aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc/platforms/pseries/eeh_pe.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/platforms/pseries/eeh_pe.c')
-rw-r--r--arch/powerpc/platforms/pseries/eeh_pe.c653
1 files changed, 0 insertions, 653 deletions
diff --git a/arch/powerpc/platforms/pseries/eeh_pe.c b/arch/powerpc/platforms/pseries/eeh_pe.c
deleted file mode 100644
index 9d4a9e8562b2..000000000000
--- a/arch/powerpc/platforms/pseries/eeh_pe.c
+++ /dev/null
@@ -1,653 +0,0 @@
-/*
- * The file intends to implement PE based on the information from
- * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
- * All the PEs should be organized as hierarchy tree. The first level
- * of the tree will be associated to existing PHBs since the particular
- * PE is only meaningful in one PHB domain.
- *
- * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- */
-
-#include <linux/export.h>
-#include <linux/gfp.h>
-#include <linux/init.h>
-#include <linux/kernel.h>
-#include <linux/pci.h>
-#include <linux/string.h>
-
-#include <asm/pci-bridge.h>
-#include <asm/ppc-pci.h>
-
-static LIST_HEAD(eeh_phb_pe);
-
-/**
- * eeh_pe_alloc - Allocate PE
- * @phb: PCI controller
- * @type: PE type
- *
- * Allocate PE instance dynamically.
- */
-static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
-{
- struct eeh_pe *pe;
-
- /* Allocate PHB PE */
- pe = kzalloc(sizeof(struct eeh_pe), GFP_KERNEL);
- if (!pe) return NULL;
-
- /* Initialize PHB PE */
- pe->type = type;
- pe->phb = phb;
- INIT_LIST_HEAD(&pe->child_list);
- INIT_LIST_HEAD(&pe->child);
- INIT_LIST_HEAD(&pe->edevs);
-
- return pe;
-}
-
-/**
- * eeh_phb_pe_create - Create PHB PE
- * @phb: PCI controller
- *
- * The function should be called while the PHB is detected during
- * system boot or PCI hotplug in order to create PHB PE.
- */
-int eeh_phb_pe_create(struct pci_controller *phb)
-{
- struct eeh_pe *pe;
-
- /* Allocate PHB PE */
- pe = eeh_pe_alloc(phb, EEH_PE_PHB);
- if (!pe) {
- pr_err("%s: out of memory!\n", __func__);
- return -ENOMEM;
- }
-
- /* Put it into the list */
- eeh_lock();
- list_add_tail(&pe->child, &eeh_phb_pe);
- eeh_unlock();
-
- pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
-
- return 0;
-}
-
-/**
- * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
- * @phb: PCI controller
- *
- * The overall PEs form hierarchy tree. The first layer of the
- * hierarchy tree is composed of PHB PEs. The function is used
- * to retrieve the corresponding PHB PE according to the given PHB.
- */
-static struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
-{
- struct eeh_pe *pe;
-
- list_for_each_entry(pe, &eeh_phb_pe, child) {
- /*
- * Actually, we needn't check the type since
- * the PE for PHB has been determined when that
- * was created.
- */
- if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
- return pe;
- }
-
- return NULL;
-}
-
-/**
- * eeh_pe_next - Retrieve the next PE in the tree
- * @pe: current PE
- * @root: root PE
- *
- * The function is used to retrieve the next PE in the
- * hierarchy PE tree.
- */
-static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
- struct eeh_pe *root)
-{
- struct list_head *next = pe->child_list.next;
-
- if (next == &pe->child_list) {
- while (1) {
- if (pe == root)
- return NULL;
- next = pe->child.next;
- if (next != &pe->parent->child_list)
- break;
- pe = pe->parent;
- }
- }
-
- return list_entry(next, struct eeh_pe, child);
-}
-
-/**
- * eeh_pe_traverse - Traverse PEs in the specified PHB
- * @root: root PE
- * @fn: callback
- * @flag: extra parameter to callback
- *
- * The function is used to traverse the specified PE and its
- * child PEs. The traversing is to be terminated once the
- * callback returns something other than NULL, or no more PEs
- * to be traversed.
- */
-static void *eeh_pe_traverse(struct eeh_pe *root,
- eeh_traverse_func fn, void *flag)
-{
- struct eeh_pe *pe;
- void *ret;
-
- for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
- ret = fn(pe, flag);
- if (ret) return ret;
- }
-
- return NULL;
-}
-
-/**
- * eeh_pe_dev_traverse - Traverse the devices from the PE
- * @root: EEH PE
- * @fn: function callback
- * @flag: extra parameter to callback
- *
- * The function is used to traverse the devices of the specified
- * PE and its child PEs.
- */
-void *eeh_pe_dev_traverse(struct eeh_pe *root,
- eeh_traverse_func fn, void *flag)
-{
- struct eeh_pe *pe;
- struct eeh_dev *edev;
- void *ret;
-
- if (!root) {
- pr_warning("%s: Invalid PE %p\n", __func__, root);
- return NULL;
- }
-
- eeh_lock();
-
- /* Traverse root PE */
- for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
- eeh_pe_for_each_dev(pe, edev) {
- ret = fn(edev, flag);
- if (ret) {
- eeh_unlock();
- return ret;
- }
- }
- }
-
- eeh_unlock();
-
- return NULL;
-}
-
-/**
- * __eeh_pe_get - Check the PE address
- * @data: EEH PE
- * @flag: EEH device
- *
- * For one particular PE, it can be identified by PE address
- * or tranditional BDF address. BDF address is composed of
- * Bus/Device/Function number. The extra data referred by flag
- * indicates which type of address should be used.
- */
-static void *__eeh_pe_get(void *data, void *flag)
-{
- struct eeh_pe *pe = (struct eeh_pe *)data;
- struct eeh_dev *edev = (struct eeh_dev *)flag;
-
- /* Unexpected PHB PE */
- if (pe->type & EEH_PE_PHB)
- return NULL;
-
- /* We prefer PE address */
- if (edev->pe_config_addr &&
- (edev->pe_config_addr == pe->addr))
- return pe;
-
- /* Try BDF address */
- if (edev->pe_config_addr &&
- (edev->config_addr == pe->config_addr))
- return pe;
-
- return NULL;
-}
-
-/**
- * eeh_pe_get - Search PE based on the given address
- * @edev: EEH device
- *
- * Search the corresponding PE based on the specified address which
- * is included in the eeh device. The function is used to check if
- * the associated PE has been created against the PE address. It's
- * notable that the PE address has 2 format: traditional PE address
- * which is composed of PCI bus/device/function number, or unified
- * PE address.
- */
-static struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
-{
- struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
- struct eeh_pe *pe;
-
- pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
-
- return pe;
-}
-
-/**
- * eeh_pe_get_parent - Retrieve the parent PE
- * @edev: EEH device
- *
- * The whole PEs existing in the system are organized as hierarchy
- * tree. The function is used to retrieve the parent PE according
- * to the parent EEH device.
- */
-static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
-{
- struct device_node *dn;
- struct eeh_dev *parent;
-
- /*
- * It might have the case for the indirect parent
- * EEH device already having associated PE, but
- * the direct parent EEH device doesn't have yet.
- */
- dn = edev->dn->parent;
- while (dn) {
- /* We're poking out of PCI territory */
- if (!PCI_DN(dn)) return NULL;
-
- parent = of_node_to_eeh_dev(dn);
- /* We're poking out of PCI territory */
- if (!parent) return NULL;
-
- if (parent->pe)
- return parent->pe;
-
- dn = dn->parent;
- }
-
- return NULL;
-}
-
-/**
- * eeh_add_to_parent_pe - Add EEH device to parent PE
- * @edev: EEH device
- *
- * Add EEH device to the parent PE. If the parent PE already
- * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
- * we have to create new PE to hold the EEH device and the new
- * PE will be linked to its parent PE as well.
- */
-int eeh_add_to_parent_pe(struct eeh_dev *edev)
-{
- struct eeh_pe *pe, *parent;
-
- eeh_lock();
-
- /*
- * Search the PE has been existing or not according
- * to the PE address. If that has been existing, the
- * PE should be composed of PCI bus and its subordinate
- * components.
- */
- pe = eeh_pe_get(edev);
- if (pe && !(pe->type & EEH_PE_INVALID)) {
- if (!edev->pe_config_addr) {
- eeh_unlock();
- pr_err("%s: PE with addr 0x%x already exists\n",
- __func__, edev->config_addr);
- return -EEXIST;
- }
-
- /* Mark the PE as type of PCI bus */
- pe->type = EEH_PE_BUS;
- edev->pe = pe;
-
- /* Put the edev to PE */
- list_add_tail(&edev->list, &pe->edevs);
- eeh_unlock();
- pr_debug("EEH: Add %s to Bus PE#%x\n",
- edev->dn->full_name, pe->addr);
-
- return 0;
- } else if (pe && (pe->type & EEH_PE_INVALID)) {
- list_add_tail(&edev->list, &pe->edevs);
- edev->pe = pe;
- /*
- * We're running to here because of PCI hotplug caused by
- * EEH recovery. We need clear EEH_PE_INVALID until the top.
- */
- parent = pe;
- while (parent) {
- if (!(parent->type & EEH_PE_INVALID))
- break;
- parent->type &= ~EEH_PE_INVALID;
- parent = parent->parent;
- }
- eeh_unlock();
- pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
- edev->dn->full_name, pe->addr, pe->parent->addr);
-
- return 0;
- }
-
- /* Create a new EEH PE */
- pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
- if (!pe) {
- eeh_unlock();
- pr_err("%s: out of memory!\n", __func__);
- return -ENOMEM;
- }
- pe->addr = edev->pe_config_addr;
- pe->config_addr = edev->config_addr;
-
- /*
- * Put the new EEH PE into hierarchy tree. If the parent
- * can't be found, the newly created PE will be attached
- * to PHB directly. Otherwise, we have to associate the
- * PE with its parent.
- */
- parent = eeh_pe_get_parent(edev);
- if (!parent) {
- parent = eeh_phb_pe_get(edev->phb);
- if (!parent) {
- eeh_unlock();
- pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
- __func__, edev->phb->global_number);
- edev->pe = NULL;
- kfree(pe);
- return -EEXIST;
- }
- }
- pe->parent = parent;
-
- /*
- * Put the newly created PE into the child list and
- * link the EEH device accordingly.
- */
- list_add_tail(&pe->child, &parent->child_list);
- list_add_tail(&edev->list, &pe->edevs);
- edev->pe = pe;
- eeh_unlock();
- pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
- edev->dn->full_name, pe->addr, pe->parent->addr);
-
- return 0;
-}
-
-/**
- * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
- * @edev: EEH device
- * @purge_pe: remove PE or not
- *
- * The PE hierarchy tree might be changed when doing PCI hotplug.
- * Also, the PCI devices or buses could be removed from the system
- * during EEH recovery. So we have to call the function remove the
- * corresponding PE accordingly if necessary.
- */
-int eeh_rmv_from_parent_pe(struct eeh_dev *edev, int purge_pe)
-{
- struct eeh_pe *pe, *parent, *child;
- int cnt;
-
- if (!edev->pe) {
- pr_warning("%s: No PE found for EEH device %s\n",
- __func__, edev->dn->full_name);
- return -EEXIST;
- }
-
- eeh_lock();
-
- /* Remove the EEH device */
- pe = edev->pe;
- edev->pe = NULL;
- list_del(&edev->list);
-
- /*
- * Check if the parent PE includes any EEH devices.
- * If not, we should delete that. Also, we should
- * delete the parent PE if it doesn't have associated
- * child PEs and EEH devices.
- */
- while (1) {
- parent = pe->parent;
- if (pe->type & EEH_PE_PHB)
- break;
-
- if (purge_pe) {
- if (list_empty(&pe->edevs) &&
- list_empty(&pe->child_list)) {
- list_del(&pe->child);
- kfree(pe);
- } else {
- break;
- }
- } else {
- if (list_empty(&pe->edevs)) {
- cnt = 0;
- list_for_each_entry(child, &pe->child_list, child) {
- if (!(child->type & EEH_PE_INVALID)) {
- cnt++;
- break;
- }
- }
-
- if (!cnt)
- pe->type |= EEH_PE_INVALID;
- else
- break;
- }
- }
-
- pe = parent;
- }
-
- eeh_unlock();
-
- return 0;
-}
-
-/**
- * __eeh_pe_state_mark - Mark the state for the PE
- * @data: EEH PE
- * @flag: state
- *
- * The function is used to mark the indicated state for the given
- * PE. Also, the associated PCI devices will be put into IO frozen
- * state as well.
- */
-static void *__eeh_pe_state_mark(void *data, void *flag)
-{
- struct eeh_pe *pe = (struct eeh_pe *)data;
- int state = *((int *)flag);
- struct eeh_dev *tmp;
- struct pci_dev *pdev;
-
- /*
- * Mark the PE with the indicated state. Also,
- * the associated PCI device will be put into
- * I/O frozen state to avoid I/O accesses from
- * the PCI device driver.
- */
- pe->state |= state;
- eeh_pe_for_each_dev(pe, tmp) {
- pdev = eeh_dev_to_pci_dev(tmp);
- if (pdev)
- pdev->error_state = pci_channel_io_frozen;
- }
-
- return NULL;
-}
-
-/**
- * eeh_pe_state_mark - Mark specified state for PE and its associated device
- * @pe: EEH PE
- *
- * EEH error affects the current PE and its child PEs. The function
- * is used to mark appropriate state for the affected PEs and the
- * associated devices.
- */
-void eeh_pe_state_mark(struct eeh_pe *pe, int state)
-{
- eeh_lock();
- eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
- eeh_unlock();
-}
-
-/**
- * __eeh_pe_state_clear - Clear state for the PE
- * @data: EEH PE
- * @flag: state
- *
- * The function is used to clear the indicated state from the
- * given PE. Besides, we also clear the check count of the PE
- * as well.
- */
-static void *__eeh_pe_state_clear(void *data, void *flag)
-{
- struct eeh_pe *pe = (struct eeh_pe *)data;
- int state = *((int *)flag);
-
- pe->state &= ~state;
- pe->check_count = 0;
-
- return NULL;
-}
-
-/**
- * eeh_pe_state_clear - Clear state for the PE and its children
- * @pe: PE
- * @state: state to be cleared
- *
- * When the PE and its children has been recovered from error,
- * we need clear the error state for that. The function is used
- * for the purpose.
- */
-void eeh_pe_state_clear(struct eeh_pe *pe, int state)
-{
- eeh_lock();
- eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
- eeh_unlock();
-}
-
-/**
- * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
- * @data: EEH device
- * @flag: Unused
- *
- * Loads the PCI configuration space base address registers,
- * the expansion ROM base address, the latency timer, and etc.
- * from the saved values in the device node.
- */
-static void *eeh_restore_one_device_bars(void *data, void *flag)
-{
- int i;
- u32 cmd;
- struct eeh_dev *edev = (struct eeh_dev *)data;
- struct device_node *dn = eeh_dev_to_of_node(edev);
-
- for (i = 4; i < 10; i++)
- eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
- /* 12 == Expansion ROM Address */
- eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]);
-
-#define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
-#define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
-
- eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
- SAVED_BYTE(PCI_CACHE_LINE_SIZE));
- eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
- SAVED_BYTE(PCI_LATENCY_TIMER));
-
- /* max latency, min grant, interrupt pin and line */
- eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
-
- /*
- * Restore PERR & SERR bits, some devices require it,
- * don't touch the other command bits
- */
- eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd);
- if (edev->config_space[1] & PCI_COMMAND_PARITY)
- cmd |= PCI_COMMAND_PARITY;
- else
- cmd &= ~PCI_COMMAND_PARITY;
- if (edev->config_space[1] & PCI_COMMAND_SERR)
- cmd |= PCI_COMMAND_SERR;
- else
- cmd &= ~PCI_COMMAND_SERR;
- eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd);
-
- return NULL;
-}
-
-/**
- * eeh_pe_restore_bars - Restore the PCI config space info
- * @pe: EEH PE
- *
- * This routine performs a recursive walk to the children
- * of this device as well.
- */
-void eeh_pe_restore_bars(struct eeh_pe *pe)
-{
- /*
- * We needn't take the EEH lock since eeh_pe_dev_traverse()
- * will take that.
- */
- eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
-}
-
-/**
- * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
- * @pe: EEH PE
- *
- * Retrieve the PCI bus according to the given PE. Basically,
- * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
- * primary PCI bus will be retrieved. The parent bus will be
- * returned for BUS PE. However, we don't have associated PCI
- * bus for DEVICE PE.
- */
-struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
-{
- struct pci_bus *bus = NULL;
- struct eeh_dev *edev;
- struct pci_dev *pdev;
-
- eeh_lock();
-
- if (pe->type & EEH_PE_PHB) {
- bus = pe->phb->bus;
- } else if (pe->type & EEH_PE_BUS ||
- pe->type & EEH_PE_DEVICE) {
- edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
- pdev = eeh_dev_to_pci_dev(edev);
- if (pdev)
- bus = pdev->bus;
- }
-
- eeh_unlock();
-
- return bus;
-}