aboutsummaryrefslogtreecommitdiffstats
path: root/tools/net
diff options
context:
space:
mode:
authorMarkos Chandras <markos.chandras@imgtec.com>2014-03-11 08:49:39 +0000
committerDavid S. Miller <davem@davemloft.net>2014-03-12 00:07:55 -0400
commit406764622fb71e5f4efb39ff111ef87713815f6d (patch)
tree8ca38df905e8ee68f8d787136b80a6e6a6496859 /tools/net
parentfdfaf64e75397567257e1051931f9a3377360665 (diff)
downloadlinux-406764622fb71e5f4efb39ff111ef87713815f6d.tar.gz
tools/net/Makefile: Define PACKAGE to fix build problems
Fixes the following build problem with binutils-2.24 gcc -Wall -O2 -c -o bpf_jit_disasm.o bpf_jit_disasm.c In file included from bpf_jit_disasm.c:25:0: /usr/include/bfd.h:35:2: error: #error config.h must be included before this header #error config.h must be included before this header This is similar to commit 3ce711a6abc27abce1554e1d671a8762b7187690 "perf tools: bfd.h/libbfd detection fails with recent binutils" See: https://sourceware.org/bugzilla/show_bug.cgi?id=14243 CC: David S. Miller <davem@davemloft.net> CC: Daniel Borkmann <dborkman@redhat.com> CC: netdev@vger.kernel.org Acked-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Markos Chandras <markos.chandras@imgtec.com> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'tools/net')
-rw-r--r--tools/net/Makefile2
1 files changed, 1 insertions, 1 deletions
diff --git a/tools/net/Makefile b/tools/net/Makefile
index 004cd74734b6..ee577ea03ba5 100644
--- a/tools/net/Makefile
+++ b/tools/net/Makefile
@@ -12,7 +12,7 @@ YACC = bison
all : bpf_jit_disasm bpf_dbg bpf_asm
-bpf_jit_disasm : CFLAGS = -Wall -O2
+bpf_jit_disasm : CFLAGS = -Wall -O2 -DPACKAGE='bpf_jit_disasm'
bpf_jit_disasm : LDLIBS = -lopcodes -lbfd -ldl
bpf_jit_disasm : bpf_jit_disasm.o
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/*
 * QEMU Malta board support
 *
 * Copyright (c) 2006 Aurelien Jarno
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/bitops.h"
#include "qemu/datadir.h"
#include "hw/clock.h"
#include "hw/southbridge/piix.h"
#include "hw/isa/superio.h"
#include "hw/char/serial.h"
#include "net/net.h"
#include "hw/boards.h"
#include "hw/i2c/smbus_eeprom.h"
#include "hw/block/flash.h"
#include "hw/mips/mips.h"
#include "hw/mips/cpudevs.h"
#include "hw/pci/pci.h"
#include "qemu/log.h"
#include "hw/mips/bios.h"
#include "hw/ide.h"
#include "hw/irq.h"
#include "hw/loader.h"
#include "elf.h"
#include "qom/object.h"
#include "hw/sysbus.h"             /* SysBusDevice */
#include "qemu/host-utils.h"
#include "sysemu/qtest.h"
#include "sysemu/reset.h"
#include "sysemu/runstate.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "hw/misc/empty_slot.h"
#include "sysemu/kvm.h"
#include "semihosting/semihost.h"
#include "hw/mips/cps.h"
#include "hw/qdev-clock.h"

#define ENVP_PADDR          0x2000
#define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
#define ENVP_NB_ENTRIES     16
#define ENVP_ENTRY_SIZE     256

/* Hardware addresses */
#define FLASH_ADDRESS       0x1e000000ULL
#define FPGA_ADDRESS        0x1f000000ULL
#define RESET_ADDRESS       0x1fc00000ULL

#define FLASH_SIZE          0x400000

#define MAX_IDE_BUS         2

typedef struct {
    MemoryRegion iomem;
    MemoryRegion iomem_lo; /* 0 - 0x900 */
    MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
    uint32_t leds;
    uint32_t brk;
    uint32_t gpout;
    uint32_t i2cin;
    uint32_t i2coe;
    uint32_t i2cout;
    uint32_t i2csel;
    CharBackend display;
    char display_text[9];
    SerialMM *uart;
    bool display_inited;
} MaltaFPGAState;

#define TYPE_MIPS_MALTA "mips-malta"
OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)

struct MaltaState {
    SysBusDevice parent_obj;

    Clock *cpuclk;
    MIPSCPSState cps;
};

static struct _loaderparams {
    int ram_size, ram_low_size;
    const char *kernel_filename;
    const char *kernel_cmdline;
    const char *initrd_filename;
} loaderparams;

/* Malta FPGA */
static void malta_fpga_update_display(void *opaque)
{
    char leds_text[9];
    int i;
    MaltaFPGAState *s = opaque;

    for (i = 7 ; i >= 0 ; i--) {
        if (s->leds & (1 << i)) {
            leds_text[i] = '#';
        } else {
            leds_text[i] = ' ';
        }
    }
    leds_text[8] = '\0';

    qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
                       leds_text);
    qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
                       s->display_text);
}

/*
 * EEPROM 24C01 / 24C02 emulation.
 *
 * Emulation for serial EEPROMs:
 * 24C01 - 1024 bit (128 x 8)
 * 24C02 - 2048 bit (256 x 8)
 *
 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
 */

#if defined(DEBUG)
#  define logout(fmt, ...) \
          fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
#else
#  define logout(fmt, ...) ((void)0)
#endif

struct _eeprom24c0x_t {
  uint8_t tick;
  uint8_t address;
  uint8_t command;
  uint8_t ack;
  uint8_t scl;
  uint8_t sda;
  uint8_t data;
  /* uint16_t size; */
  uint8_t contents[256];
};

typedef struct _eeprom24c0x_t eeprom24c0x_t;

static eeprom24c0x_t spd_eeprom = {
    .contents = {
        /* 00000000: */
        0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
        /* 00000008: */
        0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
        /* 00000010: */
        0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
        /* 00000018: */
        0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
        /* 00000020: */
        0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
        /* 00000028: */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        /* 00000030: */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        /* 00000038: */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
        /* 00000040: */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        /* 00000048: */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        /* 00000050: */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        /* 00000058: */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        /* 00000060: */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        /* 00000068: */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        /* 00000070: */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        /* 00000078: */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
    },
};

static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
{
    enum { SDR = 0x4, DDR2 = 0x8 } type;
    uint8_t *spd = spd_eeprom.contents;
    uint8_t nbanks = 0;
    uint16_t density = 0;
    int i;

    /* work in terms of MB */
    ram_size /= MiB;

    while ((ram_size >= 4) && (nbanks <= 2)) {
        int sz_log2 = MIN(31 - clz32(ram_size), 14);
        nbanks++;
        density |= 1 << (sz_log2 - 2);
        ram_size -= 1 << sz_log2;
    }

    /* split to 2 banks if possible */
    if ((nbanks == 1) && (density > 1)) {
        nbanks++;
        density >>= 1;
    }

    if (density & 0xff00) {
        density = (density & 0xe0) | ((density >> 8) & 0x1f);
        type = DDR2;
    } else if (!(density & 0x1f)) {
        type = DDR2;
    } else {
        type = SDR;
    }

    if (ram_size) {
        warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
                    " of SDRAM", ram_size);
    }

    /* fill in SPD memory information */
    spd[2] = type;
    spd[5] = nbanks;
    spd[31] = density;

    /* checksum */
    spd[63] = 0;
    for (i = 0; i < 63; i++) {
        spd[63] += spd[i];
    }

    /* copy for SMBUS */
    memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
}

static void generate_eeprom_serial(uint8_t *eeprom)
{
    int i, pos = 0;
    uint8_t mac[6] = { 0x00 };
    uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };

    /* version */
    eeprom[pos++] = 0x01;

    /* count */
    eeprom[pos++] = 0x02;

    /* MAC address */
    eeprom[pos++] = 0x01; /* MAC */
    eeprom[pos++] = 0x06; /* length */
    memcpy(&eeprom[pos], mac, sizeof(mac));
    pos += sizeof(mac);

    /* serial number */
    eeprom[pos++] = 0x02; /* serial */
    eeprom[pos++] = 0x05; /* length */
    memcpy(&eeprom[pos], sn, sizeof(sn));
    pos += sizeof(sn);

    /* checksum */
    eeprom[pos] = 0;
    for (i = 0; i < pos; i++) {
        eeprom[pos] += eeprom[i];
    }
}

static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
{
    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
        eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
    return eeprom->sda;
}

static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
{
    if (eeprom->scl && scl && (eeprom->sda != sda)) {
        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
                sda ? "stop" : "start");
        if (!sda) {
            eeprom->tick = 1;
            eeprom->command = 0;
        }
    } else if (eeprom->tick == 0 && !eeprom->ack) {
        /* Waiting for start. */
        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
    } else if (!eeprom->scl && scl) {
        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
        if (eeprom->ack) {
            logout("\ti2c ack bit = 0\n");
            sda = 0;
            eeprom->ack = 0;
        } else if (eeprom->sda == sda) {
            uint8_t bit = (sda != 0);
            logout("\ti2c bit = %d\n", bit);
            if (eeprom->tick < 9) {
                eeprom->command <<= 1;
                eeprom->command += bit;
                eeprom->tick++;
                if (eeprom->tick == 9) {
                    logout("\tcommand 0x%04x, %s\n", eeprom->command,
                           bit ? "read" : "write");
                    eeprom->ack = 1;
                }
            } else if (eeprom->tick < 17) {
                if (eeprom->command & 1) {
                    sda = ((eeprom->data & 0x80) != 0);
                }
                eeprom->address <<= 1;
                eeprom->address += bit;
                eeprom->tick++;
                eeprom->data <<= 1;
                if (eeprom->tick == 17) {
                    eeprom->data = eeprom->contents[eeprom->address];
                    logout("\taddress 0x%04x, data 0x%02x\n",
                           eeprom->address, eeprom->data);
                    eeprom->ack = 1;
                    eeprom->tick = 0;
                }
            } else if (eeprom->tick >= 17) {
                sda = 0;
            }
        } else {
            logout("\tsda changed with raising scl\n");
        }
    } else {
        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
               scl, eeprom->sda, sda);
    }
    eeprom->scl = scl;
    eeprom->sda = sda;
}

static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
                                unsigned size)
{
    MaltaFPGAState *s = opaque;
    uint32_t val = 0;
    uint32_t saddr;

    saddr = (addr & 0xfffff);

    switch (saddr) {

    /* SWITCH Register */
    case 0x00200:
        val = 0x00000000;
        break;

    /* STATUS Register */
    case 0x00208:
#if TARGET_BIG_ENDIAN
        val = 0x00000012;
#else
        val = 0x00000010;
#endif
        break;

    /* JMPRS Register */
    case 0x00210:
        val = 0x00;
        break;

    /* LEDBAR Register */
    case 0x00408:
        val = s->leds;
        break;

    /* BRKRES Register */
    case 0x00508:
        val = s->brk;
        break;

    /* UART Registers are handled directly by the serial device */

    /* GPOUT Register */
    case 0x00a00:
        val = s->gpout;
        break;

    /* XXX: implement a real I2C controller */

    /* GPINP Register */
    case 0x00a08:
        /* IN = OUT until a real I2C control is implemented */
        if (s->i2csel) {
            val = s->i2cout;
        } else {
            val = 0x00;
        }
        break;

    /* I2CINP Register */
    case 0x00b00:
        val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
        break;

    /* I2COE Register */
    case 0x00b08:
        val = s->i2coe;
        break;

    /* I2COUT Register */
    case 0x00b10:
        val = s->i2cout;
        break;

    /* I2CSEL Register */
    case 0x00b18:
        val = s->i2csel;
        break;

    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
                      addr);
        break;
    }
    return val;
}

static void malta_fpga_write(void *opaque, hwaddr addr,
                             uint64_t val, unsigned size)
{
    MaltaFPGAState *s = opaque;
    uint32_t saddr;

    saddr = (addr & 0xfffff);

    switch (saddr) {

    /* SWITCH Register */
    case 0x00200:
        break;

    /* JMPRS Register */
    case 0x00210:
        break;

    /* LEDBAR Register */
    case 0x00408:
        s->leds = val & 0xff;
        malta_fpga_update_display(s);
        break;

    /* ASCIIWORD Register */
    case 0x00410:
        snprintf(s->display_text, 9, "%08X", (uint32_t)val);
        malta_fpga_update_display(s);
        break;

    /* ASCIIPOS0 to ASCIIPOS7 Registers */
    case 0x00418:
    case 0x00420:
    case 0x00428:
    case 0x00430:
    case 0x00438:
    case 0x00440:
    case 0x00448:
    case 0x00450:
        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
        malta_fpga_update_display(s);
        break;

    /* SOFTRES Register */
    case 0x00500:
        if (val == 0x42) {
            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
        }
        break;

    /* BRKRES Register */
    case 0x00508:
        s->brk = val & 0xff;
        break;

    /* UART Registers are handled directly by the serial device */

    /* GPOUT Register */
    case 0x00a00:
        s->gpout = val & 0xff;
        break;

    /* I2COE Register */
    case 0x00b08:
        s->i2coe = val & 0x03;
        break;

    /* I2COUT Register */
    case 0x00b10:
        eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
        s->i2cout = val;
        break;

    /* I2CSEL Register */
    case 0x00b18:
        s->i2csel = val & 0x01;
        break;

    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
                      addr);
        break;
    }
}

static const MemoryRegionOps malta_fpga_ops = {
    .read = malta_fpga_read,
    .write = malta_fpga_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static void malta_fpga_reset(void *opaque)
{
    MaltaFPGAState *s = opaque;

    s->leds   = 0x00;
    s->brk    = 0x0a;
    s->gpout  = 0x00;
    s->i2cin  = 0x3;
    s->i2coe  = 0x0;
    s->i2cout = 0x3;
    s->i2csel = 0x1;

    s->display_text[8] = '\0';
    snprintf(s->display_text, 9, "        ");
}

static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
{
    MaltaFPGAState *s = opaque;

    if (event == CHR_EVENT_OPENED && !s->display_inited) {
        qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
        qemu_chr_fe_printf(&s->display, "+        +\r\n");
        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
        qemu_chr_fe_printf(&s->display, "\n");
        qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
        qemu_chr_fe_printf(&s->display, "+        +\r\n");
        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
        s->display_inited = true;
    }
}

static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
         hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
{
    MaltaFPGAState *s;
    Chardev *chr;

    s = g_new0(MaltaFPGAState, 1);

    memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
                          "malta-fpga", 0x100000);
    memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
                             &s->iomem, 0, 0x900);
    memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
                             &s->iomem, 0xa00, 0x100000 - 0xa00);

    memory_region_add_subregion(address_space, base, &s->iomem_lo);
    memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);

    chr = qemu_chr_new("fpga", "vc:320x200", NULL);
    qemu_chr_fe_init(&s->display, chr, NULL);
    qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
                             malta_fgpa_display_event, NULL, s, NULL, true);

    s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
                             230400, uart_chr, DEVICE_NATIVE_ENDIAN);

    malta_fpga_reset(s);
    qemu_register_reset(malta_fpga_reset, s);

    return s;
}

/* Network support */
static void network_init(PCIBus *pci_bus)
{
    int i;

    for (i = 0; i < nb_nics; i++) {
        NICInfo *nd = &nd_table[i];
        const char *default_devaddr = NULL;

        if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
            /* The malta board has a PCNet card using PCI SLOT 11 */
            default_devaddr = "0b";

        pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
    }
}

static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
                                      uint64_t kernel_entry)
{
    uint16_t *p;

    /* Small bootloader */
    p = (uint16_t *)base;

#define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
#define NM_HI2(VAL) \
          (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
#define NM_LO(VAL)  ((VAL) & 0xfff)

    stw_p(p++, 0x2800); stw_p(p++, 0x001c);
                                /* bc to_here */
    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
                                /* nop */
    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
                                /* nop */
    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
                                /* nop */
    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
                                /* nop */
    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
                                /* nop */
    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
                                /* nop */
    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
                                /* nop */

    /* to_here: */
    if (semihosting_get_argc()) {
        /* Preserve a0 content as arguments have been passed    */
        stw_p(p++, 0x8000); stw_p(p++, 0xc000);
                                /* nop                          */
    } else {
        stw_p(p++, 0x0080); stw_p(p++, 0x0002);
                                /* li a0,2                      */
    }

    stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));

    stw_p(p++, NM_HI2(ENVP_VADDR - 64));
                                /* lui sp,%hi(ENVP_VADDR - 64)   */

    stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
                                /* ori sp,sp,%lo(ENVP_VADDR - 64) */

    stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));

    stw_p(p++, NM_HI2(ENVP_VADDR));
                                /* lui a1,%hi(ENVP_VADDR)        */

    stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
                                /* ori a1,a1,%lo(ENVP_VADDR)     */

    stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));

    stw_p(p++, NM_HI2(ENVP_VADDR + 8));
                                /* lui a2,%hi(ENVP_VADDR + 8)    */

    stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
                                /* ori a2,a2,%lo(ENVP_VADDR + 8) */

    stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));

    stw_p(p++, NM_HI2(loaderparams.ram_low_size));
                                /* lui a3,%hi(loaderparams.ram_low_size) */

    stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
                                /* ori a3,a3,%lo(loaderparams.ram_low_size) */

    /*
     * Load BAR registers as done by YAMON:
     *
     *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
     *  - set up PCI0 MEM0 at 0x10000000, size 0x8000000
     *  - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
     *
     */
    stw_p(p++, 0xe040); stw_p(p++, 0x0681);
                                /* lui t1, %hi(0xb4000000)      */

#if TARGET_BIG_ENDIAN

    stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
                                /* lui t0, %hi(0xdf000000)      */

    /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c)  */
    stw_p(p++, 0x8422); stw_p(p++, 0x9068);
                                /* sw t0, 0x68(t1)              */

    stw_p(p++, 0xe040); stw_p(p++, 0x077d);
                                /* lui t1, %hi(0xbbe00000)      */

    stw_p(p++, 0xe020); stw_p(p++, 0x0801);
                                /* lui t0, %hi(0xc0000000)      */

    /* 0x48 corresponds to GT_PCI0IOLD                          */
    stw_p(p++, 0x8422); stw_p(p++, 0x9048);
                                /* sw t0, 0x48(t1)              */

    stw_p(p++, 0xe020); stw_p(p++, 0x0800);
                                /* lui t0, %hi(0x40000000)      */

    /* 0x50 corresponds to GT_PCI0IOHD                          */
    stw_p(p++, 0x8422); stw_p(p++, 0x9050);
                                /* sw t0, 0x50(t1)              */

    stw_p(p++, 0xe020); stw_p(p++, 0x0001);
                                /* lui t0, %hi(0x80000000)      */

    /* 0x58 corresponds to GT_PCI0M0LD                          */
    stw_p(p++, 0x8422); stw_p(p++, 0x9058);
                                /* sw t0, 0x58(t1)              */

    stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
                                /* lui t0, %hi(0x3f000000)      */

    /* 0x60 corresponds to GT_PCI0M0HD                          */
    stw_p(p++, 0x8422); stw_p(p++, 0x9060);
                                /* sw t0, 0x60(t1)              */

    stw_p(p++, 0xe020); stw_p(p++, 0x0821);
                                /* lui t0, %hi(0xc1000000)      */

    /* 0x80 corresponds to GT_PCI0M1LD                          */
    stw_p(p++, 0x8422); stw_p(p++, 0x9080);
                                /* sw t0, 0x80(t1)              */

    stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
                                /* lui t0, %hi(0x5e000000)      */

#else

    stw_p(p++, 0x0020); stw_p(p++, 0x00df);
                                /* addiu[32] t0, $0, 0xdf       */

    /* 0x68 corresponds to GT_ISD                               */
    stw_p(p++, 0x8422); stw_p(p++, 0x9068);
                                /* sw t0, 0x68(t1)              */

    /* Use kseg2 remapped address 0x1be00000                    */
    stw_p(p++, 0xe040); stw_p(p++, 0x077d);
                                /* lui t1, %hi(0xbbe00000)      */

    stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
                                /* addiu[32] t0, $0, 0xc0       */

    /* 0x48 corresponds to GT_PCI0IOLD                          */
    stw_p(p++, 0x8422); stw_p(p++, 0x9048);
                                /* sw t0, 0x48(t1)              */

    stw_p(p++, 0x0020); stw_p(p++, 0x0040);
                                /* addiu[32] t0, $0, 0x40       */

    /* 0x50 corresponds to GT_PCI0IOHD                          */
    stw_p(p++, 0x8422); stw_p(p++, 0x9050);
                                /* sw t0, 0x50(t1)              */

    stw_p(p++, 0x0020); stw_p(p++, 0x0080);
                                /* addiu[32] t0, $0, 0x80       */

    /* 0x58 corresponds to GT_PCI0M0LD                          */
    stw_p(p++, 0x8422); stw_p(p++, 0x9058);
                                /* sw t0, 0x58(t1)              */

    stw_p(p++, 0x0020); stw_p(p++, 0x003f);
                                /* addiu[32] t0, $0, 0x3f       */

    /* 0x60 corresponds to GT_PCI0M0HD                          */
    stw_p(p++, 0x8422); stw_p(p++, 0x9060);
                                /* sw t0, 0x60(t1)              */

    stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
                                /* addiu[32] t0, $0, 0xc1       */

    /* 0x80 corresponds to GT_PCI0M1LD                          */
    stw_p(p++, 0x8422); stw_p(p++, 0x9080);
                                /* sw t0, 0x80(t1)              */

    stw_p(p++, 0x0020); stw_p(p++, 0x005e);
                                /* addiu[32] t0, $0, 0x5e       */

#endif

    /* 0x88 corresponds to GT_PCI0M1HD                          */
    stw_p(p++, 0x8422); stw_p(p++, 0x9088);
                                /* sw t0, 0x88(t1)              */

    stw_p(p++, 0xe320 | NM_HI1(kernel_entry));

    stw_p(p++, NM_HI2(kernel_entry));
                                /* lui t9,%hi(kernel_entry)     */

    stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
                                /* ori t9,t9,%lo(kernel_entry)  */

    stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
                                /* jalrc   t8                   */
}

/*
 * ROM and pseudo bootloader
 *
 * The following code implements a very very simple bootloader. It first
 * loads the registers a0 to a3 to the values expected by the OS, and
 * then jump at the kernel address.
 *
 * The bootloader should pass the locations of the kernel arguments and
 * environment variables tables. Those tables contain the 32-bit address
 * of NULL terminated strings. The environment variables table should be
 * terminated by a NULL address.
 *
 * For a simpler implementation, the number of kernel arguments is fixed
 * to two (the name of the kernel and the command line), and the two
 * tables are actually the same one.
 *
 * The registers a0 to a3 should contain the following values:
 *   a0 - number of kernel arguments
 *   a1 - 32-bit address of the kernel arguments table
 *   a2 - 32-bit address of the environment variables table
 *   a3 - RAM size in bytes
 */
static void write_bootloader(uint8_t *base, uint64_t run_addr,
                             uint64_t kernel_entry)
{
    uint32_t *p;

    /* Small bootloader */
    p = (uint32_t *)base;

    stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
                 ((run_addr + 0x580) & 0x0fffffff) >> 2);
    stl_p(p++, 0x00000000);                  /* nop */

    /* YAMON service vector */
    stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
    stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
    stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
    stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
    stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
    stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
    stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
    stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
    stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
    stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
    stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
    stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
    stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */


    /* Second part of the bootloader */
    p = (uint32_t *) (base + 0x580);

    if (semihosting_get_argc()) {
        /* Preserve a0 content as arguments have been passed */
        stl_p(p++, 0x00000000);              /* nop */
    } else {
        stl_p(p++, 0x24040002);              /* addiu a0, zero, 2 */
    }

    /* lui sp, high(ENVP_VADDR) */
    stl_p(p++, 0x3c1d0000 | (((ENVP_VADDR - 64) >> 16) & 0xffff));
    /* ori sp, sp, low(ENVP_VADDR) */
    stl_p(p++, 0x37bd0000 | ((ENVP_VADDR - 64) & 0xffff));
    /* lui a1, high(ENVP_VADDR) */
    stl_p(p++, 0x3c050000 | ((ENVP_VADDR >> 16) & 0xffff));
    /* ori a1, a1, low(ENVP_VADDR) */
    stl_p(p++, 0x34a50000 | (ENVP_VADDR & 0xffff));
    /* lui a2, high(ENVP_VADDR + 8) */
    stl_p(p++, 0x3c060000 | (((ENVP_VADDR + 8) >> 16) & 0xffff));
    /* ori a2, a2, low(ENVP_VADDR + 8) */
    stl_p(p++, 0x34c60000 | ((ENVP_VADDR + 8) & 0xffff));
    /* lui a3, high(ram_low_size) */
    stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
    /* ori a3, a3, low(ram_low_size) */
    stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));

    /* Load BAR registers as done by YAMON */
    stl_p(p++, 0x3c09b400);                  /* lui t1, 0xb400 */

#if TARGET_BIG_ENDIAN
    stl_p(p++, 0x3c08df00);                  /* lui t0, 0xdf00 */
#else
    stl_p(p++, 0x340800df);                  /* ori t0, r0, 0x00df */
#endif
    stl_p(p++, 0xad280068);                  /* sw t0, 0x0068(t1) */

    stl_p(p++, 0x3c09bbe0);                  /* lui t1, 0xbbe0 */

#if TARGET_BIG_ENDIAN
    stl_p(p++, 0x3c08c000);                  /* lui t0, 0xc000 */
#else
    stl_p(p++, 0x340800c0);                  /* ori t0, r0, 0x00c0 */
#endif
    stl_p(p++, 0xad280048);                  /* sw t0, 0x0048(t1) */
#if TARGET_BIG_ENDIAN
    stl_p(p++, 0x3c084000);                  /* lui t0, 0x4000 */
#else
    stl_p(p++, 0x34080040);                  /* ori t0, r0, 0x0040 */
#endif
    stl_p(p++, 0xad280050);                  /* sw t0, 0x0050(t1) */

#if TARGET_BIG_ENDIAN
    stl_p(p++, 0x3c088000);                  /* lui t0, 0x8000 */
#else
    stl_p(p++, 0x34080080);                  /* ori t0, r0, 0x0080 */
#endif
    stl_p(p++, 0xad280058);                  /* sw t0, 0x0058(t1) */
#if TARGET_BIG_ENDIAN
    stl_p(p++, 0x3c083f00);                  /* lui t0, 0x3f00 */
#else
    stl_p(p++, 0x3408003f);                  /* ori t0, r0, 0x003f */
#endif
    stl_p(p++, 0xad280060);                  /* sw t0, 0x0060(t1) */

#if TARGET_BIG_ENDIAN
    stl_p(p++, 0x3c08c100);                  /* lui t0, 0xc100 */
#else
    stl_p(p++, 0x340800c1);                  /* ori t0, r0, 0x00c1 */
#endif
    stl_p(p++, 0xad280080);                  /* sw t0, 0x0080(t1) */
#if TARGET_BIG_ENDIAN
    stl_p(p++, 0x3c085e00);                  /* lui t0, 0x5e00 */
#else
    stl_p(p++, 0x3408005e);                  /* ori t0, r0, 0x005e */
#endif
    stl_p(p++, 0xad280088);                  /* sw t0, 0x0088(t1) */

    /* Jump to kernel code */
    stl_p(p++, 0x3c1f0000 |
          ((kernel_entry >> 16) & 0xffff));  /* lui ra, high(kernel_entry) */
    stl_p(p++, 0x37ff0000 |
          (kernel_entry & 0xffff));          /* ori ra, ra, low(kernel_entry) */
    stl_p(p++, 0x03e00009);                  /* jalr ra */
    stl_p(p++, 0x00000000);                  /* nop */

    /* YAMON subroutines */
    p = (uint32_t *) (base + 0x800);
    stl_p(p++, 0x03e00009);                  /* jalr ra */
    stl_p(p++, 0x24020000);                  /* li v0,0 */
    /* 808 YAMON print */
    stl_p(p++, 0x03e06821);                  /* move t5,ra */
    stl_p(p++, 0x00805821);                  /* move t3,a0 */
    stl_p(p++, 0x00a05021);                  /* move t2,a1 */
    stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
    stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
    stl_p(p++, 0x10800005);                  /* beqz a0,834 */
    stl_p(p++, 0x00000000);                  /* nop */
    stl_p(p++, 0x0ff0021c);                  /* jal 870 */
    stl_p(p++, 0x00000000);                  /* nop */
    stl_p(p++, 0x1000fff9);                  /* b 814 */
    stl_p(p++, 0x00000000);                  /* nop */
    stl_p(p++, 0x01a00009);                  /* jalr t5 */
    stl_p(p++, 0x01602021);                  /* move a0,t3 */
    /* 0x83c YAMON print_count */
    stl_p(p++, 0x03e06821);                  /* move t5,ra */
    stl_p(p++, 0x00805821);                  /* move t3,a0 */
    stl_p(p++, 0x00a05021);                  /* move t2,a1 */
    stl_p(p++, 0x00c06021);                  /* move t4,a2 */
    stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
    stl_p(p++, 0x0ff0021c);                  /* jal 870 */
    stl_p(p++, 0x00000000);                  /* nop */
    stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
    stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
    stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
    stl_p(p++, 0x00000000);                  /* nop */
    stl_p(p++, 0x01a00009);                  /* jalr t5 */
    stl_p(p++, 0x01602021);                  /* move a0,t3 */
    /* 0x870 */
    stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
    stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
    stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
    stl_p(p++, 0x00000000);                  /* nop */
    stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
    stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
    stl_p(p++, 0x00000000);                  /* nop */
    stl_p(p++, 0x03e00009);                  /* jalr ra */
    stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */

}

static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
                                        const char *string, ...)
{
    va_list ap;
    uint32_t table_addr;

    if (index >= ENVP_NB_ENTRIES) {
        return;
    }

    if (string == NULL) {
        prom_buf[index] = 0;
        return;
    }

    table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
    prom_buf[index] = tswap32(ENVP_VADDR + table_addr);

    va_start(ap, string);
    vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
    va_end(ap);
}

/* Kernel */
static uint64_t load_kernel(void)
{
    uint64_t kernel_entry, kernel_high, initrd_size;
    long kernel_size;
    ram_addr_t initrd_offset;
    int big_endian;
    uint32_t *prom_buf;
    long prom_size;
    int prom_index = 0;
    uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);

#if TARGET_BIG_ENDIAN
    big_endian = 1;
#else
    big_endian = 0;
#endif

    kernel_size = load_elf(loaderparams.kernel_filename, NULL,
                           cpu_mips_kseg0_to_phys, NULL,
                           &kernel_entry, NULL,
                           &kernel_high, NULL, big_endian, EM_MIPS,
                           1, 0);
    if (kernel_size < 0) {
        error_report("could not load kernel '%s': %s",
                     loaderparams.kernel_filename,
                     load_elf_strerror(kernel_size));
        exit(1);
    }

    /* Check where the kernel has been linked */
    if (kernel_entry & 0x80000000ll) {
        if (kvm_enabled()) {
            error_report("KVM guest kernels must be linked in useg. "
                         "Did you forget to enable CONFIG_KVM_GUEST?");
            exit(1);
        }

        xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
    } else {
        /* if kernel entry is in useg it is probably a KVM T&E kernel */
        mips_um_ksegs_enable();

        xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
    }

    /* load initrd */
    initrd_size = 0;
    initrd_offset = 0;
    if (loaderparams.initrd_filename) {
        initrd_size = get_image_size(loaderparams.initrd_filename);
        if (initrd_size > 0) {
            /*
             * The kernel allocates the bootmap memory in the low memory after
             * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
             * pages.
             */
            initrd_offset = ROUND_UP(loaderparams.ram_low_size
                                     - (initrd_size + 128 * KiB),
                                     INITRD_PAGE_SIZE);
            if (kernel_high >= initrd_offset) {
                error_report("memory too small for initial ram disk '%s'",
                             loaderparams.initrd_filename);
                exit(1);
            }
            initrd_size = load_image_targphys(loaderparams.initrd_filename,
                                              initrd_offset,
                                              loaderparams.ram_size - initrd_offset);
        }
        if (initrd_size == (target_ulong) -1) {
            error_report("could not load initial ram disk '%s'",
                         loaderparams.initrd_filename);
            exit(1);
        }
    }

    /* Setup prom parameters. */
    prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
    prom_buf = g_malloc(prom_size);

    prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
    if (initrd_size > 0) {
        prom_set(prom_buf, prom_index++,
                 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
                 xlate_to_kseg0(NULL, initrd_offset),
                 initrd_size, loaderparams.kernel_cmdline);
    } else {
        prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
    }

    prom_set(prom_buf, prom_index++, "memsize");
    prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);

    prom_set(prom_buf, prom_index++, "ememsize");
    prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);

    prom_set(prom_buf, prom_index++, "modetty0");
    prom_set(prom_buf, prom_index++, "38400n8r");
    prom_set(prom_buf, prom_index++, NULL);

    rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);

    g_free(prom_buf);
    return kernel_entry;
}

static void malta_mips_config(MIPSCPU *cpu)
{
    MachineState *ms = MACHINE(qdev_get_machine());
    unsigned int smp_cpus = ms->smp.cpus;
    CPUMIPSState *env = &cpu->env;
    CPUState *cs = CPU(cpu);

    if (ase_mt_available(env)) {
        env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
                                           CP0MVPC0_PTC, 8,
                                           smp_cpus * cs->nr_threads - 1);
        env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
                                           CP0MVPC0_PVPE, 4, smp_cpus - 1);
    }
}

static void main_cpu_reset(void *opaque)
{
    MIPSCPU *cpu = opaque;
    CPUMIPSState *env = &cpu->env;

    cpu_reset(CPU(cpu));

    /*
     * The bootloader does not need to be rewritten as it is located in a
     * read only location. The kernel location and the arguments table
     * location does not change.
     */
    if (loaderparams.kernel_filename) {
        env->CP0_Status &= ~(1 << CP0St_ERL);
    }

    malta_mips_config(cpu);

    if (kvm_enabled()) {
        /* Start running from the bootloader we wrote to end of RAM */
        env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
    }
}

static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
                                   qemu_irq *cbus_irq, qemu_irq *i8259_irq)
{
    CPUMIPSState *env;
    MIPSCPU *cpu;
    int i;

    for (i = 0; i < ms->smp.cpus; i++) {
        cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);

        /* Init internal devices */
        cpu_mips_irq_init_cpu(cpu);
        cpu_mips_clock_init(cpu);
        qemu_register_reset(main_cpu_reset, cpu);
    }

    cpu = MIPS_CPU(first_cpu);
    env = &cpu->env;
    *i8259_irq = env->irq[2];
    *cbus_irq = env->irq[4];
}

static void create_cps(MachineState *ms, MaltaState *s,
                       qemu_irq *cbus_irq, qemu_irq *i8259_irq)
{
    object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
    object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
                            &error_fatal);
    object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
                            &error_fatal);
    qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
    sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);

    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);

    *i8259_irq = get_cps_irq(&s->cps, 3);
    *cbus_irq = NULL;
}

static void mips_create_cpu(MachineState *ms, MaltaState *s,
                            qemu_irq *cbus_irq, qemu_irq *i8259_irq)
{
    if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
        create_cps(ms, s, cbus_irq, i8259_irq);
    } else {
        create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
    }
}

static
void mips_malta_init(MachineState *machine)
{
    ram_addr_t ram_size = machine->ram_size;
    ram_addr_t ram_low_size;
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
    char *filename;
    PFlashCFI01 *fl;
    MemoryRegion *system_memory = get_system_memory();
    MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
    MemoryRegion *ram_low_postio;
    MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
    const size_t smbus_eeprom_size = 8 * 256;
    uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
    uint64_t kernel_entry, bootloader_run_addr;
    PCIBus *pci_bus;
    ISABus *isa_bus;
    qemu_irq cbus_irq, i8259_irq;
    I2CBus *smbus;
    DriveInfo *dinfo;
    int fl_idx = 0;
    int be;
    MaltaState *s;
    PCIDevice *piix4;
    DeviceState *dev;
    DeviceState *pm_dev;

    s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
    sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);

    /* create CPU */
    mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);

    /* allocate RAM */
    if (ram_size > 2 * GiB) {
        error_report("Too much memory for this machine: %" PRId64 "MB,"
                     " maximum 2048MB", ram_size / MiB);
        exit(1);
    }

    /* register RAM at high address where it is undisturbed by IO */
    memory_region_add_subregion(system_memory, 0x80000000, machine->ram);

    /* alias for pre IO hole access */
    memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
                             machine->ram, 0, MIN(ram_size, 256 * MiB));
    memory_region_add_subregion(system_memory, 0, ram_low_preio);

    /* alias for post IO hole access, if there is enough RAM */
    if (ram_size > 512 * MiB) {
        ram_low_postio = g_new(MemoryRegion, 1);
        memory_region_init_alias(ram_low_postio, NULL,
                                 "mips_malta_low_postio.ram",
                                 machine->ram, 512 * MiB,
                                 ram_size - 512 * MiB);
        memory_region_add_subregion(system_memory, 512 * MiB,
                                    ram_low_postio);
    }

#if TARGET_BIG_ENDIAN
    be = 1;
#else
    be = 0;
#endif

    /* FPGA */

    /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
    malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));

    /* Load firmware in flash / BIOS. */
    dinfo = drive_get(IF_PFLASH, 0, fl_idx);
    fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
                               FLASH_SIZE,
                               dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
                               65536,
                               4, 0x0000, 0x0000, 0x0000, 0x0000, be);
    bios = pflash_cfi01_get_memory(fl);
    fl_idx++;
    if (kernel_filename) {
        ram_low_size = MIN(ram_size, 256 * MiB);
        /* For KVM we reserve 1MB of RAM for running bootloader */
        if (kvm_enabled()) {
            ram_low_size -= 0x100000;
            bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
        } else {
            bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
        }

        /* Write a small bootloader to the flash location. */
        loaderparams.ram_size = ram_size;
        loaderparams.ram_low_size = ram_low_size;
        loaderparams.kernel_filename = kernel_filename;
        loaderparams.kernel_cmdline = kernel_cmdline;
        loaderparams.initrd_filename = initrd_filename;
        kernel_entry = load_kernel();

        if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
            write_bootloader(memory_region_get_ram_ptr(bios),
                             bootloader_run_addr, kernel_entry);
        } else {
            write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
                                      bootloader_run_addr, kernel_entry);
        }
        if (kvm_enabled()) {
            /* Write the bootloader code @ the end of RAM, 1MB reserved */
            write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
                                    ram_low_size,
                             bootloader_run_addr, kernel_entry);
        }
    } else {
        target_long bios_size = FLASH_SIZE;
        /* The flash region isn't executable from a KVM guest */
        if (kvm_enabled()) {
            error_report("KVM enabled but no -kernel argument was specified. "
                         "Booting from flash is not supported with KVM.");
            exit(1);
        }
        /* Load firmware from flash. */
        if (!dinfo) {
            /* Load a BIOS image. */
            filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
                                      machine->firmware ?: BIOS_FILENAME);
            if (filename) {
                bios_size = load_image_targphys(filename, FLASH_ADDRESS,
                                                BIOS_SIZE);
                g_free(filename);
            } else {
                bios_size = -1;
            }
            if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
                machine->firmware && !qtest_enabled()) {
                error_report("Could not load MIPS bios '%s'", machine->firmware);
                exit(1);
            }
        }
        /*
         * In little endian mode the 32bit words in the bios are swapped,
         * a neat trick which allows bi-endian firmware.
         */
#if !TARGET_BIG_ENDIAN
        {
            uint32_t *end, *addr;
            const size_t swapsize = MIN(bios_size, 0x3e0000);
            addr = rom_ptr(FLASH_ADDRESS, swapsize);
            if (!addr) {
                addr = memory_region_get_ram_ptr(bios);
            }
            end = (void *)addr + swapsize;
            while (addr < end) {
                bswap32s(addr);
                addr++;
            }
        }
#endif
    }

    /*
     * Map the BIOS at a 2nd physical location, as on the real board.
     * Copy it so that we can patch in the MIPS revision, which cannot be
     * handled by an overlapping region as the resulting ROM code subpage
     * regions are not executable.
     */
    memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
                           &error_fatal);
    if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
                  FLASH_ADDRESS, BIOS_SIZE)) {
        memcpy(memory_region_get_ram_ptr(bios_copy),
               memory_region_get_ram_ptr(bios), BIOS_SIZE);
    }
    memory_region_set_readonly(bios_copy, true);
    memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);

    /* Board ID = 0x420 (Malta Board with CoreLV) */
    stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);

    /* Northbridge */
    dev = sysbus_create_simple("gt64120", -1, NULL);
    pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
    /*
     * The whole address space decoded by the GT-64120A doesn't generate
     * exception when accessing invalid memory. Create an empty slot to
     * emulate this feature.
     */
    empty_slot_init("GT64120", 0, 0x20000000);

    /* Southbridge */
    piix4 = pci_create_simple_multifunction(pci_bus, PCI_DEVFN(10, 0), true,
                                            TYPE_PIIX4_PCI_DEVICE);
    dev = DEVICE(piix4);
    isa_bus = ISA_BUS(qdev_get_child_bus(dev, "isa.0"));
    pm_dev = DEVICE(object_resolve_path_component(OBJECT(dev), "pm"));
    smbus = I2C_BUS(qdev_get_child_bus(pm_dev, "i2c"));

    /* Interrupt controller */
    qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);

    /* generate SPD EEPROM data */
    generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
    generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
    smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
    g_free(smbus_eeprom_buf);

    /* Super I/O: SMS FDC37M817 */
    isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);

    /* Network card */
    network_init(pci_bus);

    /* Optional PCI video card */
    pci_vga_init(pci_bus);
}

static void mips_malta_instance_init(Object *obj)
{
    MaltaState *s = MIPS_MALTA(obj);