looking
+ * result for odd-size images. Note that when this option is active,
+ * the expected mathematical equivalences between the transforms may not hold.
+ * (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim
+ * followed by -rot 180 -trim trims both edges.)
+ *
+ * We also offer a "force to grayscale" option, which simply discards the
+ * chrominance channels of a YCbCr image. This is lossless in the sense that
+ * the luminance channel is preserved exactly. It's not the same kind of
+ * thing as the rotate/flip transformations, but it's convenient to handle it
+ * as part of this package, mainly because the transformation routines have to
+ * be aware of the option to know how many components to work on.
+ */
+
+typedef struct {
+ /* Options: set by caller */
+ JXFORM_CODE transform; /* image transform operator */
+ boolean trim; /* if TRUE, trim partial MCUs as needed */
+ boolean force_grayscale; /* if TRUE, convert color image to grayscale */
+
+ /* Internal workspace: caller should not touch these */
+ int num_components; /* # of components in workspace */
+ jvirt_barray_ptr * workspace_coef_arrays; /* workspace for transformations */
+} jpeg_transform_info;
+
+
+#if TRANSFORMS_SUPPORTED
+
+/* Request any required workspace */
+EXTERN(void) jtransform_request_workspace
+ JPP((j_decompress_ptr srcinfo, jpeg_transform_info *info));
+/* Adjust output image parameters */
+EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters
+ JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jpeg_transform_info *info));
+/* Execute the actual transformation, if any */
+EXTERN(void) jtransform_execute_transformation
+ JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jpeg_transform_info *info));
+
+#endif /* TRANSFORMS_SUPPORTED */
+
+
+/*
+ * Support for copying optional markers from source to destination file.
+ */
+
+typedef enum {
+ JCOPYOPT_NONE, /* copy no optional markers */
+ JCOPYOPT_COMMENTS, /* copy only comment (COM) markers */
+ JCOPYOPT_ALL /* copy all optional markers */
+} JCOPY_OPTION;
+
+#define JCOPYOPT_DEFAULT JCOPYOPT_COMMENTS /* recommended default */
+
+/* Setup decompression object to save desired markers in memory */
+EXTERN(void) jcopy_markers_setup
+ JPP((j_decompress_ptr srcinfo, JCOPY_OPTION option));
+/* Copy markers saved in the given source object to the destination object */
+EXTERN(void) jcopy_markers_execute
+ JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ JCOPY_OPTION option));