| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Change the "enabled" parameter to be configurable at runtime. Remove the
enabled check from init(), and move it to the frontswap store() function;
when enabled, pages will be stored, and when disabled, pages won't be
stored.
This is almost identical to Seth's patch from 2 years ago:
http://lkml.iu.edu/hypermail/linux/kernel/1307.2/04289.html
[akpm@linux-foundation.org: tweak documentation]
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Suggested-by: Seth Jennings <sjennings@variantweb.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Improvement idea by Marcin Jabrzyk.
comp_algorithm_store() silently accepts any supplied algorithm name,
because zram performs algorithm availability check later, during the
device configuration phase in disksize_store() and emits the following
error:
"zram: Cannot initialise %s compressing backend"
this error line is somewhat generic and, besides, can indicate a failed
attempt to allocate compression backend's working buffers.
add algorithm availability check to comp_algorithm_store():
echo lzz > /sys/block/zram0/comp_algorithm
-bash: echo: write error: Invalid argument
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reported-by: Marcin Jabrzyk <m.jabrzyk@samsung.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Supplied sysfs values sometimes contain new-line symbols (echo vs. echo
-n), which we also copy as a compression algorithm name. it works fine
when we lookup for compression algorithm, because we use sysfs_streq()
which takes care of new line symbols. however, it doesn't look nice when
we print compression algorithm name if zcomp_create() failed:
zram: Cannot initialise LXZ
compressing backend
cut trailing new-line, so the error string will look like
zram: Cannot initialise LXZ compressing backend
we also now can replace sysfs_streq() in zcomp_available_show() with
strcmp().
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
`bool locked' local variable tells us if we should perform
zcomp_strm_release() or not (jumped to `out' label before
zcomp_strm_find() occurred), which is equivalent to `zstrm' being or not
being NULL. remove `locked' and check `zstrm' instead.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently don't support on-demand device creation. The one and only
way to have N zram devices is to specify num_devices module parameter
(default value: 1). IOW if, for some reason, at some point, user wants
to have N + 1 devies he/she must umount all the existing devices, unload
the module, load the module passing num_devices equals to N + 1. And do
this again, if needed.
This patch introduces zram control sysfs class, which has two sysfs
attrs:
- hot_add -- add a new zram device
- hot_remove -- remove a specific (device_id) zram device
hot_add sysfs attr is read-only and has only automatic device id
assignment mode (as requested by Minchan Kim). read operation performed
on this attr creates a new zram device and returns back its device_id or
error status.
Usage example:
# add a new specific zram device
cat /sys/class/zram-control/hot_add
2
# remove a specific zram device
echo 4 > /sys/class/zram-control/hot_remove
Returning zram_add() error code back to user (-ENOMEM in this case)
cat /sys/class/zram-control/hot_add
cat: /sys/class/zram-control/hot_add: Cannot allocate memory
NOTE, there might be users who already depend on the fact that at least
zram0 device gets always created by zram_init(). Preserve this behavior.
[minchan@kernel.org: use zram->claim to avoid lockdep splat]
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Original patch from Minchan Kim <minchan@kernel.org> ]
Commit ba6b17d68c8e ("zram: fix umount-reset_store-mount race
condition") introduced bdev->bd_mutex to protect a race between mount
and reset. At that time, we don't have dynamic zram-add/remove feature
so it was okay.
However, as we introduce dynamic device feature, bd_mutex became
trouble.
CPU 0
echo 1 > /sys/block/zram<id>/reset
-> kernfs->s_active(A)
-> zram:reset_store->bd_mutex(B)
CPU 1
echo <id> > /sys/class/zram/zram-remove
->zram:zram_remove: bd_mutex(B)
-> sysfs_remove_group
-> kernfs->s_active(A)
IOW, AB -> BA deadlock
The reason we are holding bd_mutex for zram_remove is to prevent
any incoming open /dev/zram[0-9]. Otherwise, we could remove zram
others already have opened. But it causes above deadlock problem.
To fix the problem, this patch overrides block_device.open and
it returns -EBUSY if zram asserts he claims zram to reset so any
incoming open will be failed so we don't need to hold bd_mutex
for zram_remove ayn more.
This patch is to prepare for zram-add/remove feature.
[sergey.senozhatsky@gmail.com: simplify reset_store()]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
This patch prepares zram to enable on-demand device creation.
zram_add() performs automatic device_id assignment and returns
new device id (>= 0) or error code (< 0).
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
| |
We don't have meta->tb_lock anymore and use meta table entry bit_spin_lock
instead. update corresponding comment.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With dynamic device creation/removal (which will be introduced later in
the series) printing num_devices in zram_init() will not make a lot of
sense, as well as printing the number of destroyed devices in
destroy_devices(). Print per-device action (added/removed) in zram_add()
and zram_remove() instead.
Example:
[ 3645.259652] zram: Added device: zram5
[ 3646.152074] zram: Added device: zram6
[ 3650.585012] zram: Removed device: zram5
[ 3655.845584] zram: Added device: zram8
[ 3660.975223] zram: Removed device: zram6
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Limiting the number of zram devices to 32 (default max_num_devices value)
is confusing, let's drop it. A user with 2TB or 4TB of RAM, for example,
can request as many devices as he can handle.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch looks big, but basically it just moves code blocks.
No functional changes.
Our current code layout looks like a sandwitch.
For example,
a) between read/write handlers, we have update_used_max() helper function:
static int zram_decompress_page
static int zram_bvec_read
static inline void update_used_max
static int zram_bvec_write
static int zram_bvec_rw
b) RW request handlers __zram_make_request/zram_bio_discard are divided by
sysfs attr reset_store() function and corresponding zram_reset_device()
handler:
static void zram_bio_discard
static void zram_reset_device
static ssize_t disksize_store
static ssize_t reset_store
static void __zram_make_request
c) we first a bunch of sysfs read/store functions. then a number of
one-liners, then helper functions, RW functions, sysfs functions, helper
functions again, and so on.
Reorganize layout to be more logically grouped (a brief description,
`cat zram_drv.c | grep static` gives a bigger picture):
-- one-liners: zram_test_flag/etc.
-- helpers: is_partial_io/update_position/etc
-- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats
show() functions
exception: reset and disksize store functions are required to be after
meta() functions. because we do device create/destroy actions in these
sysfs handlers.
-- "mm" functions: meta get/put, meta alloc/free, page free
static inline bool zram_meta_get
static inline void zram_meta_put
static void zram_meta_free
static struct zram_meta *zram_meta_alloc
static void zram_free_page
-- a block of I/O functions
static int zram_decompress_page
static int zram_bvec_read
static int zram_bvec_write
static void zram_bio_discard
static int zram_bvec_rw
static void __zram_make_request
static void zram_make_request
static void zram_slot_free_notify
static int zram_rw_page
-- device contol: add/remove/init/reset functions (+zram-control class
will sit here)
static int zram_reset_device
static ssize_t reset_store
static ssize_t disksize_store
static int zram_add
static void zram_remove
static int __init zram_init
static void __exit zram_exit
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch makes some preparations for on-demand device add/remove
functionality.
Remove `zram_devices' array and switch to id-to-pointer translation (idr).
idr doesn't bloat zram struct with additional members, f.e. list_head,
yet still provides ability to match the device_id with the device pointer.
No user-space visible changes.
[Julia.Lawall@lip6.fr: return -ENOMEM when `queue' alloc fails]
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reported-by: Julia Lawall <Julia.Lawall@lip6.fr>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
| |
Fix a misplaced backslash.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently don't support zram on-demand device creation. The only way
to have N zram devices is to specify num_devices module parameter (default
value 1). That means that if, for some reason, at some point, user wants
to have N + 1 devies he/she must umount all the existing devices, unload
the module, load the module passing num_devices equals to N + 1.
This patchset introduces zram-control sysfs class, which has two sysfs
attrs:
- hot_add -- add a new zram device
- hot_remove -- remove a specific (device_id) zram device
Usage example:
# add a new specific zram device
cat /sys/class/zram-control/hot_add
1
# remove a specific zram device
echo 4 > /sys/class/zram-control/hot_remove
This patch (of 10):
Briefly describe missing `compact` sysfs entry.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
The DEBUG define in zsmalloc is useless, there is no usage of it at all.
Signed-off-by: Marcin Jabrzyk <m.jabrzyk@samsung.com>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
This config option doesn't provide any usage for zram.
Signed-off-by: Marcin Jabrzyk <m.jabrzyk@samsung.com>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With making HPAGE_SHIFT an unsigned integer we also accidentally changed
pageblock_order. In order to avoid compiler warnings we make
HPAGE_SHFIT an int again.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
We already do the check in pmd_large, so we can just forward the call.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We now support only hugepages on hardware with EDAT1 support. So we
remove the prepare/release_hugepage hooks and simplify set_huge_pte_at
and huge_ptep_get.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Nobody used these hooks so they were removed from common code, and can now
be removed from the architectures.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
With s390 dropping support for emulated hugepages, the last user of
arch_prepare_hugepage and arch_release_hugepage is gone.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is a potential bug with KVM and hugetlbfs if the hardware does not
support hugepages (EDAT1). We fix this by making EDAT1 a hard requirement
for hugepages and therefore removing and simplifying code.
As s390, with the sw-emulated hugepages, was the only user of
arch_prepare/release_hugepage I also removed theses calls from common and
other architecture code.
This patch (of 5):
By dropping support for hugepages on machines which do not have the
hardware feature EDAT1, we fix a potential s390 KVM bug.
The bug would happen if a guest is backed by hugetlbfs (not supported
currently), but does not get pagetables with PGSTE. This would lead to
random memory overwrites.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Merge first patchbomb from Andrew Morton:
- a few misc things
- ocfs2 udpates
- kernel/watchdog.c feature work (took ages to get right)
- most of MM. A few tricky bits are held up and probably won't make 4.2.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (91 commits)
mm: kmemleak_alloc_percpu() should follow the gfp from per_alloc()
mm, thp: respect MPOL_PREFERRED policy with non-local node
tmpfs: truncate prealloc blocks past i_size
mm/memory hotplug: print the last vmemmap region at the end of hot add memory
mm/mmap.c: optimization of do_mmap_pgoff function
mm: kmemleak: optimise kmemleak_lock acquiring during kmemleak_scan
mm: kmemleak: avoid deadlock on the kmemleak object insertion error path
mm: kmemleak: do not acquire scan_mutex in kmemleak_do_cleanup()
mm: kmemleak: fix delete_object_*() race when called on the same memory block
mm: kmemleak: allow safe memory scanning during kmemleak disabling
memcg: convert mem_cgroup->under_oom from atomic_t to int
memcg: remove unused mem_cgroup->oom_wakeups
frontswap: allow multiple backends
x86, mirror: x86 enabling - find mirrored memory ranges
mm/memblock: allocate boot time data structures from mirrored memory
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute
mm: do not ignore mapping_gfp_mask in page cache allocation paths
mm/cma.c: fix typos in comments
mm/oom_kill.c: print points as unsigned int
mm/hugetlb: handle races in alloc_huge_page and hugetlb_reserve_pages
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Beginning at commit d52d3997f843 ("ipv6: Create percpu rt6_info"), the
following INFO splat is logged:
===============================
[ INFO: suspicious RCU usage. ]
4.1.0-rc7-next-20150612 #1 Not tainted
-------------------------------
kernel/sched/core.c:7318 Illegal context switch in RCU-bh read-side critical section!
other info that might help us debug this:
rcu_scheduler_active = 1, debug_locks = 0
3 locks held by systemd/1:
#0: (rtnl_mutex){+.+.+.}, at: [<ffffffff815f0c8f>] rtnetlink_rcv+0x1f/0x40
#1: (rcu_read_lock_bh){......}, at: [<ffffffff816a34e2>] ipv6_add_addr+0x62/0x540
#2: (addrconf_hash_lock){+...+.}, at: [<ffffffff816a3604>] ipv6_add_addr+0x184/0x540
stack backtrace:
CPU: 0 PID: 1 Comm: systemd Not tainted 4.1.0-rc7-next-20150612 #1
Hardware name: TOSHIBA TECRA A50-A/TECRA A50-A, BIOS Version 4.20 04/17/2014
Call Trace:
dump_stack+0x4c/0x6e
lockdep_rcu_suspicious+0xe7/0x120
___might_sleep+0x1d5/0x1f0
__might_sleep+0x4d/0x90
kmem_cache_alloc+0x47/0x250
create_object+0x39/0x2e0
kmemleak_alloc_percpu+0x61/0xe0
pcpu_alloc+0x370/0x630
Additional backtrace lines are truncated. In addition, the above splat
is followed by several "BUG: sleeping function called from invalid
context at mm/slub.c:1268" outputs. As suggested by Martin KaFai Lau,
these are the clue to the fix. Routine kmemleak_alloc_percpu() always
uses GFP_KERNEL for its allocations, whereas it should follow the gfp
from its callers.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@vger.kernel.org> [3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Since commit 077fcf116c8c ("mm/thp: allocate transparent hugepages on
local node"), we handle THP allocations on page fault in a special way -
for non-interleave memory policies, the allocation is only attempted on
the node local to the current CPU, if the policy's nodemask allows the
node.
This is motivated by the assumption that THP benefits cannot offset the
cost of remote accesses, so it's better to fallback to base pages on the
local node (which might still be available, while huge pages are not due
to fragmentation) than to allocate huge pages on a remote node.
The nodemask check prevents us from violating e.g. MPOL_BIND policies
where the local node is not among the allowed nodes. However, the
current implementation can still give surprising results for the
MPOL_PREFERRED policy when the preferred node is different than the
current CPU's local node.
In such case we should honor the preferred node and not use the local
node, which is what this patch does. If hugepage allocation on the
preferred node fails, we fall back to base pages and don't try other
nodes, with the same motivation as is done for the local node hugepage
allocations. The patch also moves the MPOL_INTERLEAVE check around to
simplify the hugepage specific test.
The difference can be demonstrated using in-tree transhuge-stress test
on the following 2-node machine where half memory on one node was
occupied to show the difference.
> numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 24 25 26 27 28 29 30 31 32 33 34 35
node 0 size: 7878 MB
node 0 free: 3623 MB
node 1 cpus: 12 13 14 15 16 17 18 19 20 21 22 23 36 37 38 39 40 41 42 43 44 45 46 47
node 1 size: 8045 MB
node 1 free: 7818 MB
node distances:
node 0 1
0: 10 21
1: 21 10
Before the patch:
> numactl -p0 -C0 ./transhuge-stress
transhuge-stress: 2.197 s/loop, 0.276 ms/page, 7249.168 MiB/s 7962 succeed, 0 failed, 1786 different pages
> numactl -p0 -C12 ./transhuge-stress
transhuge-stress: 2.962 s/loop, 0.372 ms/page, 5376.172 MiB/s 7962 succeed, 0 failed, 3873 different pages
Number of successful THP allocations corresponds to free memory on node 0 in
the first case and node 1 in the second case, i.e. -p parameter is ignored and
cpu binding "wins".
After the patch:
> numactl -p0 -C0 ./transhuge-stress
transhuge-stress: 2.183 s/loop, 0.274 ms/page, 7295.516 MiB/s 7962 succeed, 0 failed, 1760 different pages
> numactl -p0 -C12 ./transhuge-stress
transhuge-stress: 2.878 s/loop, 0.361 ms/page, 5533.638 MiB/s 7962 succeed, 0 failed, 1750 different pages
> numactl -p1 -C0 ./transhuge-stress
transhuge-stress: 4.628 s/loop, 0.581 ms/page, 3440.893 MiB/s 7962 succeed, 0 failed, 3918 different pages
The -p parameter is respected regardless of cpu binding.
> numactl -C0 ./transhuge-stress
transhuge-stress: 2.202 s/loop, 0.277 ms/page, 7230.003 MiB/s 7962 succeed, 0 failed, 1750 different pages
> numactl -C12 ./transhuge-stress
transhuge-stress: 3.020 s/loop, 0.379 ms/page, 5273.324 MiB/s 7962 succeed, 0 failed, 3916 different pages
Without -p parameter, hugepage restriction to CPU-local node works as before.
Fixes: 077fcf116c8c ("mm/thp: allocate transparent hugepages on local node")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org> [4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
One of the rocksdb people noticed that when you do something like this
fallocate(fd, FALLOC_FL_KEEP_SIZE, 0, 10M)
pwrite(fd, buf, 5M, 0)
ftruncate(5M)
on tmpfs, the file would still take up 10M: which led to super fun
issues because we were getting ENOSPC before we thought we should be
getting ENOSPC. This patch fixes the problem, and mirrors what all the
other fs'es do (and was agreed to be the correct behaviour at LSF).
I tested it locally to make sure it worked properly with the following
xfs_io -f -c "falloc -k 0 10M" -c "pwrite 0 5M" -c "truncate 5M" file
Without the patch we have "Blocks: 20480", with the patch we have the
correct value of "Blocks: 10240".
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When hot add two nodes continuously, we found the vmemmap region info is
a bit messed. The last region of node 2 is printed when node 3 hot
added, like the following:
Initmem setup node 2 [mem 0x0000000000000000-0xffffffffffffffff]
On node 2 totalpages: 0
Built 2 zonelists in Node order, mobility grouping on. Total pages: 16090539
Policy zone: Normal
init_memory_mapping: [mem 0x40000000000-0x407ffffffff]
[mem 0x40000000000-0x407ffffffff] page 1G
[ffffea1000000000-ffffea10001fffff] PMD -> [ffff8a077d800000-ffff8a077d9fffff] on node 2
[ffffea1000200000-ffffea10003fffff] PMD -> [ffff8a077de00000-ffff8a077dffffff] on node 2
...
[ffffea101f600000-ffffea101f9fffff] PMD -> [ffff8a074ac00000-ffff8a074affffff] on node 2
[ffffea101fa00000-ffffea101fdfffff] PMD -> [ffff8a074a800000-ffff8a074abfffff] on node 2
Initmem setup node 3 [mem 0x0000000000000000-0xffffffffffffffff]
On node 3 totalpages: 0
Built 3 zonelists in Node order, mobility grouping on. Total pages: 16090539
Policy zone: Normal
init_memory_mapping: [mem 0x60000000000-0x607ffffffff]
[mem 0x60000000000-0x607ffffffff] page 1G
[ffffea101fe00000-ffffea101fffffff] PMD -> [ffff8a074a400000-ffff8a074a5fffff] on node 2 <=== node 2 ???
[ffffea1800000000-ffffea18001fffff] PMD -> [ffff8a074a600000-ffff8a074a7fffff] on node 3
[ffffea1800200000-ffffea18005fffff] PMD -> [ffff8a074a000000-ffff8a074a3fffff] on node 3
[ffffea1800600000-ffffea18009fffff] PMD -> [ffff8a0749c00000-ffff8a0749ffffff] on node 3
...
The cause is the last region was missed at the and of hot add memory,
and p_start, p_end, node_start were not reset, so when hot add memory to
a new node, it will consider they are not contiguous blocks and print
the previous one. So we print the last vmemmap region at the end of hot
add memory to avoid the confusion.
Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The simple check for zero length memory mapping may be performed
earlier. So that in case of zero length memory mapping some unnecessary
code is not executed at all. It does not make the code less readable
and saves some CPU cycles.
Signed-off-by: Piotr Kwapulinski <kwapulinski.piotr@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The kmemleak memory scanning uses finer grained object->lock spinlocks
primarily to avoid races with the memory block freeing. However, the
pointer lookup in the rb tree requires the kmemleak_lock to be held.
This is currently done in the find_and_get_object() function for each
pointer-like location read during scanning. While this allows a low
latency on kmemleak_*() callbacks on other CPUs, the memory scanning is
slower.
This patch moves the kmemleak_lock outside the scan_block() loop,
acquiring/releasing it only once per scanned memory block. The
allow_resched logic is moved outside scan_block() and a new
scan_large_block() function is implemented which splits large blocks in
MAX_SCAN_SIZE chunks with cond_resched() calls in-between. A redundant
(object->flags & OBJECT_NO_SCAN) check is also removed from
scan_object().
With this patch, the kmemleak scanning performance is significantly
improved: at least 50% with lock debugging disabled and over an order of
magnitude with lock proving enabled (on an arm64 system).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
While very unlikely (usually kmemleak or sl*b bug), the create_object()
function in mm/kmemleak.c may fail to insert a newly allocated object into
the rb tree. When this happens, kmemleak disables itself and prints
additional information about the object already found in the rb tree.
Such printing is done with the parent->lock acquired, however the
kmemleak_lock is already held. This is a potential race with the scanning
thread which acquires object->lock and kmemleak_lock in a
This patch removes the locking around the 'parent' object information
printing. Such object cannot be freed or removed from object_tree_root
and object_list since kmemleak_lock is already held. There is a very
small risk that some of the object data is being modified on another CPU
but the only downside is inconsistent information printing.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The kmemleak_do_cleanup() work thread already waits for the kmemleak_scan
thread to finish via kthread_stop(). Waiting in kthread_stop() while
scan_mutex is held may lead to deadlock if kmemleak_scan_thread() also
waits to acquire for scan_mutex.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Calling delete_object_*() on the same pointer is not a standard use case
(unless there is a bug in the code calling kmemleak_free()). However,
during kmemleak disabling (error or user triggered via /sys), there is a
potential race between kmemleak_free() calls on a CPU and
__kmemleak_do_cleanup() on a different CPU.
The current delete_object_*() implementation first performs a look-up
holding kmemleak_lock, increments the object->use_count and then
re-acquires kmemleak_lock to remove the object from object_tree_root and
object_list.
This patch simplifies the delete_object_*() mechanism to both look up
and remove an object from the object_tree_root and object_list
atomically (guarded by kmemleak_lock). This allows safe concurrent
calls to delete_object_*() on the same pointer without additional
locking for synchronising the kmemleak_free_enabled flag.
A side effect is a slight improvement in the delete_object_*() performance
by avoiding acquiring kmemleak_lock twice and incrementing/decrementing
object->use_count.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The kmemleak scanning thread can run for minutes. Callbacks like
kmemleak_free() are allowed during this time, the race being taken care
of by the object->lock spinlock. Such lock also prevents a memory block
from being freed or unmapped while it is being scanned by blocking the
kmemleak_free() -> ... -> __delete_object() function until the lock is
released in scan_object().
When a kmemleak error occurs (e.g. it fails to allocate its metadata),
kmemleak_enabled is set and __delete_object() is no longer called on
freed objects. If kmemleak_scan is running at the same time,
kmemleak_free() no longer waits for the object scanning to complete,
allowing the corresponding memory block to be freed or unmapped (in the
case of vfree()). This leads to kmemleak_scan potentially triggering a
page fault.
This patch separates the kmemleak_free() enabling/disabling from the
overall kmemleak_enabled nob so that we can defer the disabling of the
object freeing tracking until the scanning thread completed. The
kmemleak_free_part() is deliberately ignored by this patch since this is
only called during boot before the scanning thread started.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Vignesh Radhakrishnan <vigneshr@codeaurora.org>
Tested-by: Vignesh Radhakrishnan <vigneshr@codeaurora.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
memcg->under_oom tracks whether the memcg is under OOM conditions and is
an atomic_t counter managed with mem_cgroup_[un]mark_under_oom(). While
atomic_t appears to be simple synchronization-wise, when used as a
synchronization construct like here, it's trickier and more error-prone
due to weak memory ordering rules, especially around atomic_read(), and
false sense of security.
For example, both non-trivial read sites of memcg->under_oom are a bit
problematic although not being actually broken.
* mem_cgroup_oom_register_event()
It isn't explicit what guarantees the memory ordering between event
addition and memcg->under_oom check. This isn't broken only because
memcg_oom_lock is used for both event list and memcg->oom_lock.
* memcg_oom_recover()
The lockless test doesn't have any explanation why this would be
safe.
mem_cgroup_[un]mark_under_oom() are very cold paths and there's no point
in avoiding locking memcg_oom_lock there. This patch converts
memcg->under_oom from atomic_t to int, puts their modifications under
memcg_oom_lock and documents why the lockless test in
memcg_oom_recover() is safe.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Since commit 4942642080ea ("mm: memcg: handle non-error OOM situations
more gracefully"), nobody uses mem_cgroup->oom_wakeups. Remove it.
While at it, also fold memcg_wakeup_oom() into memcg_oom_recover() which
is its only user. This cleanup was suggested by Michal.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Change frontswap single pointer to a singly linked list of frontswap
implementations. Update Xen tmem implementation as register no longer
returns anything.
Frontswap only keeps track of a single implementation; any
implementation that registers second (or later) will replace the
previously registered implementation, and gets a pointer to the previous
implementation that the new implementation is expected to pass all
frontswap functions to if it can't handle the function itself. However
that method doesn't really make much sense, as passing that work on to
every implementation adds unnecessary work to implementations; instead,
frontswap should simply keep a list of all registered implementations
and try each implementation for any function. Most importantly, neither
of the two currently existing frontswap implementations in the kernel
actually do anything with any previous frontswap implementation that
they replace when registering.
This allows frontswap to successfully manage multiple implementations by
keeping a list of them all.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
UEFI GetMemoryMap() uses a new attribute bit to mark mirrored memory
address ranges. See UEFI 2.5 spec pages 157-158:
http://www.uefi.org/sites/default/files/resources/UEFI%202_5.pdf
On EFI enabled systems scan the memory map and tell memblock about any
mirrored ranges.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Xiexiuqi <xiexiuqi@huawei.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Try to allocate all boot time kernel data structures from mirrored
memory.
If we run out of mirrored memory print warnings, but fall back to using
non-mirrored memory to make sure that we still boot.
By number of bytes, most of what we allocate at boot time is the page
structures. 64 bytes per 4K page on x86_64 ... or about 1.5% of total
system memory. For workloads where the bulk of memory is allocated to
applications this may represent a useful improvement to system
availability since 1.5% of total memory might be a third of the memory
allocated to the kernel.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Xiexiuqi <xiexiuqi@huawei.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
based on attribute
Some high end Intel Xeon systems report uncorrectable memory errors as a
recoverable machine check. Linux has included code for some time to
process these and just signal the affected processes (or even recover
completely if the error was in a read only page that can be replaced by
reading from disk).
But we have no recovery path for errors encountered during kernel code
execution. Except for some very specific cases were are unlikely to ever
be able to recover.
Enter memory mirroring. Actually 3rd generation of memory mirroing.
Gen1: All memory is mirrored
Pro: No s/w enabling - h/w just gets good data from other side of the
mirror
Con: Halves effective memory capacity available to OS/applications
Gen2: Partial memory mirror - just mirror memory begind some memory controllers
Pro: Keep more of the capacity
Con: Nightmare to enable. Have to choose between allocating from
mirrored memory for safety vs. NUMA local memory for performance
Gen3: Address range partial memory mirror - some mirror on each memory
controller
Pro: Can tune the amount of mirror and keep NUMA performance
Con: I have to write memory management code to implement
The current plan is just to use mirrored memory for kernel allocations.
This has been broken into two phases:
1) This patch series - find the mirrored memory, use it for boot time
allocations
2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the
unused mirrored memory from mm/memblock.c and only give it out to
select kernel allocations (this is still being scoped because
page_alloc.c is scary).
This patch (of 3):
Add extra "flags" to memblock to allow selection of memory based on
attribute. No functional changes
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Xiexiuqi <xiexiuqi@huawei.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
page_cache_read, do_generic_file_read, __generic_file_splice_read and
__ntfs_grab_cache_pages currently ignore mapping_gfp_mask when calling
add_to_page_cache_lru which might cause recursion into fs down in the
direct reclaim path if the mapping really relies on GFP_NOFS semantic.
This doesn't seem to be the case now because page_cache_read (page fault
path) doesn't seem to suffer from the reclaim recursion issues and
do_generic_file_read and __generic_file_splice_read also shouldn't be
called under fs locks which would deadlock in the reclaim path. Anyway it
is better to obey mapping gfp mask and prevent from later breakage.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Anton Altaparmakov <anton@tuxera.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| | |
Signed-off-by: Shailendra Verma <shailendra.capricorn@gmail.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In oom_kill_process(), the variable 'points' is unsigned int. Print it as
such.
Signed-off-by: Wang Long <long.wanglong@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
alloc_huge_page and hugetlb_reserve_pages use region_chg to calculate the
number of pages which will be added to the reserve map. Subpool and
global reserve counts are adjusted based on the output of region_chg.
Before the pages are actually added to the reserve map, these routines
could race and add fewer pages than expected. If this happens, the
subpool and global reserve counts are not correct.
Compare the number of pages actually added (region_add) to those expected
to added (region_chg). If fewer pages are actually added, this indicates
a race and adjust counters accordingly.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Modify region_add() to keep track of regions(pages) added to the reserve
map and return this value. The return value can be compared to the return
value of region_chg() to determine if the map was modified between calls.
Make vma_commit_reservation() also pass along the return value of
region_add(). In the normal case, we want vma_commit_reservation to
return the same value as the preceding call to vma_needs_reservation.
Create a common __vma_reservation_common routine to help keep the special
case return values in sync
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
While working on hugetlbfs fallocate support, I noticed the following race
in the existing code. It is unlikely that this race is hit very often in
the current code. However, if more functionality to add and remove pages
to hugetlbfs mappings (such as fallocate) is added the likelihood of
hitting this race will increase.
alloc_huge_page and hugetlb_reserve_pages use information from the reserve
map to determine if there are enough available huge pages to complete the
operation, as well as adjust global reserve and subpool usage counts. The
order of operations is as follows:
- call region_chg() to determine the expected change based on reserve map
- determine if enough resources are available for this operation
- adjust global counts based on the expected change
- call region_add() to update the reserve map
The issue is that reserve map could change between the call to region_chg
and region_add. In this case, the counters which were adjusted based on
the output of region_chg will not be correct.
In order to hit this race today, there must be an existing shared hugetlb
mmap created with the MAP_NORESERVE flag. A page fault to allocate a huge
page via this mapping must occur at the same another task is mapping the
same region without the MAP_NORESERVE flag.
The patch set does not prevent the race from happening. Rather, it adds
simple functionality to detect when the race has occurred. If a race is
detected, then the incorrect counts are adjusted.
Review comments pointed out the need for documentation of the existing
region/reserve map routines. This patch set also adds documentation in
this area.
This patch (of 3):
This is a documentation only patch and does not modify any code.
Descriptions of the routines used for reserve map/region tracking are
added.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
There is a very subtle difference between mmap()+mlock() vs
mmap(MAP_LOCKED) semantic. The former one fails if the population of the
area fails while the later one doesn't. This basically means that
mmap(MAPLOCKED) areas might see major fault after mmap syscall returns
which is not the case for mlock. mmap man page has already been altered
but Documentation/vm/unevictable-lru.txt deserves a clarification as well.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
kenter/kleave/kdebug are wrapper macros to print functions flow and debug
information. This set was written before pr_devel() was introduced, so it
was controlled by "#if 0" construction. It is questionable if anyone is
using them [1] now.
This patch removes these macros, converts numerous printk(KERN_WARNING,
...) to use general pr_warn(...) and removes debug print line from
validate_mmap_request() function.
Signed-off-by: Leon Romanovsky <leon@leon.nu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We have confusing functions to clear pmd, pmd_clear_* and pmd_clear. Add
_huge_ to pmdp_clear functions so that we are clear that they operate on
hugepage pte.
We don't bother about other functions like pmdp_set_wrprotect,
pmdp_clear_flush_young, because they operate on PTE bits and hence
indicate they are operating on hugepage ptes
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Also move the pmd_trans_huge check to generic code.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Architectures like ppc64 [1] need to do special things while clearing pmd
before a collapse. For them this operation is largely different from a
normal hugepage pte clear. Hence add a separate function to clear pmd
before collapse. After this patch pmdp_* functions operate only on
hugepage pte, and not on regular pmd_t values pointing to page table.
[1] ppc64 needs to invalidate all the normal page pte mappings we already
have inserted in the hardware hash page table. But before doing that we
need to make sure there are no parallel hash page table insert going on.
So we need to do a kick_all_cpus_sync() before flushing the older hash
table entries. By moving this to a separate function we capture these
details and mention how it is different from a hugepage pte clear.
This patch is a cleanup and only does code movement for clarity. There
should not be any change in functionality.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|