diff options
Diffstat (limited to 'arch/powerpc/platforms/pseries/eeh_pe.c')
-rw-r--r-- | arch/powerpc/platforms/pseries/eeh_pe.c | 653 |
1 files changed, 0 insertions, 653 deletions
diff --git a/arch/powerpc/platforms/pseries/eeh_pe.c b/arch/powerpc/platforms/pseries/eeh_pe.c deleted file mode 100644 index 9d4a9e8562b2..000000000000 --- a/arch/powerpc/platforms/pseries/eeh_pe.c +++ /dev/null @@ -1,653 +0,0 @@ -/* - * The file intends to implement PE based on the information from - * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device. - * All the PEs should be organized as hierarchy tree. The first level - * of the tree will be associated to existing PHBs since the particular - * PE is only meaningful in one PHB domain. - * - * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - */ - -#include <linux/export.h> -#include <linux/gfp.h> -#include <linux/init.h> -#include <linux/kernel.h> -#include <linux/pci.h> -#include <linux/string.h> - -#include <asm/pci-bridge.h> -#include <asm/ppc-pci.h> - -static LIST_HEAD(eeh_phb_pe); - -/** - * eeh_pe_alloc - Allocate PE - * @phb: PCI controller - * @type: PE type - * - * Allocate PE instance dynamically. - */ -static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type) -{ - struct eeh_pe *pe; - - /* Allocate PHB PE */ - pe = kzalloc(sizeof(struct eeh_pe), GFP_KERNEL); - if (!pe) return NULL; - - /* Initialize PHB PE */ - pe->type = type; - pe->phb = phb; - INIT_LIST_HEAD(&pe->child_list); - INIT_LIST_HEAD(&pe->child); - INIT_LIST_HEAD(&pe->edevs); - - return pe; -} - -/** - * eeh_phb_pe_create - Create PHB PE - * @phb: PCI controller - * - * The function should be called while the PHB is detected during - * system boot or PCI hotplug in order to create PHB PE. - */ -int eeh_phb_pe_create(struct pci_controller *phb) -{ - struct eeh_pe *pe; - - /* Allocate PHB PE */ - pe = eeh_pe_alloc(phb, EEH_PE_PHB); - if (!pe) { - pr_err("%s: out of memory!\n", __func__); - return -ENOMEM; - } - - /* Put it into the list */ - eeh_lock(); - list_add_tail(&pe->child, &eeh_phb_pe); - eeh_unlock(); - - pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number); - - return 0; -} - -/** - * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB - * @phb: PCI controller - * - * The overall PEs form hierarchy tree. The first layer of the - * hierarchy tree is composed of PHB PEs. The function is used - * to retrieve the corresponding PHB PE according to the given PHB. - */ -static struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb) -{ - struct eeh_pe *pe; - - list_for_each_entry(pe, &eeh_phb_pe, child) { - /* - * Actually, we needn't check the type since - * the PE for PHB has been determined when that - * was created. - */ - if ((pe->type & EEH_PE_PHB) && pe->phb == phb) - return pe; - } - - return NULL; -} - -/** - * eeh_pe_next - Retrieve the next PE in the tree - * @pe: current PE - * @root: root PE - * - * The function is used to retrieve the next PE in the - * hierarchy PE tree. - */ -static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, - struct eeh_pe *root) -{ - struct list_head *next = pe->child_list.next; - - if (next == &pe->child_list) { - while (1) { - if (pe == root) - return NULL; - next = pe->child.next; - if (next != &pe->parent->child_list) - break; - pe = pe->parent; - } - } - - return list_entry(next, struct eeh_pe, child); -} - -/** - * eeh_pe_traverse - Traverse PEs in the specified PHB - * @root: root PE - * @fn: callback - * @flag: extra parameter to callback - * - * The function is used to traverse the specified PE and its - * child PEs. The traversing is to be terminated once the - * callback returns something other than NULL, or no more PEs - * to be traversed. - */ -static void *eeh_pe_traverse(struct eeh_pe *root, - eeh_traverse_func fn, void *flag) -{ - struct eeh_pe *pe; - void *ret; - - for (pe = root; pe; pe = eeh_pe_next(pe, root)) { - ret = fn(pe, flag); - if (ret) return ret; - } - - return NULL; -} - -/** - * eeh_pe_dev_traverse - Traverse the devices from the PE - * @root: EEH PE - * @fn: function callback - * @flag: extra parameter to callback - * - * The function is used to traverse the devices of the specified - * PE and its child PEs. - */ -void *eeh_pe_dev_traverse(struct eeh_pe *root, - eeh_traverse_func fn, void *flag) -{ - struct eeh_pe *pe; - struct eeh_dev *edev; - void *ret; - - if (!root) { - pr_warning("%s: Invalid PE %p\n", __func__, root); - return NULL; - } - - eeh_lock(); - - /* Traverse root PE */ - for (pe = root; pe; pe = eeh_pe_next(pe, root)) { - eeh_pe_for_each_dev(pe, edev) { - ret = fn(edev, flag); - if (ret) { - eeh_unlock(); - return ret; - } - } - } - - eeh_unlock(); - - return NULL; -} - -/** - * __eeh_pe_get - Check the PE address - * @data: EEH PE - * @flag: EEH device - * - * For one particular PE, it can be identified by PE address - * or tranditional BDF address. BDF address is composed of - * Bus/Device/Function number. The extra data referred by flag - * indicates which type of address should be used. - */ -static void *__eeh_pe_get(void *data, void *flag) -{ - struct eeh_pe *pe = (struct eeh_pe *)data; - struct eeh_dev *edev = (struct eeh_dev *)flag; - - /* Unexpected PHB PE */ - if (pe->type & EEH_PE_PHB) - return NULL; - - /* We prefer PE address */ - if (edev->pe_config_addr && - (edev->pe_config_addr == pe->addr)) - return pe; - - /* Try BDF address */ - if (edev->pe_config_addr && - (edev->config_addr == pe->config_addr)) - return pe; - - return NULL; -} - -/** - * eeh_pe_get - Search PE based on the given address - * @edev: EEH device - * - * Search the corresponding PE based on the specified address which - * is included in the eeh device. The function is used to check if - * the associated PE has been created against the PE address. It's - * notable that the PE address has 2 format: traditional PE address - * which is composed of PCI bus/device/function number, or unified - * PE address. - */ -static struct eeh_pe *eeh_pe_get(struct eeh_dev *edev) -{ - struct eeh_pe *root = eeh_phb_pe_get(edev->phb); - struct eeh_pe *pe; - - pe = eeh_pe_traverse(root, __eeh_pe_get, edev); - - return pe; -} - -/** - * eeh_pe_get_parent - Retrieve the parent PE - * @edev: EEH device - * - * The whole PEs existing in the system are organized as hierarchy - * tree. The function is used to retrieve the parent PE according - * to the parent EEH device. - */ -static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev) -{ - struct device_node *dn; - struct eeh_dev *parent; - - /* - * It might have the case for the indirect parent - * EEH device already having associated PE, but - * the direct parent EEH device doesn't have yet. - */ - dn = edev->dn->parent; - while (dn) { - /* We're poking out of PCI territory */ - if (!PCI_DN(dn)) return NULL; - - parent = of_node_to_eeh_dev(dn); - /* We're poking out of PCI territory */ - if (!parent) return NULL; - - if (parent->pe) - return parent->pe; - - dn = dn->parent; - } - - return NULL; -} - -/** - * eeh_add_to_parent_pe - Add EEH device to parent PE - * @edev: EEH device - * - * Add EEH device to the parent PE. If the parent PE already - * exists, the PE type will be changed to EEH_PE_BUS. Otherwise, - * we have to create new PE to hold the EEH device and the new - * PE will be linked to its parent PE as well. - */ -int eeh_add_to_parent_pe(struct eeh_dev *edev) -{ - struct eeh_pe *pe, *parent; - - eeh_lock(); - - /* - * Search the PE has been existing or not according - * to the PE address. If that has been existing, the - * PE should be composed of PCI bus and its subordinate - * components. - */ - pe = eeh_pe_get(edev); - if (pe && !(pe->type & EEH_PE_INVALID)) { - if (!edev->pe_config_addr) { - eeh_unlock(); - pr_err("%s: PE with addr 0x%x already exists\n", - __func__, edev->config_addr); - return -EEXIST; - } - - /* Mark the PE as type of PCI bus */ - pe->type = EEH_PE_BUS; - edev->pe = pe; - - /* Put the edev to PE */ - list_add_tail(&edev->list, &pe->edevs); - eeh_unlock(); - pr_debug("EEH: Add %s to Bus PE#%x\n", - edev->dn->full_name, pe->addr); - - return 0; - } else if (pe && (pe->type & EEH_PE_INVALID)) { - list_add_tail(&edev->list, &pe->edevs); - edev->pe = pe; - /* - * We're running to here because of PCI hotplug caused by - * EEH recovery. We need clear EEH_PE_INVALID until the top. - */ - parent = pe; - while (parent) { - if (!(parent->type & EEH_PE_INVALID)) - break; - parent->type &= ~EEH_PE_INVALID; - parent = parent->parent; - } - eeh_unlock(); - pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n", - edev->dn->full_name, pe->addr, pe->parent->addr); - - return 0; - } - - /* Create a new EEH PE */ - pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE); - if (!pe) { - eeh_unlock(); - pr_err("%s: out of memory!\n", __func__); - return -ENOMEM; - } - pe->addr = edev->pe_config_addr; - pe->config_addr = edev->config_addr; - - /* - * Put the new EEH PE into hierarchy tree. If the parent - * can't be found, the newly created PE will be attached - * to PHB directly. Otherwise, we have to associate the - * PE with its parent. - */ - parent = eeh_pe_get_parent(edev); - if (!parent) { - parent = eeh_phb_pe_get(edev->phb); - if (!parent) { - eeh_unlock(); - pr_err("%s: No PHB PE is found (PHB Domain=%d)\n", - __func__, edev->phb->global_number); - edev->pe = NULL; - kfree(pe); - return -EEXIST; - } - } - pe->parent = parent; - - /* - * Put the newly created PE into the child list and - * link the EEH device accordingly. - */ - list_add_tail(&pe->child, &parent->child_list); - list_add_tail(&edev->list, &pe->edevs); - edev->pe = pe; - eeh_unlock(); - pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n", - edev->dn->full_name, pe->addr, pe->parent->addr); - - return 0; -} - -/** - * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE - * @edev: EEH device - * @purge_pe: remove PE or not - * - * The PE hierarchy tree might be changed when doing PCI hotplug. - * Also, the PCI devices or buses could be removed from the system - * during EEH recovery. So we have to call the function remove the - * corresponding PE accordingly if necessary. - */ -int eeh_rmv_from_parent_pe(struct eeh_dev *edev, int purge_pe) -{ - struct eeh_pe *pe, *parent, *child; - int cnt; - - if (!edev->pe) { - pr_warning("%s: No PE found for EEH device %s\n", - __func__, edev->dn->full_name); - return -EEXIST; - } - - eeh_lock(); - - /* Remove the EEH device */ - pe = edev->pe; - edev->pe = NULL; - list_del(&edev->list); - - /* - * Check if the parent PE includes any EEH devices. - * If not, we should delete that. Also, we should - * delete the parent PE if it doesn't have associated - * child PEs and EEH devices. - */ - while (1) { - parent = pe->parent; - if (pe->type & EEH_PE_PHB) - break; - - if (purge_pe) { - if (list_empty(&pe->edevs) && - list_empty(&pe->child_list)) { - list_del(&pe->child); - kfree(pe); - } else { - break; - } - } else { - if (list_empty(&pe->edevs)) { - cnt = 0; - list_for_each_entry(child, &pe->child_list, child) { - if (!(child->type & EEH_PE_INVALID)) { - cnt++; - break; - } - } - - if (!cnt) - pe->type |= EEH_PE_INVALID; - else - break; - } - } - - pe = parent; - } - - eeh_unlock(); - - return 0; -} - -/** - * __eeh_pe_state_mark - Mark the state for the PE - * @data: EEH PE - * @flag: state - * - * The function is used to mark the indicated state for the given - * PE. Also, the associated PCI devices will be put into IO frozen - * state as well. - */ -static void *__eeh_pe_state_mark(void *data, void *flag) -{ - struct eeh_pe *pe = (struct eeh_pe *)data; - int state = *((int *)flag); - struct eeh_dev *tmp; - struct pci_dev *pdev; - - /* - * Mark the PE with the indicated state. Also, - * the associated PCI device will be put into - * I/O frozen state to avoid I/O accesses from - * the PCI device driver. - */ - pe->state |= state; - eeh_pe_for_each_dev(pe, tmp) { - pdev = eeh_dev_to_pci_dev(tmp); - if (pdev) - pdev->error_state = pci_channel_io_frozen; - } - - return NULL; -} - -/** - * eeh_pe_state_mark - Mark specified state for PE and its associated device - * @pe: EEH PE - * - * EEH error affects the current PE and its child PEs. The function - * is used to mark appropriate state for the affected PEs and the - * associated devices. - */ -void eeh_pe_state_mark(struct eeh_pe *pe, int state) -{ - eeh_lock(); - eeh_pe_traverse(pe, __eeh_pe_state_mark, &state); - eeh_unlock(); -} - -/** - * __eeh_pe_state_clear - Clear state for the PE - * @data: EEH PE - * @flag: state - * - * The function is used to clear the indicated state from the - * given PE. Besides, we also clear the check count of the PE - * as well. - */ -static void *__eeh_pe_state_clear(void *data, void *flag) -{ - struct eeh_pe *pe = (struct eeh_pe *)data; - int state = *((int *)flag); - - pe->state &= ~state; - pe->check_count = 0; - - return NULL; -} - -/** - * eeh_pe_state_clear - Clear state for the PE and its children - * @pe: PE - * @state: state to be cleared - * - * When the PE and its children has been recovered from error, - * we need clear the error state for that. The function is used - * for the purpose. - */ -void eeh_pe_state_clear(struct eeh_pe *pe, int state) -{ - eeh_lock(); - eeh_pe_traverse(pe, __eeh_pe_state_clear, &state); - eeh_unlock(); -} - -/** - * eeh_restore_one_device_bars - Restore the Base Address Registers for one device - * @data: EEH device - * @flag: Unused - * - * Loads the PCI configuration space base address registers, - * the expansion ROM base address, the latency timer, and etc. - * from the saved values in the device node. - */ -static void *eeh_restore_one_device_bars(void *data, void *flag) -{ - int i; - u32 cmd; - struct eeh_dev *edev = (struct eeh_dev *)data; - struct device_node *dn = eeh_dev_to_of_node(edev); - - for (i = 4; i < 10; i++) - eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]); - /* 12 == Expansion ROM Address */ - eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]); - -#define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) -#define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)]) - - eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1, - SAVED_BYTE(PCI_CACHE_LINE_SIZE)); - eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1, - SAVED_BYTE(PCI_LATENCY_TIMER)); - - /* max latency, min grant, interrupt pin and line */ - eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]); - - /* - * Restore PERR & SERR bits, some devices require it, - * don't touch the other command bits - */ - eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd); - if (edev->config_space[1] & PCI_COMMAND_PARITY) - cmd |= PCI_COMMAND_PARITY; - else - cmd &= ~PCI_COMMAND_PARITY; - if (edev->config_space[1] & PCI_COMMAND_SERR) - cmd |= PCI_COMMAND_SERR; - else - cmd &= ~PCI_COMMAND_SERR; - eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd); - - return NULL; -} - -/** - * eeh_pe_restore_bars - Restore the PCI config space info - * @pe: EEH PE - * - * This routine performs a recursive walk to the children - * of this device as well. - */ -void eeh_pe_restore_bars(struct eeh_pe *pe) -{ - /* - * We needn't take the EEH lock since eeh_pe_dev_traverse() - * will take that. - */ - eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL); -} - -/** - * eeh_pe_bus_get - Retrieve PCI bus according to the given PE - * @pe: EEH PE - * - * Retrieve the PCI bus according to the given PE. Basically, - * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the - * primary PCI bus will be retrieved. The parent bus will be - * returned for BUS PE. However, we don't have associated PCI - * bus for DEVICE PE. - */ -struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe) -{ - struct pci_bus *bus = NULL; - struct eeh_dev *edev; - struct pci_dev *pdev; - - eeh_lock(); - - if (pe->type & EEH_PE_PHB) { - bus = pe->phb->bus; - } else if (pe->type & EEH_PE_BUS || - pe->type & EEH_PE_DEVICE) { - edev = list_first_entry(&pe->edevs, struct eeh_dev, list); - pdev = eeh_dev_to_pci_dev(edev); - if (pdev) - bus = pdev->bus; - } - - eeh_unlock(); - - return bus; -} |