aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/time
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/time')
-rw-r--r--kernel/time/Kconfig10
-rw-r--r--kernel/time/alarmtimer.c34
-rw-r--r--kernel/time/clocksource.c66
-rw-r--r--kernel/time/hrtimer.c704
-rw-r--r--kernel/time/ntp.c2
-rw-r--r--kernel/time/posix-clock.c8
-rw-r--r--kernel/time/posix-cpu-timers.c25
-rw-r--r--kernel/time/posix-stubs.c2
-rw-r--r--kernel/time/posix-timers.c39
-rw-r--r--kernel/time/tick-common.c15
-rw-r--r--kernel/time/tick-internal.h19
-rw-r--r--kernel/time/tick-sched.c305
-rw-r--r--kernel/time/tick-sched.h18
-rw-r--r--kernel/time/time.c12
-rw-r--r--kernel/time/timekeeping.c219
-rw-r--r--kernel/time/timekeeping.h1
-rw-r--r--kernel/time/timer.c96
17 files changed, 958 insertions, 617 deletions
diff --git a/kernel/time/Kconfig b/kernel/time/Kconfig
index f6b5f19223d6..78eabc41eaa6 100644
--- a/kernel/time/Kconfig
+++ b/kernel/time/Kconfig
@@ -113,16 +113,6 @@ config NO_HZ_FULL
endchoice
-config NO_HZ_FULL_ALL
- bool "Full dynticks system on all CPUs by default (except CPU 0)"
- depends on NO_HZ_FULL
- help
- If the user doesn't pass the nohz_full boot option to
- define the range of full dynticks CPUs, consider that all
- CPUs in the system are full dynticks by default.
- Note the boot CPU will still be kept outside the range to
- handle the timekeeping duty.
-
config NO_HZ
bool "Old Idle dynticks config"
depends on !ARCH_USES_GETTIMEOFFSET && GENERIC_CLOCKEVENTS
diff --git a/kernel/time/alarmtimer.c b/kernel/time/alarmtimer.c
index ec09ce9a6012..639321bf2e39 100644
--- a/kernel/time/alarmtimer.c
+++ b/kernel/time/alarmtimer.c
@@ -326,6 +326,17 @@ static int alarmtimer_resume(struct device *dev)
}
#endif
+static void
+__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
+ enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
+{
+ timerqueue_init(&alarm->node);
+ alarm->timer.function = alarmtimer_fired;
+ alarm->function = function;
+ alarm->type = type;
+ alarm->state = ALARMTIMER_STATE_INACTIVE;
+}
+
/**
* alarm_init - Initialize an alarm structure
* @alarm: ptr to alarm to be initialized
@@ -335,13 +346,9 @@ static int alarmtimer_resume(struct device *dev)
void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
{
- timerqueue_init(&alarm->node);
hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
- HRTIMER_MODE_ABS);
- alarm->timer.function = alarmtimer_fired;
- alarm->function = function;
- alarm->type = type;
- alarm->state = ALARMTIMER_STATE_INACTIVE;
+ HRTIMER_MODE_ABS);
+ __alarm_init(alarm, type, function);
}
EXPORT_SYMBOL_GPL(alarm_init);
@@ -719,6 +726,8 @@ static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
__set_current_state(TASK_RUNNING);
+ destroy_hrtimer_on_stack(&alarm->timer);
+
if (!alarm->data)
return 0;
@@ -740,6 +749,15 @@ static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
return -ERESTART_RESTARTBLOCK;
}
+static void
+alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
+ enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
+{
+ hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
+ HRTIMER_MODE_ABS);
+ __alarm_init(alarm, type, function);
+}
+
/**
* alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
* @restart: ptr to restart block
@@ -752,7 +770,7 @@ static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
ktime_t exp = restart->nanosleep.expires;
struct alarm alarm;
- alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
+ alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
return alarmtimer_do_nsleep(&alarm, exp, type);
}
@@ -784,7 +802,7 @@ static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
if (!capable(CAP_WAKE_ALARM))
return -EPERM;
- alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
+ alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
exp = timespec64_to_ktime(*tsreq);
/* Convert (if necessary) to absolute time */
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index 65f9e3f24dde..0e974cface0b 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -594,6 +594,9 @@ static void __clocksource_select(bool skipcur)
if (!best)
return;
+ if (!strlen(override_name))
+ goto found;
+
/* Check for the override clocksource. */
list_for_each_entry(cs, &clocksource_list, list) {
if (skipcur && cs == curr_clocksource)
@@ -625,6 +628,7 @@ static void __clocksource_select(bool skipcur)
break;
}
+found:
if (curr_clocksource != best && !timekeeping_notify(best)) {
pr_info("Switched to clocksource %s\n", best->name);
curr_clocksource = best;
@@ -853,16 +857,16 @@ EXPORT_SYMBOL(clocksource_unregister);
#ifdef CONFIG_SYSFS
/**
- * sysfs_show_current_clocksources - sysfs interface for current clocksource
+ * current_clocksource_show - sysfs interface for current clocksource
* @dev: unused
* @attr: unused
* @buf: char buffer to be filled with clocksource list
*
* Provides sysfs interface for listing current clocksource.
*/
-static ssize_t
-sysfs_show_current_clocksources(struct device *dev,
- struct device_attribute *attr, char *buf)
+static ssize_t current_clocksource_show(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
{
ssize_t count = 0;
@@ -891,7 +895,7 @@ ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
}
/**
- * sysfs_override_clocksource - interface for manually overriding clocksource
+ * current_clocksource_store - interface for manually overriding clocksource
* @dev: unused
* @attr: unused
* @buf: name of override clocksource
@@ -900,9 +904,9 @@ ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
* Takes input from sysfs interface for manually overriding the default
* clocksource selection.
*/
-static ssize_t sysfs_override_clocksource(struct device *dev,
- struct device_attribute *attr,
- const char *buf, size_t count)
+static ssize_t current_clocksource_store(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
{
ssize_t ret;
@@ -916,9 +920,10 @@ static ssize_t sysfs_override_clocksource(struct device *dev,
return ret;
}
+static DEVICE_ATTR_RW(current_clocksource);
/**
- * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
+ * unbind_clocksource_store - interface for manually unbinding clocksource
* @dev: unused
* @attr: unused
* @buf: unused
@@ -926,7 +931,7 @@ static ssize_t sysfs_override_clocksource(struct device *dev,
*
* Takes input from sysfs interface for manually unbinding a clocksource.
*/
-static ssize_t sysfs_unbind_clocksource(struct device *dev,
+static ssize_t unbind_clocksource_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
@@ -950,19 +955,19 @@ static ssize_t sysfs_unbind_clocksource(struct device *dev,
return ret ? ret : count;
}
+static DEVICE_ATTR_WO(unbind_clocksource);
/**
- * sysfs_show_available_clocksources - sysfs interface for listing clocksource
+ * available_clocksource_show - sysfs interface for listing clocksource
* @dev: unused
* @attr: unused
* @buf: char buffer to be filled with clocksource list
*
* Provides sysfs interface for listing registered clocksources
*/
-static ssize_t
-sysfs_show_available_clocksources(struct device *dev,
- struct device_attribute *attr,
- char *buf)
+static ssize_t available_clocksource_show(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
{
struct clocksource *src;
ssize_t count = 0;
@@ -986,17 +991,15 @@ sysfs_show_available_clocksources(struct device *dev,
return count;
}
+static DEVICE_ATTR_RO(available_clocksource);
-/*
- * Sysfs setup bits:
- */
-static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
- sysfs_override_clocksource);
-
-static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
-
-static DEVICE_ATTR(available_clocksource, 0444,
- sysfs_show_available_clocksources, NULL);
+static struct attribute *clocksource_attrs[] = {
+ &dev_attr_current_clocksource.attr,
+ &dev_attr_unbind_clocksource.attr,
+ &dev_attr_available_clocksource.attr,
+ NULL
+};
+ATTRIBUTE_GROUPS(clocksource);
static struct bus_type clocksource_subsys = {
.name = "clocksource",
@@ -1006,6 +1009,7 @@ static struct bus_type clocksource_subsys = {
static struct device device_clocksource = {
.id = 0,
.bus = &clocksource_subsys,
+ .groups = clocksource_groups,
};
static int __init init_clocksource_sysfs(void)
@@ -1014,17 +1018,7 @@ static int __init init_clocksource_sysfs(void)
if (!error)
error = device_register(&device_clocksource);
- if (!error)
- error = device_create_file(
- &device_clocksource,
- &dev_attr_current_clocksource);
- if (!error)
- error = device_create_file(&device_clocksource,
- &dev_attr_unbind_clocksource);
- if (!error)
- error = device_create_file(
- &device_clocksource,
- &dev_attr_available_clocksource);
+
return error;
}
diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c
index d32520840fde..eda1210ce50f 100644
--- a/kernel/time/hrtimer.c
+++ b/kernel/time/hrtimer.c
@@ -37,7 +37,6 @@
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
-#include <linux/kallsyms.h>
#include <linux/interrupt.h>
#include <linux/tick.h>
#include <linux/seq_file.h>
@@ -60,6 +59,15 @@
#include "tick-internal.h"
/*
+ * Masks for selecting the soft and hard context timers from
+ * cpu_base->active
+ */
+#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
+#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
+#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
+#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
+
+/*
* The timer bases:
*
* There are more clockids than hrtimer bases. Thus, we index
@@ -70,7 +78,6 @@
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
{
.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
- .seq = SEQCNT_ZERO(hrtimer_bases.seq),
.clock_base =
{
{
@@ -84,12 +91,22 @@ DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
.get_time = &ktime_get_real,
},
{
- .index = HRTIMER_BASE_BOOTTIME,
- .clockid = CLOCK_BOOTTIME,
- .get_time = &ktime_get_boottime,
+ .index = HRTIMER_BASE_TAI,
+ .clockid = CLOCK_TAI,
+ .get_time = &ktime_get_clocktai,
},
{
- .index = HRTIMER_BASE_TAI,
+ .index = HRTIMER_BASE_MONOTONIC_SOFT,
+ .clockid = CLOCK_MONOTONIC,
+ .get_time = &ktime_get,
+ },
+ {
+ .index = HRTIMER_BASE_REALTIME_SOFT,
+ .clockid = CLOCK_REALTIME,
+ .get_time = &ktime_get_real,
+ },
+ {
+ .index = HRTIMER_BASE_TAI_SOFT,
.clockid = CLOCK_TAI,
.get_time = &ktime_get_clocktai,
},
@@ -102,7 +119,7 @@ static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
[CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
[CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
- [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
+ [CLOCK_BOOTTIME] = HRTIMER_BASE_MONOTONIC,
[CLOCK_TAI] = HRTIMER_BASE_TAI,
};
@@ -118,7 +135,6 @@ static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
* timer->base->cpu_base
*/
static struct hrtimer_cpu_base migration_cpu_base = {
- .seq = SEQCNT_ZERO(migration_cpu_base),
.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};
@@ -156,45 +172,33 @@ struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
}
/*
- * With HIGHRES=y we do not migrate the timer when it is expiring
- * before the next event on the target cpu because we cannot reprogram
- * the target cpu hardware and we would cause it to fire late.
+ * We do not migrate the timer when it is expiring before the next
+ * event on the target cpu. When high resolution is enabled, we cannot
+ * reprogram the target cpu hardware and we would cause it to fire
+ * late. To keep it simple, we handle the high resolution enabled and
+ * disabled case similar.
*
* Called with cpu_base->lock of target cpu held.
*/
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
-#ifdef CONFIG_HIGH_RES_TIMERS
ktime_t expires;
- if (!new_base->cpu_base->hres_active)
- return 0;
-
expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
- return expires <= new_base->cpu_base->expires_next;
-#else
- return 0;
-#endif
+ return expires < new_base->cpu_base->expires_next;
}
-#ifdef CONFIG_NO_HZ_COMMON
-static inline
-struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
- int pinned)
-{
- if (pinned || !base->migration_enabled)
- return base;
- return &per_cpu(hrtimer_bases, get_nohz_timer_target());
-}
-#else
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
int pinned)
{
+#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
+ if (static_branch_likely(&timers_migration_enabled) && !pinned)
+ return &per_cpu(hrtimer_bases, get_nohz_timer_target());
+#endif
return base;
}
-#endif
/*
* We switch the timer base to a power-optimized selected CPU target,
@@ -396,7 +400,8 @@ static inline void debug_hrtimer_init(struct hrtimer *timer)
debug_object_init(timer, &hrtimer_debug_descr);
}
-static inline void debug_hrtimer_activate(struct hrtimer *timer)
+static inline void debug_hrtimer_activate(struct hrtimer *timer,
+ enum hrtimer_mode mode)
{
debug_object_activate(timer, &hrtimer_debug_descr);
}
@@ -429,8 +434,10 @@ void destroy_hrtimer_on_stack(struct hrtimer *timer)
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
#else
+
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
-static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
+static inline void debug_hrtimer_activate(struct hrtimer *timer,
+ enum hrtimer_mode mode) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif
@@ -442,10 +449,11 @@ debug_init(struct hrtimer *timer, clockid_t clockid,
trace_hrtimer_init(timer, clockid, mode);
}
-static inline void debug_activate(struct hrtimer *timer)
+static inline void debug_activate(struct hrtimer *timer,
+ enum hrtimer_mode mode)
{
- debug_hrtimer_activate(timer);
- trace_hrtimer_start(timer);
+ debug_hrtimer_activate(timer, mode);
+ trace_hrtimer_start(timer, mode);
}
static inline void debug_deactivate(struct hrtimer *timer)
@@ -454,35 +462,57 @@ static inline void debug_deactivate(struct hrtimer *timer)
trace_hrtimer_cancel(timer);
}
-#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
-static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
- struct hrtimer *timer)
+static struct hrtimer_clock_base *
+__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
{
-#ifdef CONFIG_HIGH_RES_TIMERS
- cpu_base->next_timer = timer;
-#endif
+ unsigned int idx;
+
+ if (!*active)
+ return NULL;
+
+ idx = __ffs(*active);
+ *active &= ~(1U << idx);
+
+ return &cpu_base->clock_base[idx];
}
-static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
+#define for_each_active_base(base, cpu_base, active) \
+ while ((base = __next_base((cpu_base), &(active))))
+
+static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
+ const struct hrtimer *exclude,
+ unsigned int active,
+ ktime_t expires_next)
{
- struct hrtimer_clock_base *base = cpu_base->clock_base;
- unsigned int active = cpu_base->active_bases;
- ktime_t expires, expires_next = KTIME_MAX;
+ struct hrtimer_clock_base *base;
+ ktime_t expires;
- hrtimer_update_next_timer(cpu_base, NULL);
- for (; active; base++, active >>= 1) {
+ for_each_active_base(base, cpu_base, active) {
struct timerqueue_node *next;
struct hrtimer *timer;
- if (!(active & 0x01))
- continue;
-
next = timerqueue_getnext(&base->active);
timer = container_of(next, struct hrtimer, node);
+ if (timer == exclude) {
+ /* Get to the next timer in the queue. */
+ next = timerqueue_iterate_next(next);
+ if (!next)
+ continue;
+
+ timer = container_of(next, struct hrtimer, node);
+ }
expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
if (expires < expires_next) {
expires_next = expires;
- hrtimer_update_next_timer(cpu_base, timer);
+
+ /* Skip cpu_base update if a timer is being excluded. */
+ if (exclude)
+ continue;
+
+ if (timer->is_soft)
+ cpu_base->softirq_next_timer = timer;
+ else
+ cpu_base->next_timer = timer;
}
}
/*
@@ -494,44 +524,62 @@ static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
expires_next = 0;
return expires_next;
}
-#endif
-static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
+/*
+ * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
+ * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
+ *
+ * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
+ * those timers will get run whenever the softirq gets handled, at the end of
+ * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
+ *
+ * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
+ * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
+ * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
+ *
+ * @active_mask must be one of:
+ * - HRTIMER_ACTIVE_ALL,
+ * - HRTIMER_ACTIVE_SOFT, or
+ * - HRTIMER_ACTIVE_HARD.
+ */
+static ktime_t
+__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
{
- ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
- ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
- ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
+ unsigned int active;
+ struct hrtimer *next_timer = NULL;
+ ktime_t expires_next = KTIME_MAX;
- return ktime_get_update_offsets_now(&base->clock_was_set_seq,
- offs_real, offs_boot, offs_tai);
-}
+ if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
+ active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
+ cpu_base->softirq_next_timer = NULL;
+ expires_next = __hrtimer_next_event_base(cpu_base, NULL,
+ active, KTIME_MAX);
-/* High resolution timer related functions */
-#ifdef CONFIG_HIGH_RES_TIMERS
+ next_timer = cpu_base->softirq_next_timer;
+ }
-/*
- * High resolution timer enabled ?
- */
-static bool hrtimer_hres_enabled __read_mostly = true;
-unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
-EXPORT_SYMBOL_GPL(hrtimer_resolution);
+ if (active_mask & HRTIMER_ACTIVE_HARD) {
+ active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
+ cpu_base->next_timer = next_timer;
+ expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
+ expires_next);
+ }
-/*
- * Enable / Disable high resolution mode
- */
-static int __init setup_hrtimer_hres(char *str)
-{
- return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
+ return expires_next;
}
-__setup("highres=", setup_hrtimer_hres);
-
-/*
- * hrtimer_high_res_enabled - query, if the highres mode is enabled
- */
-static inline int hrtimer_is_hres_enabled(void)
+static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
- return hrtimer_hres_enabled;
+ ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
+ ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
+
+ ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
+ offs_real, offs_tai);
+
+ base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
+ base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
+
+ return now;
}
/*
@@ -539,7 +587,8 @@ static inline int hrtimer_is_hres_enabled(void)
*/
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
- return cpu_base->hres_active;
+ return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
+ cpu_base->hres_active : 0;
}
static inline int hrtimer_hres_active(void)
@@ -557,10 +606,23 @@ hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
{
ktime_t expires_next;
- if (!cpu_base->hres_active)
- return;
+ /*
+ * Find the current next expiration time.
+ */
+ expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
- expires_next = __hrtimer_get_next_event(cpu_base);
+ if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
+ /*
+ * When the softirq is activated, hrtimer has to be
+ * programmed with the first hard hrtimer because soft
+ * timer interrupt could occur too late.
+ */
+ if (cpu_base->softirq_activated)
+ expires_next = __hrtimer_get_next_event(cpu_base,
+ HRTIMER_ACTIVE_HARD);
+ else
+ cpu_base->softirq_expires_next = expires_next;
+ }
if (skip_equal && expires_next == cpu_base->expires_next)
return;
@@ -568,6 +630,9 @@ hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
cpu_base->expires_next = expires_next;
/*
+ * If hres is not active, hardware does not have to be
+ * reprogrammed yet.
+ *
* If a hang was detected in the last timer interrupt then we
* leave the hang delay active in the hardware. We want the
* system to make progress. That also prevents the following
@@ -581,81 +646,38 @@ hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
* set. So we'd effectivly block all timers until the T2 event
* fires.
*/
- if (cpu_base->hang_detected)
+ if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
return;
tick_program_event(cpu_base->expires_next, 1);
}
+/* High resolution timer related functions */
+#ifdef CONFIG_HIGH_RES_TIMERS
+
/*
- * When a timer is enqueued and expires earlier than the already enqueued
- * timers, we have to check, whether it expires earlier than the timer for
- * which the clock event device was armed.
- *
- * Called with interrupts disabled and base->cpu_base.lock held
+ * High resolution timer enabled ?
*/
-static void hrtimer_reprogram(struct hrtimer *timer,
- struct hrtimer_clock_base *base)
-{
- struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
- ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
-
- WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
-
- /*
- * If the timer is not on the current cpu, we cannot reprogram
- * the other cpus clock event device.
- */
- if (base->cpu_base != cpu_base)
- return;
-
- /*
- * If the hrtimer interrupt is running, then it will
- * reevaluate the clock bases and reprogram the clock event
- * device. The callbacks are always executed in hard interrupt
- * context so we don't need an extra check for a running
- * callback.
- */
- if (cpu_base->in_hrtirq)
- return;
-
- /*
- * CLOCK_REALTIME timer might be requested with an absolute
- * expiry time which is less than base->offset. Set it to 0.
- */
- if (expires < 0)
- expires = 0;
-
- if (expires >= cpu_base->expires_next)
- return;
-
- /* Update the pointer to the next expiring timer */
- cpu_base->next_timer = timer;
-
- /*
- * If a hang was detected in the last timer interrupt then we
- * do not schedule a timer which is earlier than the expiry
- * which we enforced in the hang detection. We want the system
- * to make progress.
- */
- if (cpu_base->hang_detected)
- return;
+static bool hrtimer_hres_enabled __read_mostly = true;
+unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
+EXPORT_SYMBOL_GPL(hrtimer_resolution);
- /*
- * Program the timer hardware. We enforce the expiry for
- * events which are already in the past.
- */
- cpu_base->expires_next = expires;
- tick_program_event(expires, 1);
+/*
+ * Enable / Disable high resolution mode
+ */
+static int __init setup_hrtimer_hres(char *str)
+{
+ return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
}
+__setup("highres=", setup_hrtimer_hres);
+
/*
- * Initialize the high resolution related parts of cpu_base
+ * hrtimer_high_res_enabled - query, if the highres mode is enabled
*/
-static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
+static inline int hrtimer_is_hres_enabled(void)
{
- base->expires_next = KTIME_MAX;
- base->hres_active = 0;
+ return hrtimer_hres_enabled;
}
/*
@@ -667,7 +689,7 @@ static void retrigger_next_event(void *arg)
{
struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
- if (!base->hres_active)
+ if (!__hrtimer_hres_active(base))
return;
raw_spin_lock(&base->lock);
@@ -714,23 +736,102 @@ void clock_was_set_delayed(void)
#else
-static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
-static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
static inline void hrtimer_switch_to_hres(void) { }
-static inline void
-hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
-static inline int hrtimer_reprogram(struct hrtimer *timer,
- struct hrtimer_clock_base *base)
-{
- return 0;
-}
-static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void retrigger_next_event(void *arg) { }
#endif /* CONFIG_HIGH_RES_TIMERS */
/*
+ * When a timer is enqueued and expires earlier than the already enqueued
+ * timers, we have to check, whether it expires earlier than the timer for
+ * which the clock event device was armed.
+ *
+ * Called with interrupts disabled and base->cpu_base.lock held
+ */
+static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
+{
+ struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+ struct hrtimer_clock_base *base = timer->base;
+ ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
+
+ WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
+
+ /*
+ * CLOCK_REALTIME timer might be requested with an absolute
+ * expiry time which is less than base->offset. Set it to 0.
+ */
+ if (expires < 0)
+ expires = 0;
+
+ if (timer->is_soft) {
+ /*
+ * soft hrtimer could be started on a remote CPU. In this
+ * case softirq_expires_next needs to be updated on the
+ * remote CPU. The soft hrtimer will not expire before the
+ * first hard hrtimer on the remote CPU -
+ * hrtimer_check_target() prevents this case.
+ */
+ struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
+
+ if (timer_cpu_base->softirq_activated)
+ return;
+
+ if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
+ return;
+
+ timer_cpu_base->softirq_next_timer = timer;
+ timer_cpu_base->softirq_expires_next = expires;
+
+ if (!ktime_before(expires, timer_cpu_base->expires_next) ||
+ !reprogram)
+ return;
+ }
+
+ /*
+ * If the timer is not on the current cpu, we cannot reprogram
+ * the other cpus clock event device.
+ */
+ if (base->cpu_base != cpu_base)
+ return;
+
+ /*
+ * If the hrtimer interrupt is running, then it will
+ * reevaluate the clock bases and reprogram the clock event
+ * device. The callbacks are always executed in hard interrupt
+ * context so we don't need an extra check for a running
+ * callback.
+ */
+ if (cpu_base->in_hrtirq)
+ return;
+
+ if (expires >= cpu_base->expires_next)
+ return;
+
+ /* Update the pointer to the next expiring timer */
+ cpu_base->next_timer = timer;
+ cpu_base->expires_next = expires;
+
+ /*
+ * If hres is not active, hardware does not have to be
+ * programmed yet.
+ *
+ * If a hang was detected in the last timer interrupt then we
+ * do not schedule a timer which is earlier than the expiry
+ * which we enforced in the hang detection. We want the system
+ * to make progress.
+ */
+ if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
+ return;
+
+ /*
+ * Program the timer hardware. We enforce the expiry for
+ * events which are already in the past.
+ */
+ tick_program_event(expires, 1);
+}
+
+/*
* Clock realtime was set
*
* Change the offset of the realtime clock vs. the monotonic
@@ -835,9 +936,10 @@ EXPORT_SYMBOL_GPL(hrtimer_forward);
* Returns 1 when the new timer is the leftmost timer in the tree.
*/
static int enqueue_hrtimer(struct hrtimer *timer,
- struct hrtimer_clock_base *base)
+ struct hrtimer_clock_base *base,
+ enum hrtimer_mode mode)
{
- debug_activate(timer);
+ debug_activate(timer, mode);
base->cpu_base->active_bases |= 1 << base->index;
@@ -870,7 +972,6 @@ static void __remove_hrtimer(struct hrtimer *timer,
if (!timerqueue_del(&base->active, &timer->node))
cpu_base->active_bases &= ~(1 << base->index);
-#ifdef CONFIG_HIGH_RES_TIMERS
/*
* Note: If reprogram is false we do not update
* cpu_base->next_timer. This happens when we remove the first
@@ -881,7 +982,6 @@ static void __remove_hrtimer(struct hrtimer *timer,
*/
if (reprogram && timer == cpu_base->next_timer)
hrtimer_force_reprogram(cpu_base, 1);
-#endif
}
/*
@@ -930,22 +1030,36 @@ static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
return tim;
}
-/**
- * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
- * @timer: the timer to be added
- * @tim: expiry time
- * @delta_ns: "slack" range for the timer
- * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
- * relative (HRTIMER_MODE_REL)
- */
-void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
- u64 delta_ns, const enum hrtimer_mode mode)
+static void
+hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
{
- struct hrtimer_clock_base *base, *new_base;
- unsigned long flags;
- int leftmost;
+ ktime_t expires;
- base = lock_hrtimer_base(timer, &flags);
+ /*
+ * Find the next SOFT expiration.
+ */
+ expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
+
+ /*
+ * reprogramming needs to be triggered, even if the next soft
+ * hrtimer expires at the same time than the next hard
+ * hrtimer. cpu_base->softirq_expires_next needs to be updated!
+ */
+ if (expires == KTIME_MAX)
+ return;
+
+ /*
+ * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
+ * cpu_base->*expires_next is only set by hrtimer_reprogram()
+ */
+ hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
+}
+
+static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
+ u64 delta_ns, const enum hrtimer_mode mode,
+ struct hrtimer_clock_base *base)
+{
+ struct hrtimer_clock_base *new_base;
/* Remove an active timer from the queue: */
remove_hrtimer(timer, base, true);
@@ -960,21 +1074,35 @@ void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
/* Switch the timer base, if necessary: */
new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
- leftmost = enqueue_hrtimer(timer, new_base);
- if (!leftmost)
- goto unlock;
+ return enqueue_hrtimer(timer, new_base, mode);
+}
+
+/**
+ * hrtimer_start_range_ns - (re)start an hrtimer
+ * @timer: the timer to be added
+ * @tim: expiry time
+ * @delta_ns: "slack" range for the timer
+ * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
+ * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
+ * softirq based mode is considered for debug purpose only!
+ */
+void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
+ u64 delta_ns, const enum hrtimer_mode mode)
+{
+ struct hrtimer_clock_base *base;
+ unsigned long flags;
+
+ /*
+ * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
+ * match.
+ */
+ WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
+
+ base = lock_hrtimer_base(timer, &flags);
+
+ if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
+ hrtimer_reprogram(timer, true);
- if (!hrtimer_is_hres_active(timer)) {
- /*
- * Kick to reschedule the next tick to handle the new timer
- * on dynticks target.
- */
- if (new_base->cpu_base->nohz_active)
- wake_up_nohz_cpu(new_base->cpu_base->cpu);
- } else {
- hrtimer_reprogram(timer, new_base);
- }
-unlock:
unlock_hrtimer_base(timer, &flags);
}
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
@@ -1072,7 +1200,40 @@ u64 hrtimer_get_next_event(void)
raw_spin_lock_irqsave(&cpu_base->lock, flags);
if (!__hrtimer_hres_active(cpu_base))
- expires = __hrtimer_get_next_event(cpu_base);
+ expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
+
+ raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
+
+ return expires;
+}
+
+/**
+ * hrtimer_next_event_without - time until next expiry event w/o one timer
+ * @exclude: timer to exclude
+ *
+ * Returns the next expiry time over all timers except for the @exclude one or
+ * KTIME_MAX if none of them is pending.
+ */
+u64 hrtimer_next_event_without(const struct hrtimer *exclude)
+{
+ struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+ u64 expires = KTIME_MAX;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&cpu_base->lock, flags);
+
+ if (__hrtimer_hres_active(cpu_base)) {
+ unsigned int active;
+
+ if (!cpu_base->softirq_activated) {
+ active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
+ expires = __hrtimer_next_event_base(cpu_base, exclude,
+ active, KTIME_MAX);
+ }
+ active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
+ expires = __hrtimer_next_event_base(cpu_base, exclude, active,
+ expires);
+ }
raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
@@ -1095,17 +1256,24 @@ static inline int hrtimer_clockid_to_base(clockid_t clock_id)
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
enum hrtimer_mode mode)
{
+ bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
+ int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
struct hrtimer_cpu_base *cpu_base;
- int base;
memset(timer, 0, sizeof(struct hrtimer));
cpu_base = raw_cpu_ptr(&hrtimer_bases);
- if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
+ /*
+ * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
+ * clock modifications, so they needs to become CLOCK_MONOTONIC to
+ * ensure POSIX compliance.
+ */
+ if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
clock_id = CLOCK_MONOTONIC;
- base = hrtimer_clockid_to_base(clock_id);
+ base += hrtimer_clockid_to_base(clock_id);
+ timer->is_soft = softtimer;
timer->base = &cpu_base->clock_base[base];
timerqueue_init(&timer->node);
}
@@ -1114,7 +1282,13 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
* hrtimer_init - initialize a timer to the given clock
* @timer: the timer to be initialized
* @clock_id: the clock to be used
- * @mode: timer mode abs/rel
+ * @mode: The modes which are relevant for intitialization:
+ * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
+ * HRTIMER_MODE_REL_SOFT
+ *
+ * The PINNED variants of the above can be handed in,
+ * but the PINNED bit is ignored as pinning happens
+ * when the hrtimer is started
*/
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
enum hrtimer_mode mode)
@@ -1133,19 +1307,19 @@ EXPORT_SYMBOL_GPL(hrtimer_init);
*/
bool hrtimer_active(const struct hrtimer *timer)
{
- struct hrtimer_cpu_base *cpu_base;
+ struct hrtimer_clock_base *base;
unsigned int seq;
do {
- cpu_base = READ_ONCE(timer->base->cpu_base);
- seq = raw_read_seqcount_begin(&cpu_base->seq);
+ base = READ_ONCE(timer->base);
+ seq = raw_read_seqcount_begin(&base->seq);
if (timer->state != HRTIMER_STATE_INACTIVE ||
- cpu_base->running == timer)
+ base->running == timer)
return true;
- } while (read_seqcount_retry(&cpu_base->seq, seq) ||
- cpu_base != READ_ONCE(timer->base->cpu_base));
+ } while (read_seqcount_retry(&base->seq, seq) ||
+ base != READ_ONCE(timer->base));
return false;
}
@@ -1171,7 +1345,8 @@ EXPORT_SYMBOL_GPL(hrtimer_active);
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
struct hrtimer_clock_base *base,
- struct hrtimer *timer, ktime_t *now)
+ struct hrtimer *timer, ktime_t *now,
+ unsigned long flags)
{
enum hrtimer_restart (*fn)(struct hrtimer *);
int restart;
@@ -1179,16 +1354,16 @@ static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
lockdep_assert_held(&cpu_base->lock);
debug_deactivate(timer);
- cpu_base->running = timer;
+ base->running = timer;
/*
* Separate the ->running assignment from the ->state assignment.
*
* As with a regular write barrier, this ensures the read side in
- * hrtimer_active() cannot observe cpu_base->running == NULL &&
+ * hrtimer_active() cannot observe base->running == NULL &&
* timer->state == INACTIVE.
*/
- raw_write_seqcount_barrier(&cpu_base->seq);
+ raw_write_seqcount_barrier(&base->seq);
__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
fn = timer->function;
@@ -1202,15 +1377,15 @@ static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
timer->is_rel = false;
/*
- * Because we run timers from hardirq context, there is no chance
- * they get migrated to another cpu, therefore its safe to unlock
- * the timer base.
+ * The timer is marked as running in the CPU base, so it is
+ * protected against migration to a different CPU even if the lock
+ * is dropped.
*/
- raw_spin_unlock(&cpu_base->lock);
+ raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
trace_hrtimer_expire_entry(timer, now);
restart = fn(timer);
trace_hrtimer_expire_exit(timer);
- raw_spin_lock(&cpu_base->lock);
+ raw_spin_lock_irq(&cpu_base->lock);
/*
* Note: We clear the running state after enqueue_hrtimer and
@@ -1223,33 +1398,31 @@ static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
*/
if (restart != HRTIMER_NORESTART &&
!(timer->state & HRTIMER_STATE_ENQUEUED))
- enqueue_hrtimer(timer, base);
+ enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
/*
* Separate the ->running assignment from the ->state assignment.
*
* As with a regular write barrier, this ensures the read side in
- * hrtimer_active() cannot observe cpu_base->running == NULL &&
+ * hrtimer_active() cannot observe base->running.timer == NULL &&
* timer->state == INACTIVE.
*/
- raw_write_seqcount_barrier(&cpu_base->seq);
+ raw_write_seqcount_barrier(&base->seq);
- WARN_ON_ONCE(cpu_base->running != timer);
- cpu_base->running = NULL;
+ WARN_ON_ONCE(base->running != timer);
+ base->running = NULL;
}
-static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
+static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
+ unsigned long flags, unsigned int active_mask)
{
- struct hrtimer_clock_base *base = cpu_base->clock_base;
- unsigned int active = cpu_base->active_bases;
+ struct hrtimer_clock_base *base;
+ unsigned int active = cpu_base->active_bases & active_mask;
- for (; active; base++, active >>= 1) {
+ for_each_active_base(base, cpu_base, active) {
struct timerqueue_node *node;
ktime_t basenow;
- if (!(active & 0x01))
- continue;
-
basenow = ktime_add(now, base->offset);
while ((node = timerqueue_getnext(&base->active))) {
@@ -1272,11 +1445,28 @@ static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
if (basenow < hrtimer_get_softexpires_tv64(timer))
break;
- __run_hrtimer(cpu_base, base, timer, &basenow);
+ __run_hrtimer(cpu_base, base, timer, &basenow, flags);
}
}
}
+static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
+{
+ struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+ unsigned long flags;
+ ktime_t now;
+
+ raw_spin_lock_irqsave(&cpu_base->lock, flags);
+
+ now = hrtimer_update_base(cpu_base);
+ __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
+
+ cpu_base->softirq_activated = 0;
+ hrtimer_update_softirq_timer(cpu_base, true);
+
+ raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
+}
+
#ifdef CONFIG_HIGH_RES_TIMERS
/*
@@ -1287,13 +1477,14 @@ void hrtimer_interrupt(struct clock_event_device *dev)
{
struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
ktime_t expires_next, now, entry_time, delta;
+ unsigned long flags;
int retries = 0;
BUG_ON(!cpu_base->hres_active);
cpu_base->nr_events++;
dev->next_event = KTIME_MAX;
- raw_spin_lock(&cpu_base->lock);
+ raw_spin_lock_irqsave(&cpu_base->lock, flags);
entry_time = now = hrtimer_update_base(cpu_base);
retry:
cpu_base->in_hrtirq = 1;
@@ -1306,17 +1497,23 @@ retry:
*/
cpu_base->expires_next = KTIME_MAX;
- __hrtimer_run_queues(cpu_base, now);
+ if (!ktime_before(now, cpu_base->softirq_expires_next)) {
+ cpu_base->softirq_expires_next = KTIME_MAX;
+ cpu_base->softirq_activated = 1;
+ raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+ }
+
+ __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
/* Reevaluate the clock bases for the next expiry */
- expires_next = __hrtimer_get_next_event(cpu_base);
+ expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
/*
* Store the new expiry value so the migration code can verify
* against it.
*/
cpu_base->expires_next = expires_next;
cpu_base->in_hrtirq = 0;
- raw_spin_unlock(&cpu_base->lock);
+ raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
/* Reprogramming necessary ? */
if (!tick_program_event(expires_next, 0)) {
@@ -1337,7 +1534,7 @@ retry:
* Acquire base lock for updating the offsets and retrieving
* the current time.
*/
- raw_spin_lock(&cpu_base->lock);
+ raw_spin_lock_irqsave(&cpu_base->lock, flags);
now = hrtimer_update_base(cpu_base);
cpu_base->nr_retries++;
if (++retries < 3)
@@ -1350,7 +1547,8 @@ retry:
*/
cpu_base->nr_hangs++;
cpu_base->hang_detected = 1;
- raw_spin_unlock(&cpu_base->lock);
+ raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
+
delta = ktime_sub(now, entry_time);
if ((unsigned int)delta > cpu_base->max_hang_time)
cpu_base->max_hang_time = (unsigned int) delta;
@@ -1392,6 +1590,7 @@ static inline void __hrtimer_peek_ahead_timers(void) { }
void hrtimer_run_queues(void)
{
struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+ unsigned long flags;
ktime_t now;
if (__hrtimer_hres_active(cpu_base))
@@ -1409,10 +1608,17 @@ void hrtimer_run_queues(void)
return;
}
- raw_spin_lock(&cpu_base->lock);
+ raw_spin_lock_irqsave(&cpu_base->lock, flags);
now = hrtimer_update_base(cpu_base);
- __hrtimer_run_queues(cpu_base, now);
- raw_spin_unlock(&cpu_base->lock);
+
+ if (!ktime_before(now, cpu_base->softirq_expires_next)) {
+ cpu_base->softirq_expires_next = KTIME_MAX;
+ cpu_base->softirq_activated = 1;
+ raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+ }
+
+ __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
+ raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
}
/*
@@ -1590,7 +1796,13 @@ int hrtimers_prepare_cpu(unsigned int cpu)
}
cpu_base->cpu = cpu;
- hrtimer_init_hres(cpu_base);
+ cpu_base->active_bases = 0;
+ cpu_base->hres_active = 0;
+ cpu_base->hang_detected = 0;
+ cpu_base->next_timer = NULL;
+ cpu_base->softirq_next_timer = NULL;
+ cpu_base->expires_next = KTIME_MAX;
+ cpu_base->softirq_expires_next = KTIME_MAX;
return 0;
}
@@ -1622,7 +1834,7 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
* sort out already expired timers and reprogram the
* event device.
*/
- enqueue_hrtimer(timer, new_base);
+ enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
}
}
@@ -1634,6 +1846,12 @@ int hrtimers_dead_cpu(unsigned int scpu)
BUG_ON(cpu_online(scpu));
tick_cancel_sched_timer(scpu);
+ /*
+ * this BH disable ensures that raise_softirq_irqoff() does
+ * not wakeup ksoftirqd (and acquire the pi-lock) while
+ * holding the cpu_base lock
+ */
+ local_bh_disable();
local_irq_disable();
old_base = &per_cpu(hrtimer_bases, scpu);
new_base = this_cpu_ptr(&hrtimer_bases);
@@ -1649,12 +1867,19 @@ int hrtimers_dead_cpu(unsigned int scpu)
&new_base->clock_base[i]);
}
+ /*
+ * The migration might have changed the first expiring softirq
+ * timer on this CPU. Update it.
+ */
+ hrtimer_update_softirq_timer(new_base, false);
+
raw_spin_unlock(&old_base->lock);
raw_spin_unlock(&new_base->lock);
/* Check, if we got expired work to do */
__hrtimer_peek_ahead_timers();
local_irq_enable();
+ local_bh_enable();
return 0;
}
@@ -1663,18 +1888,19 @@ int hrtimers_dead_cpu(unsigned int scpu)
void __init hrtimers_init(void)
{
hrtimers_prepare_cpu(smp_processor_id());
+ open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
}
/**
* schedule_hrtimeout_range_clock - sleep until timeout
* @expires: timeout value (ktime_t)
* @delta: slack in expires timeout (ktime_t)
- * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
- * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
+ * @mode: timer mode
+ * @clock_id: timer clock to be used
*/
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
- const enum hrtimer_mode mode, int clock)
+ const enum hrtimer_mode mode, clockid_t clock_id)
{
struct hrtimer_sleeper t;
@@ -1695,7 +1921,7 @@ schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
return -EINTR;
}
- hrtimer_init_on_stack(&t.timer, clock, mode);
+ hrtimer_init_on_stack(&t.timer, clock_id, mode);
hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
hrtimer_init_sleeper(&t, current);
@@ -1717,7 +1943,7 @@ schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
* schedule_hrtimeout_range - sleep until timeout
* @expires: timeout value (ktime_t)
* @delta: slack in expires timeout (ktime_t)
- * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
+ * @mode: timer mode
*
* Make the current task sleep until the given expiry time has
* elapsed. The routine will return immediately unless
@@ -1756,7 +1982,7 @@ EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
/**
* schedule_hrtimeout - sleep until timeout
* @expires: timeout value (ktime_t)
- * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
+ * @mode: timer mode
*
* Make the current task sleep until the given expiry time has
* elapsed. The routine will return immediately unless
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c
index 8d70da1b9a0d..a09ded765f6c 100644
--- a/kernel/time/ntp.c
+++ b/kernel/time/ntp.c
@@ -31,7 +31,7 @@
/* USER_HZ period (usecs): */
-unsigned long tick_usec = TICK_USEC;
+unsigned long tick_usec = USER_TICK_USEC;
/* SHIFTED_HZ period (nsecs): */
unsigned long tick_nsec;
diff --git a/kernel/time/posix-clock.c b/kernel/time/posix-clock.c
index 17cdc554c9fe..fe56c4e06c51 100644
--- a/kernel/time/posix-clock.c
+++ b/kernel/time/posix-clock.c
@@ -68,13 +68,13 @@ static ssize_t posix_clock_read(struct file *fp, char __user *buf,
return err;
}
-static unsigned int posix_clock_poll(struct file *fp, poll_table *wait)
+static __poll_t posix_clock_poll(struct file *fp, poll_table *wait)
{
struct posix_clock *clk = get_posix_clock(fp);
- unsigned int result = 0;
+ __poll_t result = 0;
if (!clk)
- return POLLERR;
+ return EPOLLERR;
if (clk->ops.poll)
result = clk->ops.poll(clk, fp, wait);
@@ -216,7 +216,7 @@ struct posix_clock_desc {
static int get_clock_desc(const clockid_t id, struct posix_clock_desc *cd)
{
- struct file *fp = fget(CLOCKID_TO_FD(id));
+ struct file *fp = fget(clockid_to_fd(id));
int err = -EINVAL;
if (!fp)
diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
index 1f27887aa194..2541bd89f20e 100644
--- a/kernel/time/posix-cpu-timers.c
+++ b/kernel/time/posix-cpu-timers.c
@@ -14,6 +14,7 @@
#include <linux/tick.h>
#include <linux/workqueue.h>
#include <linux/compat.h>
+#include <linux/sched/deadline.h>
#include "posix-timers.h"
@@ -791,6 +792,14 @@ check_timers_list(struct list_head *timers,
return 0;
}
+static inline void check_dl_overrun(struct task_struct *tsk)
+{
+ if (tsk->dl.dl_overrun) {
+ tsk->dl.dl_overrun = 0;
+ __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
+ }
+}
+
/*
* Check for any per-thread CPU timers that have fired and move them off
* the tsk->cpu_timers[N] list onto the firing list. Here we update the
@@ -804,6 +813,9 @@ static void check_thread_timers(struct task_struct *tsk,
u64 expires;
unsigned long soft;
+ if (dl_task(tsk))
+ check_dl_overrun(tsk);
+
/*
* If cputime_expires is zero, then there are no active
* per thread CPU timers.
@@ -906,6 +918,9 @@ static void check_process_timers(struct task_struct *tsk,
struct task_cputime cputime;
unsigned long soft;
+ if (dl_task(tsk))
+ check_dl_overrun(tsk);
+
/*
* If cputimer is not running, then there are no active
* process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
@@ -1111,6 +1126,9 @@ static inline int fastpath_timer_check(struct task_struct *tsk)
return 1;
}
+ if (dl_task(tsk) && tsk->dl.dl_overrun)
+ return 1;
+
return 0;
}
@@ -1189,9 +1207,8 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
u64 now;
WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
- cpu_timer_sample_group(clock_idx, tsk, &now);
- if (oldval) {
+ if (oldval && cpu_timer_sample_group(clock_idx, tsk, &now) != -EINVAL) {
/*
* We are setting itimer. The *oldval is absolute and we update
* it to be relative, *newval argument is relative and we update
@@ -1363,8 +1380,8 @@ static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
}
-#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
-#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
+#define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
+#define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
static int process_cpu_clock_getres(const clockid_t which_clock,
struct timespec64 *tp)
diff --git a/kernel/time/posix-stubs.c b/kernel/time/posix-stubs.c
index b258bee13b02..6259dbc0191a 100644
--- a/kernel/time/posix-stubs.c
+++ b/kernel/time/posix-stubs.c
@@ -73,6 +73,8 @@ int do_clock_gettime(clockid_t which_clock, struct timespec64 *tp)
case CLOCK_BOOTTIME:
get_monotonic_boottime64(tp);
break;
+ case CLOCK_MONOTONIC_ACTIVE:
+ ktime_get_active_ts64(tp);
default:
return -EINVAL;
}
diff --git a/kernel/time/posix-timers.c b/kernel/time/posix-timers.c
index ec999f32c840..b6899b5060bd 100644
--- a/kernel/time/posix-timers.c
+++ b/kernel/time/posix-timers.c
@@ -50,6 +50,7 @@
#include <linux/export.h>
#include <linux/hashtable.h>
#include <linux/compat.h>
+#include <linux/nospec.h>
#include "timekeeping.h"
#include "posix-timers.h"
@@ -251,15 +252,16 @@ static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *
return 0;
}
-static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
+static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
{
- get_monotonic_boottime64(tp);
+ timekeeping_clocktai64(tp);
return 0;
}
-static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
+static int posix_get_monotonic_active(clockid_t which_clock,
+ struct timespec64 *tp)
{
- timekeeping_clocktai64(tp);
+ ktime_get_active_ts64(tp);
return 0;
}
@@ -462,7 +464,7 @@ static struct k_itimer * alloc_posix_timer(void)
kmem_cache_free(posix_timers_cache, tmr);
return NULL;
}
- memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
+ clear_siginfo(&tmr->sigq->info);
return tmr;
}
@@ -1315,19 +1317,9 @@ static const struct k_clock clock_tai = {
.timer_arm = common_hrtimer_arm,
};
-static const struct k_clock clock_boottime = {
+static const struct k_clock clock_monotonic_active = {
.clock_getres = posix_get_hrtimer_res,
- .clock_get = posix_get_boottime,
- .nsleep = common_nsleep,
- .timer_create = common_timer_create,
- .timer_set = common_timer_set,
- .timer_get = common_timer_get,
- .timer_del = common_timer_del,
- .timer_rearm = common_hrtimer_rearm,
- .timer_forward = common_hrtimer_forward,
- .timer_remaining = common_hrtimer_remaining,
- .timer_try_to_cancel = common_hrtimer_try_to_cancel,
- .timer_arm = common_hrtimer_arm,
+ .clock_get = posix_get_monotonic_active,
};
static const struct k_clock * const posix_clocks[] = {
@@ -1338,19 +1330,24 @@ static const struct k_clock * const posix_clocks[] = {
[CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
[CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
[CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
- [CLOCK_BOOTTIME] = &clock_boottime,
+ [CLOCK_BOOTTIME] = &clock_monotonic,
[CLOCK_REALTIME_ALARM] = &alarm_clock,
[CLOCK_BOOTTIME_ALARM] = &alarm_clock,
[CLOCK_TAI] = &clock_tai,
+ [CLOCK_MONOTONIC_ACTIVE] = &clock_monotonic_active,
};
static const struct k_clock *clockid_to_kclock(const clockid_t id)
{
- if (id < 0)
+ clockid_t idx = id;
+
+ if (id < 0) {
return (id & CLOCKFD_MASK) == CLOCKFD ?
&clock_posix_dynamic : &clock_posix_cpu;
+ }
- if (id >= ARRAY_SIZE(posix_clocks) || !posix_clocks[id])
+ if (id >= ARRAY_SIZE(posix_clocks))
return NULL;
- return posix_clocks[id];
+
+ return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
}
diff --git a/kernel/time/tick-common.c b/kernel/time/tick-common.c
index 49edc1c4f3e6..099572ca4a8f 100644
--- a/kernel/time/tick-common.c
+++ b/kernel/time/tick-common.c
@@ -419,6 +419,19 @@ void tick_suspend_local(void)
clockevents_shutdown(td->evtdev);
}
+static void tick_forward_next_period(void)
+{
+ ktime_t delta, now = ktime_get();
+ u64 n;
+
+ delta = ktime_sub(now, tick_next_period);
+ n = ktime_divns(delta, tick_period);
+ tick_next_period += n * tick_period;
+ if (tick_next_period < now)
+ tick_next_period += tick_period;
+ tick_sched_forward_next_period();
+}
+
/**
* tick_resume_local - Resume the local tick device
*
@@ -431,6 +444,8 @@ void tick_resume_local(void)
struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
bool broadcast = tick_resume_check_broadcast();
+ tick_forward_next_period();
+
clockevents_tick_resume(td->evtdev);
if (!broadcast) {
if (td->mode == TICKDEV_MODE_PERIODIC)
diff --git a/kernel/time/tick-internal.h b/kernel/time/tick-internal.h
index f8e1845aa464..21efab7485ca 100644
--- a/kernel/time/tick-internal.h
+++ b/kernel/time/tick-internal.h
@@ -141,6 +141,12 @@ static inline void tick_check_oneshot_broadcast_this_cpu(void) { }
static inline bool tick_broadcast_oneshot_available(void) { return tick_oneshot_possible(); }
#endif /* !(BROADCAST && ONESHOT) */
+#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
+extern void tick_sched_forward_next_period(void);
+#else
+static inline void tick_sched_forward_next_period(void) { }
+#endif
+
/* NO_HZ_FULL internal */
#ifdef CONFIG_NO_HZ_FULL
extern void tick_nohz_init(void);
@@ -150,16 +156,15 @@ static inline void tick_nohz_init(void) { }
#ifdef CONFIG_NO_HZ_COMMON
extern unsigned long tick_nohz_active;
-#else
+extern void timers_update_nohz(void);
+# ifdef CONFIG_SMP
+extern struct static_key_false timers_migration_enabled;
+# endif
+#else /* CONFIG_NO_HZ_COMMON */
+static inline void timers_update_nohz(void) { }
#define tick_nohz_active (0)
#endif
-#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
-extern void timers_update_migration(bool update_nohz);
-#else
-static inline void timers_update_migration(bool update_nohz) { }
-#endif
-
DECLARE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases);
extern u64 get_next_timer_interrupt(unsigned long basej, u64 basem);
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index f7cc7abfcf25..646645e981f9 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -52,6 +52,15 @@ struct tick_sched *tick_get_tick_sched(int cpu)
static ktime_t last_jiffies_update;
/*
+ * Called after resume. Make sure that jiffies are not fast forwarded due to
+ * clock monotonic being forwarded by the suspended time.
+ */
+void tick_sched_forward_next_period(void)
+{
+ last_jiffies_update = tick_next_period;
+}
+
+/*
* Must be called with interrupts disabled !
*/
static void tick_do_update_jiffies64(ktime_t now)
@@ -113,8 +122,7 @@ static ktime_t tick_init_jiffy_update(void)
return period;
}
-
-static void tick_sched_do_timer(ktime_t now)
+static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
{
int cpu = smp_processor_id();
@@ -134,6 +142,9 @@ static void tick_sched_do_timer(ktime_t now)
/* Check, if the jiffies need an update */
if (tick_do_timer_cpu == cpu)
tick_do_update_jiffies64(now);
+
+ if (ts->inidle)
+ ts->got_idle_tick = 1;
}
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
@@ -405,30 +416,12 @@ static int tick_nohz_cpu_down(unsigned int cpu)
return 0;
}
-static int tick_nohz_init_all(void)
-{
- int err = -1;
-
-#ifdef CONFIG_NO_HZ_FULL_ALL
- if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
- WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
- return err;
- }
- err = 0;
- cpumask_setall(tick_nohz_full_mask);
- tick_nohz_full_running = true;
-#endif
- return err;
-}
-
void __init tick_nohz_init(void)
{
int cpu, ret;
- if (!tick_nohz_full_running) {
- if (tick_nohz_init_all() < 0)
- return;
- }
+ if (!tick_nohz_full_running)
+ return;
/*
* Full dynticks uses irq work to drive the tick rescheduling on safe
@@ -481,9 +474,18 @@ static int __init setup_tick_nohz(char *str)
__setup("nohz=", setup_tick_nohz);
-int tick_nohz_tick_stopped(void)
+bool tick_nohz_tick_stopped(void)
{
- return __this_cpu_read(tick_cpu_sched.tick_stopped);
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
+
+ return ts->tick_stopped;
+}
+
+bool tick_nohz_tick_stopped_cpu(int cpu)
+{
+ struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
+
+ return ts->tick_stopped;
}
/**
@@ -539,14 +541,11 @@ static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
sched_clock_idle_wakeup_event();
}
-static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
+static void tick_nohz_start_idle(struct tick_sched *ts)
{
- ktime_t now = ktime_get();
-
- ts->idle_entrytime = now;
+ ts->idle_entrytime = ktime_get();
ts->idle_active = 1;
sched_clock_idle_sleep_event();
- return now;
}
/**
@@ -655,13 +654,10 @@ static inline bool local_timer_softirq_pending(void)
return local_softirq_pending() & TIMER_SOFTIRQ;
}
-static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
- ktime_t now, int cpu)
+static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
{
- struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
unsigned long seq, basejiff;
- ktime_t tick;
/* Read jiffies and the time when jiffies were updated last */
do {
@@ -670,6 +666,7 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
basejiff = jiffies;
} while (read_seqretry(&jiffies_lock, seq));
ts->last_jiffies = basejiff;
+ ts->timer_expires_base = basemono;
/*
* Keep the periodic tick, when RCU, architecture or irq_work
@@ -714,53 +711,63 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
* next period, so no point in stopping it either, bail.
*/
if (!ts->tick_stopped) {
- tick = 0;
+ ts->timer_expires = 0;
goto out;
}
}
/*
+ * If this CPU is the one which had the do_timer() duty last, we limit
+ * the sleep time to the timekeeping max_deferment value.
+ * Otherwise we can sleep as long as we want.
+ */
+ delta = timekeeping_max_deferment();
+ if (cpu != tick_do_timer_cpu &&
+ (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
+ delta = KTIME_MAX;
+
+ /* Calculate the next expiry time */
+ if (delta < (KTIME_MAX - basemono))
+ expires = basemono + delta;
+ else
+ expires = KTIME_MAX;
+
+ ts->timer_expires = min_t(u64, expires, next_tick);
+
+out:
+ return ts->timer_expires;
+}
+
+static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
+{
+ struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
+ u64 basemono = ts->timer_expires_base;
+ u64 expires = ts->timer_expires;
+ ktime_t tick = expires;
+
+ /* Make sure we won't be trying to stop it twice in a row. */
+ ts->timer_expires_base = 0;
+
+ /*
* If this CPU is the one which updates jiffies, then give up
* the assignment and let it be taken by the CPU which runs
* the tick timer next, which might be this CPU as well. If we
* don't drop this here the jiffies might be stale and
* do_timer() never invoked. Keep track of the fact that it
- * was the one which had the do_timer() duty last. If this CPU
- * is the one which had the do_timer() duty last, we limit the
- * sleep time to the timekeeping max_deferment value.
- * Otherwise we can sleep as long as we want.
+ * was the one which had the do_timer() duty last.
*/
- delta = timekeeping_max_deferment();
if (cpu == tick_do_timer_cpu) {
tick_do_timer_cpu = TICK_DO_TIMER_NONE;
ts->do_timer_last = 1;
} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
- delta = KTIME_MAX;
ts->do_timer_last = 0;
- } else if (!ts->do_timer_last) {
- delta = KTIME_MAX;
}
-#ifdef CONFIG_NO_HZ_FULL
- /* Limit the tick delta to the maximum scheduler deferment */
- if (!ts->inidle)
- delta = min(delta, scheduler_tick_max_deferment());
-#endif
-
- /* Calculate the next expiry time */
- if (delta < (KTIME_MAX - basemono))
- expires = basemono + delta;
- else
- expires = KTIME_MAX;
-
- expires = min_t(u64, expires, next_tick);
- tick = expires;
-
/* Skip reprogram of event if its not changed */
if (ts->tick_stopped && (expires == ts->next_tick)) {
/* Sanity check: make sure clockevent is actually programmed */
if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
- goto out;
+ return;
WARN_ON_ONCE(1);
printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
@@ -794,7 +801,7 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
if (unlikely(expires == KTIME_MAX)) {
if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
hrtimer_cancel(&ts->sched_timer);
- goto out;
+ return;
}
hrtimer_set_expires(&ts->sched_timer, tick);
@@ -803,15 +810,23 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
else
tick_program_event(tick, 1);
-out:
- /*
- * Update the estimated sleep length until the next timer
- * (not only the tick).
- */
- ts->sleep_length = ktime_sub(dev->next_event, now);
- return tick;
}
+static void tick_nohz_retain_tick(struct tick_sched *ts)
+{
+ ts->timer_expires_base = 0;
+}
+
+#ifdef CONFIG_NO_HZ_FULL
+static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
+{
+ if (tick_nohz_next_event(ts, cpu))
+ tick_nohz_stop_tick(ts, cpu);
+ else
+ tick_nohz_retain_tick(ts);
+}
+#endif /* CONFIG_NO_HZ_FULL */
+
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
{
/* Update jiffies first */
@@ -847,7 +862,7 @@ static void tick_nohz_full_update_tick(struct tick_sched *ts)
return;
if (can_stop_full_tick(cpu, ts))
- tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
+ tick_nohz_stop_sched_tick(ts, cpu);
else if (ts->tick_stopped)
tick_nohz_restart_sched_tick(ts, ktime_get());
#endif
@@ -873,10 +888,8 @@ static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
return false;
}
- if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
- ts->sleep_length = NSEC_PER_SEC / HZ;
+ if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
return false;
- }
if (need_resched())
return false;
@@ -911,61 +924,80 @@ static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
return true;
}
-static void __tick_nohz_idle_enter(struct tick_sched *ts)
+static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
{
- ktime_t now, expires;
+ ktime_t expires;
int cpu = smp_processor_id();
- now = tick_nohz_start_idle(ts);
+ /*
+ * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
+ * tick timer expiration time is known already.
+ */
+ if (ts->timer_expires_base)
+ expires = ts->timer_expires;
+ else if (can_stop_idle_tick(cpu, ts))
+ expires = tick_nohz_next_event(ts, cpu);
+ else
+ return;
- if (can_stop_idle_tick(cpu, ts)) {
+ ts->idle_calls++;
+
+ if (expires > 0LL) {
int was_stopped = ts->tick_stopped;
- ts->idle_calls++;
+ tick_nohz_stop_tick(ts, cpu);
- expires = tick_nohz_stop_sched_tick(ts, now, cpu);
- if (expires > 0LL) {
- ts->idle_sleeps++;
- ts->idle_expires = expires;
- }
+ ts->idle_sleeps++;
+ ts->idle_expires = expires;
if (!was_stopped && ts->tick_stopped) {
ts->idle_jiffies = ts->last_jiffies;
nohz_balance_enter_idle(cpu);
}
+ } else {
+ tick_nohz_retain_tick(ts);
}
}
/**
- * tick_nohz_idle_enter - stop the idle tick from the idle task
+ * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
*
* When the next event is more than a tick into the future, stop the idle tick
- * Called when we start the idle loop.
- *
- * The arch is responsible of calling:
+ */
+void tick_nohz_idle_stop_tick(void)
+{
+ __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
+}
+
+void tick_nohz_idle_retain_tick(void)
+{
+ tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
+ /*
+ * Undo the effect of get_next_timer_interrupt() called from
+ * tick_nohz_next_event().
+ */
+ timer_clear_idle();
+}
+
+/**
+ * tick_nohz_idle_enter - prepare for entering idle on the current CPU
*
- * - rcu_idle_enter() after its last use of RCU before the CPU is put
- * to sleep.
- * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
+ * Called when we start the idle loop.
*/
void tick_nohz_idle_enter(void)
{
struct tick_sched *ts;
lockdep_assert_irqs_enabled();
- /*
- * Update the idle state in the scheduler domain hierarchy
- * when tick_nohz_stop_sched_tick() is called from the idle loop.
- * State will be updated to busy during the first busy tick after
- * exiting idle.
- */
- set_cpu_sd_state_idle();
local_irq_disable();
ts = this_cpu_ptr(&tick_cpu_sched);
+
+ WARN_ON_ONCE(ts->timer_expires_base);
+
ts->inidle = 1;
- __tick_nohz_idle_enter(ts);
+ tick_nohz_start_idle(ts);
local_irq_enable();
}
@@ -983,21 +1015,62 @@ void tick_nohz_irq_exit(void)
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
if (ts->inidle)
- __tick_nohz_idle_enter(ts);
+ tick_nohz_start_idle(ts);
else
tick_nohz_full_update_tick(ts);
}
/**
- * tick_nohz_get_sleep_length - return the length of the current sleep
+ * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
+ */
+bool tick_nohz_idle_got_tick(void)
+{
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
+
+ if (ts->got_idle_tick) {
+ ts->got_idle_tick = 0;
+ return true;
+ }
+ return false;
+}
+
+/**
+ * tick_nohz_get_sleep_length - return the expected length of the current sleep
+ * @delta_next: duration until the next event if the tick cannot be stopped
*
* Called from power state control code with interrupts disabled
*/
-ktime_t tick_nohz_get_sleep_length(void)
+ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
{
+ struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
+ int cpu = smp_processor_id();
+ /*
+ * The idle entry time is expected to be a sufficient approximation of
+ * the current time at this point.
+ */
+ ktime_t now = ts->idle_entrytime;
+ ktime_t next_event;
+
+ WARN_ON_ONCE(!ts->inidle);
+
+ *delta_next = ktime_sub(dev->next_event, now);
- return ts->sleep_length;
+ if (!can_stop_idle_tick(cpu, ts))
+ return *delta_next;
+
+ next_event = tick_nohz_next_event(ts, cpu);
+ if (!next_event)
+ return *delta_next;
+
+ /*
+ * If the next highres timer to expire is earlier than next_event, the
+ * idle governor needs to know that.
+ */
+ next_event = min_t(u64, next_event,
+ hrtimer_next_event_without(&ts->sched_timer));
+
+ return ktime_sub(next_event, now);
}
/**
@@ -1046,6 +1119,20 @@ static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
#endif
}
+static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
+{
+ tick_nohz_restart_sched_tick(ts, now);
+ tick_nohz_account_idle_ticks(ts);
+}
+
+void tick_nohz_idle_restart_tick(void)
+{
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
+
+ if (ts->tick_stopped)
+ __tick_nohz_idle_restart_tick(ts, ktime_get());
+}
+
/**
* tick_nohz_idle_exit - restart the idle tick from the idle task
*
@@ -1056,24 +1143,26 @@ static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
void tick_nohz_idle_exit(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
+ bool idle_active, tick_stopped;
ktime_t now;
local_irq_disable();
WARN_ON_ONCE(!ts->inidle);
+ WARN_ON_ONCE(ts->timer_expires_base);
ts->inidle = 0;
+ idle_active = ts->idle_active;
+ tick_stopped = ts->tick_stopped;
- if (ts->idle_active || ts->tick_stopped)
+ if (idle_active || tick_stopped)
now = ktime_get();
- if (ts->idle_active)
+ if (idle_active)
tick_nohz_stop_idle(ts, now);
- if (ts->tick_stopped) {
- tick_nohz_restart_sched_tick(ts, now);
- tick_nohz_account_idle_ticks(ts);
- }
+ if (tick_stopped)
+ __tick_nohz_idle_restart_tick(ts, now);
local_irq_enable();
}
@@ -1089,7 +1178,7 @@ static void tick_nohz_handler(struct clock_event_device *dev)
dev->next_event = KTIME_MAX;
- tick_sched_do_timer(now);
+ tick_sched_do_timer(ts, now);
tick_sched_handle(ts, regs);
/* No need to reprogram if we are running tickless */
@@ -1107,7 +1196,7 @@ static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
ts->nohz_mode = mode;
/* One update is enough */
if (!test_and_set_bit(0, &tick_nohz_active))
- timers_update_migration(true);
+ timers_update_nohz();
}
/**
@@ -1184,7 +1273,7 @@ static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
struct pt_regs *regs = get_irq_regs();
ktime_t now = ktime_get();
- tick_sched_do_timer(now);
+ tick_sched_do_timer(ts, now);
/*
* Do not call, when we are not in irq context and have
diff --git a/kernel/time/tick-sched.h b/kernel/time/tick-sched.h
index 954b43dbf21c..6de959a854b2 100644
--- a/kernel/time/tick-sched.h
+++ b/kernel/time/tick-sched.h
@@ -38,31 +38,37 @@ enum tick_nohz_mode {
* @idle_exittime: Time when the idle state was left
* @idle_sleeptime: Sum of the time slept in idle with sched tick stopped
* @iowait_sleeptime: Sum of the time slept in idle with sched tick stopped, with IO outstanding
- * @sleep_length: Duration of the current idle sleep
+ * @timer_expires: Anticipated timer expiration time (in case sched tick is stopped)
+ * @timer_expires_base: Base time clock monotonic for @timer_expires
* @do_timer_lst: CPU was the last one doing do_timer before going idle
+ * @got_idle_tick: Tick timer function has run with @inidle set
*/
struct tick_sched {
struct hrtimer sched_timer;
unsigned long check_clocks;
enum tick_nohz_mode nohz_mode;
+
+ unsigned int inidle : 1;
+ unsigned int tick_stopped : 1;
+ unsigned int idle_active : 1;
+ unsigned int do_timer_last : 1;
+ unsigned int got_idle_tick : 1;
+
ktime_t last_tick;
ktime_t next_tick;
- int inidle;
- int tick_stopped;
unsigned long idle_jiffies;
unsigned long idle_calls;
unsigned long idle_sleeps;
- int idle_active;
ktime_t idle_entrytime;
ktime_t idle_waketime;
ktime_t idle_exittime;
ktime_t idle_sleeptime;
ktime_t iowait_sleeptime;
- ktime_t sleep_length;
unsigned long last_jiffies;
+ u64 timer_expires;
+ u64 timer_expires_base;
u64 next_timer;
ktime_t idle_expires;
- int do_timer_last;
atomic_t tick_dep_mask;
};
diff --git a/kernel/time/time.c b/kernel/time/time.c
index bd4e6c7dd689..3044d48ebe56 100644
--- a/kernel/time/time.c
+++ b/kernel/time/time.c
@@ -488,6 +488,18 @@ struct timeval ns_to_timeval(const s64 nsec)
}
EXPORT_SYMBOL(ns_to_timeval);
+struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
+{
+ struct timespec64 ts = ns_to_timespec64(nsec);
+ struct __kernel_old_timeval tv;
+
+ tv.tv_sec = ts.tv_sec;
+ tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
+
+ return tv;
+}
+EXPORT_SYMBOL(ns_to_kernel_old_timeval);
+
/**
* set_normalized_timespec - set timespec sec and nsec parts and normalize
*
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
index cd03317e7b57..ca90219a1e73 100644
--- a/kernel/time/timekeeping.c
+++ b/kernel/time/timekeeping.c
@@ -138,7 +138,12 @@ static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
{
- tk->offs_boot = ktime_add(tk->offs_boot, delta);
+ /* Update both bases so mono and raw stay coupled. */
+ tk->tkr_mono.base += delta;
+ tk->tkr_raw.base += delta;
+
+ /* Accumulate time spent in suspend */
+ tk->time_suspended += delta;
}
/*
@@ -332,6 +337,7 @@ static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
tk->tkr_mono.mult = clock->mult;
tk->tkr_raw.mult = clock->mult;
tk->ntp_err_mult = 0;
+ tk->skip_second_overflow = 0;
}
/* Timekeeper helper functions. */
@@ -467,36 +473,6 @@ u64 ktime_get_raw_fast_ns(void)
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
-/**
- * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
- *
- * To keep it NMI safe since we're accessing from tracing, we're not using a
- * separate timekeeper with updates to monotonic clock and boot offset
- * protected with seqlocks. This has the following minor side effects:
- *
- * (1) Its possible that a timestamp be taken after the boot offset is updated
- * but before the timekeeper is updated. If this happens, the new boot offset
- * is added to the old timekeeping making the clock appear to update slightly
- * earlier:
- * CPU 0 CPU 1
- * timekeeping_inject_sleeptime64()
- * __timekeeping_inject_sleeptime(tk, delta);
- * timestamp();
- * timekeeping_update(tk, TK_CLEAR_NTP...);
- *
- * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
- * partially updated. Since the tk->offs_boot update is a rare event, this
- * should be a rare occurrence which postprocessing should be able to handle.
- */
-u64 notrace ktime_get_boot_fast_ns(void)
-{
- struct timekeeper *tk = &tk_core.timekeeper;
-
- return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
-}
-EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
-
-
/*
* See comment for __ktime_get_fast_ns() vs. timestamp ordering
*/
@@ -788,7 +764,6 @@ EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
static ktime_t *offsets[TK_OFFS_MAX] = {
[TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
- [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
[TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
};
@@ -886,6 +861,39 @@ void ktime_get_ts64(struct timespec64 *ts)
EXPORT_SYMBOL_GPL(ktime_get_ts64);
/**
+ * ktime_get_active_ts64 - Get the active non-suspended monotonic clock
+ * @ts: pointer to timespec variable
+ *
+ * The function calculates the monotonic clock from the realtime clock and
+ * the wall_to_monotonic offset, subtracts the accumulated suspend time and
+ * stores the result in normalized timespec64 format in the variable
+ * pointed to by @ts.
+ */
+void ktime_get_active_ts64(struct timespec64 *ts)
+{
+ struct timekeeper *tk = &tk_core.timekeeper;
+ struct timespec64 tomono, tsusp;
+ u64 nsec, nssusp;
+ unsigned int seq;
+
+ WARN_ON(timekeeping_suspended);
+
+ do {
+ seq = read_seqcount_begin(&tk_core.seq);
+ ts->tv_sec = tk->xtime_sec;
+ nsec = timekeeping_get_ns(&tk->tkr_mono);
+ tomono = tk->wall_to_monotonic;
+ nssusp = tk->time_suspended;
+ } while (read_seqcount_retry(&tk_core.seq, seq));
+
+ ts->tv_sec += tomono.tv_sec;
+ ts->tv_nsec = 0;
+ timespec64_add_ns(ts, nsec + tomono.tv_nsec);
+ tsusp = ns_to_timespec64(nssusp);
+ *ts = timespec64_sub(*ts, tsusp);
+}
+
+/**
* ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
*
* Returns the seconds portion of CLOCK_MONOTONIC with a single non
@@ -1585,7 +1593,6 @@ static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
return;
}
tk_xtime_add(tk, delta);
- tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
tk_debug_account_sleep_time(delta);
}
@@ -1799,20 +1806,19 @@ device_initcall(timekeeping_init_ops);
*/
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
s64 offset,
- bool negative,
- int adj_scale)
+ s32 mult_adj)
{
s64 interval = tk->cycle_interval;
- s32 mult_adj = 1;
- if (negative) {
- mult_adj = -mult_adj;
+ if (mult_adj == 0) {
+ return;
+ } else if (mult_adj == -1) {
interval = -interval;
- offset = -offset;
+ offset = -offset;
+ } else if (mult_adj != 1) {
+ interval *= mult_adj;
+ offset *= mult_adj;
}
- mult_adj <<= adj_scale;
- interval <<= adj_scale;
- offset <<= adj_scale;
/*
* So the following can be confusing.
@@ -1860,8 +1866,6 @@ static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
* xtime_nsec_2 = xtime_nsec_1 - offset
* Which simplfies to:
* xtime_nsec -= offset
- *
- * XXX - TODO: Doc ntp_error calculation.
*/
if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
/* NTP adjustment caused clocksource mult overflow */
@@ -1872,89 +1876,38 @@ static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
tk->tkr_mono.mult += mult_adj;
tk->xtime_interval += interval;
tk->tkr_mono.xtime_nsec -= offset;
- tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
}
/*
- * Calculate the multiplier adjustment needed to match the frequency
- * specified by NTP
+ * Adjust the timekeeper's multiplier to the correct frequency
+ * and also to reduce the accumulated error value.
*/
-static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
- s64 offset)
+static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
- s64 interval = tk->cycle_interval;
- s64 xinterval = tk->xtime_interval;
- u32 base = tk->tkr_mono.clock->mult;
- u32 max = tk->tkr_mono.clock->maxadj;
- u32 cur_adj = tk->tkr_mono.mult;
- s64 tick_error;
- bool negative;
- u32 adj_scale;
-
- /* Remove any current error adj from freq calculation */
- if (tk->ntp_err_mult)
- xinterval -= tk->cycle_interval;
-
- tk->ntp_tick = ntp_tick_length();
-
- /* Calculate current error per tick */
- tick_error = ntp_tick_length() >> tk->ntp_error_shift;
- tick_error -= (xinterval + tk->xtime_remainder);
-
- /* Don't worry about correcting it if its small */
- if (likely((tick_error >= 0) && (tick_error <= interval)))
- return;
-
- /* preserve the direction of correction */
- negative = (tick_error < 0);
+ u32 mult;
- /* If any adjustment would pass the max, just return */
- if (negative && (cur_adj - 1) <= (base - max))
- return;
- if (!negative && (cur_adj + 1) >= (base + max))
- return;
/*
- * Sort out the magnitude of the correction, but
- * avoid making so large a correction that we go
- * over the max adjustment.
+ * Determine the multiplier from the current NTP tick length.
+ * Avoid expensive division when the tick length doesn't change.
*/
- adj_scale = 0;
- tick_error = abs(tick_error);
- while (tick_error > interval) {
- u32 adj = 1 << (adj_scale + 1);
-
- /* Check if adjustment gets us within 1 unit from the max */
- if (negative && (cur_adj - adj) <= (base - max))
- break;
- if (!negative && (cur_adj + adj) >= (base + max))
- break;
-
- adj_scale++;
- tick_error >>= 1;
+ if (likely(tk->ntp_tick == ntp_tick_length())) {
+ mult = tk->tkr_mono.mult - tk->ntp_err_mult;
+ } else {
+ tk->ntp_tick = ntp_tick_length();
+ mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
+ tk->xtime_remainder, tk->cycle_interval);
}
- /* scale the corrections */
- timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
-}
+ /*
+ * If the clock is behind the NTP time, increase the multiplier by 1
+ * to catch up with it. If it's ahead and there was a remainder in the
+ * tick division, the clock will slow down. Otherwise it will stay
+ * ahead until the tick length changes to a non-divisible value.
+ */
+ tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
+ mult += tk->ntp_err_mult;
-/*
- * Adjust the timekeeper's multiplier to the correct frequency
- * and also to reduce the accumulated error value.
- */
-static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
-{
- /* Correct for the current frequency error */
- timekeeping_freqadjust(tk, offset);
-
- /* Next make a small adjustment to fix any cumulative error */
- if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
- tk->ntp_err_mult = 1;
- timekeeping_apply_adjustment(tk, offset, 0, 0);
- } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
- /* Undo any existing error adjustment */
- timekeeping_apply_adjustment(tk, offset, 1, 0);
- tk->ntp_err_mult = 0;
- }
+ timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
if (unlikely(tk->tkr_mono.clock->maxadj &&
(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
@@ -1971,18 +1924,15 @@ static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
* in the code above, its possible the required corrective factor to
* xtime_nsec could cause it to underflow.
*
- * Now, since we already accumulated the second, cannot simply roll
- * the accumulated second back, since the NTP subsystem has been
- * notified via second_overflow. So instead we push xtime_nsec forward
- * by the amount we underflowed, and add that amount into the error.
- *
- * We'll correct this error next time through this function, when
- * xtime_nsec is not as small.
+ * Now, since we have already accumulated the second and the NTP
+ * subsystem has been notified via second_overflow(), we need to skip
+ * the next update.
*/
if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
- s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
- tk->tkr_mono.xtime_nsec = 0;
- tk->ntp_error += neg << tk->ntp_error_shift;
+ tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
+ tk->tkr_mono.shift;
+ tk->xtime_sec--;
+ tk->skip_second_overflow = 1;
}
}
@@ -2005,6 +1955,15 @@ static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
tk->tkr_mono.xtime_nsec -= nsecps;
tk->xtime_sec++;
+ /*
+ * Skip NTP update if this second was accumulated before,
+ * i.e. xtime_nsec underflowed in timekeeping_adjust()
+ */
+ if (unlikely(tk->skip_second_overflow)) {
+ tk->skip_second_overflow = 0;
+ continue;
+ }
+
/* Figure out if its a leap sec and apply if needed */
leap = second_overflow(tk->xtime_sec);
if (unlikely(leap)) {
@@ -2121,7 +2080,7 @@ void update_wall_time(void)
shift--;
}
- /* correct the clock when NTP error is too big */
+ /* Adjust the multiplier to correct NTP error */
timekeeping_adjust(tk, offset);
/*
@@ -2166,7 +2125,7 @@ out:
void getboottime64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
- ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
+ ktime_t t = ktime_sub(tk->offs_real, tk->time_suspended);
*ts = ktime_to_timespec64(t);
}
@@ -2236,7 +2195,6 @@ void do_timer(unsigned long ticks)
* ktime_get_update_offsets_now - hrtimer helper
* @cwsseq: pointer to check and store the clock was set sequence number
* @offs_real: pointer to storage for monotonic -> realtime offset
- * @offs_boot: pointer to storage for monotonic -> boottime offset
* @offs_tai: pointer to storage for monotonic -> clock tai offset
*
* Returns current monotonic time and updates the offsets if the
@@ -2246,7 +2204,7 @@ void do_timer(unsigned long ticks)
* Called from hrtimer_interrupt() or retrigger_next_event()
*/
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
- ktime_t *offs_boot, ktime_t *offs_tai)
+ ktime_t *offs_tai)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
@@ -2263,7 +2221,6 @@ ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
if (*cwsseq != tk->clock_was_set_seq) {
*cwsseq = tk->clock_was_set_seq;
*offs_real = tk->offs_real;
- *offs_boot = tk->offs_boot;
*offs_tai = tk->offs_tai;
}
diff --git a/kernel/time/timekeeping.h b/kernel/time/timekeeping.h
index 7a9b4eb7a1d5..79b67f5e0343 100644
--- a/kernel/time/timekeeping.h
+++ b/kernel/time/timekeeping.h
@@ -6,7 +6,6 @@
*/
extern ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq,
ktime_t *offs_real,
- ktime_t *offs_boot,
ktime_t *offs_tai);
extern int timekeeping_valid_for_hres(void);
diff --git a/kernel/time/timer.c b/kernel/time/timer.c
index 0bcf00e3ce48..4a4fd567fb26 100644
--- a/kernel/time/timer.c
+++ b/kernel/time/timer.c
@@ -200,8 +200,6 @@ struct timer_base {
unsigned long clk;
unsigned long next_expiry;
unsigned int cpu;
- bool migration_enabled;
- bool nohz_active;
bool is_idle;
bool must_forward_clk;
DECLARE_BITMAP(pending_map, WHEEL_SIZE);
@@ -210,45 +208,64 @@ struct timer_base {
static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
-#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
+#ifdef CONFIG_NO_HZ_COMMON
+
+static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
+static DEFINE_MUTEX(timer_keys_mutex);
+
+static void timer_update_keys(struct work_struct *work);
+static DECLARE_WORK(timer_update_work, timer_update_keys);
+
+#ifdef CONFIG_SMP
unsigned int sysctl_timer_migration = 1;
-void timers_update_migration(bool update_nohz)
+DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
+
+static void timers_update_migration(void)
{
- bool on = sysctl_timer_migration && tick_nohz_active;
- unsigned int cpu;
+ if (sysctl_timer_migration && tick_nohz_active)
+ static_branch_enable(&timers_migration_enabled);
+ else
+ static_branch_disable(&timers_migration_enabled);
+}
+#else
+static inline void timers_update_migration(void) { }
+#endif /* !CONFIG_SMP */
- /* Avoid the loop, if nothing to update */
- if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
- return;
+static void timer_update_keys(struct work_struct *work)
+{
+ mutex_lock(&timer_keys_mutex);
+ timers_update_migration();
+ static_branch_enable(&timers_nohz_active);
+ mutex_unlock(&timer_keys_mutex);
+}
- for_each_possible_cpu(cpu) {
- per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
- per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
- per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
- if (!update_nohz)
- continue;
- per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
- per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
- per_cpu(hrtimer_bases.nohz_active, cpu) = true;
- }
+void timers_update_nohz(void)
+{
+ schedule_work(&timer_update_work);
}
int timer_migration_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
- static DEFINE_MUTEX(mutex);
int ret;
- mutex_lock(&mutex);
+ mutex_lock(&timer_keys_mutex);
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (!ret && write)
- timers_update_migration(false);
- mutex_unlock(&mutex);
+ timers_update_migration();
+ mutex_unlock(&timer_keys_mutex);
return ret;
}
-#endif
+
+static inline bool is_timers_nohz_active(void)
+{
+ return static_branch_unlikely(&timers_nohz_active);
+}
+#else
+static inline bool is_timers_nohz_active(void) { return false; }
+#endif /* NO_HZ_COMMON */
static unsigned long round_jiffies_common(unsigned long j, int cpu,
bool force_up)
@@ -534,7 +551,7 @@ __internal_add_timer(struct timer_base *base, struct timer_list *timer)
static void
trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
{
- if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
+ if (!is_timers_nohz_active())
return;
/*
@@ -849,21 +866,20 @@ static inline struct timer_base *get_timer_base(u32 tflags)
return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
}
-#ifdef CONFIG_NO_HZ_COMMON
static inline struct timer_base *
get_target_base(struct timer_base *base, unsigned tflags)
{
-#ifdef CONFIG_SMP
- if ((tflags & TIMER_PINNED) || !base->migration_enabled)
- return get_timer_this_cpu_base(tflags);
- return get_timer_cpu_base(tflags, get_nohz_timer_target());
-#else
- return get_timer_this_cpu_base(tflags);
+#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
+ if (static_branch_likely(&timers_migration_enabled) &&
+ !(tflags & TIMER_PINNED))
+ return get_timer_cpu_base(tflags, get_nohz_timer_target());
#endif
+ return get_timer_this_cpu_base(tflags);
}
static inline void forward_timer_base(struct timer_base *base)
{
+#ifdef CONFIG_NO_HZ_COMMON
unsigned long jnow;
/*
@@ -887,16 +903,8 @@ static inline void forward_timer_base(struct timer_base *base)
base->clk = jnow;
else
base->clk = base->next_expiry;
-}
-#else
-static inline struct timer_base *
-get_target_base(struct timer_base *base, unsigned tflags)
-{
- return get_timer_this_cpu_base(tflags);
-}
-
-static inline void forward_timer_base(struct timer_base *base) { }
#endif
+}
/*
@@ -1886,6 +1894,12 @@ int timers_dead_cpu(unsigned int cpu)
raw_spin_lock_irq(&new_base->lock);
raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
+ /*
+ * The current CPUs base clock might be stale. Update it
+ * before moving the timers over.
+ */
+ forward_timer_base(new_base);
+
BUG_ON(old_base->running_timer);
for (i = 0; i < WHEEL_SIZE; i++)