| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* kvm-arm64/its-save-restore-fixes-5.19:
: .
: Tighten the ITS save/restore infrastructure to fail early rather
: than late. Patches courtesy of Rocardo Koller.
: .
KVM: arm64: vgic: Undo work in failed ITS restores
KVM: arm64: vgic: Do not ignore vgic_its_restore_cte failures
KVM: arm64: vgic: Add more checks when restoring ITS tables
KVM: arm64: vgic: Check that new ITEs could be saved in guest memory
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Failed ITS restores should clean up all state restored until the
failure. There is some cleanup already present when failing to restore
some tables, but it's not complete. Add the missing cleanup.
Note that this changes the behavior in case of a failed restore of the
device tables.
restore ioctl:
1. restore collection tables
2. restore device tables
With this commit, failures in 2. clean up everything created so far,
including state created by 1.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510001633.552496-5-ricarkol@google.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Restoring a corrupted collection entry (like an out of range ID) is
being ignored and treated as success. More specifically, a
vgic_its_restore_cte failure is treated as success by
vgic_its_restore_collection_table. vgic_its_restore_cte uses positive
and negative numbers to return error, and +1 to return success. The
caller then uses "ret > 0" to check for success.
Fix this by having vgic_its_restore_cte only return negative numbers on
error. Do this by changing alloc_collection return codes to only return
negative numbers on error.
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510001633.552496-4-ricarkol@google.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Try to improve the predictability of ITS save/restores (and debuggability
of failed ITS saves) by failing early on restore when trying to read
corrupted tables.
Restoring the ITS tables does some checks for corrupted tables, but not as
many as in a save: an overflowing device ID will be detected on save but
not on restore. The consequence is that restoring a corrupted table won't
be detected until the next save; including the ITS not working as expected
after the restore. As an example, if the guest sets tables overlapping
each other, which would most likely result in some corrupted table, this is
what we would see from the host point of view:
guest sets base addresses that overlap each other
save ioctl
restore ioctl
save ioctl (fails)
Ideally, we would like the first save to fail, but overlapping tables could
actually be intended by the guest. So, let's at least fail on the restore
with some checks: like checking that device and event IDs don't overflow
their tables.
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510001633.552496-3-ricarkol@google.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Try to improve the predictability of ITS save/restores by failing
commands that would lead to failed saves. More specifically, fail any
command that adds an entry into an ITS table that is not in guest
memory, which would otherwise lead to a failed ITS save ioctl. There
are already checks for collection and device entries, but not for
ITEs. Add the corresponding check for the ITT when adding ITEs.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510001633.552496-2-ricarkol@google.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Since GICv4.1, it has become legal for an implementation to advertise
GICR_{INVLPIR,INVALLR,SYNCR} while having an ITS, allowing for a more
efficient invalidation scheme (no guest command queue contention when
multiple CPUs are generating invalidations).
Provide the invalidation registers as a primitive to their ITS
counterpart. Note that we don't advertise them to the guest yet
(the architecture allows an implementation to do this).
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Oliver Upton <oupton@google.com>
Link: https://lore.kernel.org/r/20220405182327.205520-4-maz@kernel.org
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When disabling LPIs, a guest needs to poll GICR_CTLR.RWP in order
to be sure that the write has taken effect. We so far reported it
as 0, as we didn't advertise that LPIs could be turned off the
first place.
Start tracking this state during which LPIs are being disabled,
and expose the 'in progress' state via the RWP bit.
We also take this opportunity to disallow enabling LPIs and programming
GICR_{PEND,PROP}BASER while LPI disabling is in progress, as allowed by
the architecture (UNPRED behaviour).
We don't advertise the feature to the guest yet (which is allowed by
the architecture).
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220405182327.205520-3-maz@kernel.org
|
|
|
|
|
|
|
|
| |
Remove unnecessary casts.
Signed-off-by: Yu Zhe <yuzhe@nfschina.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220329102059.268983-1-yuzhe@nfschina.com
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* kvm-arm64/memory-accounting:
: .
: Sprinkle a bunch of GFP_KERNEL_ACCOUNT all over the code base
: to better track memory allocation made on behalf of a VM.
: .
KVM: arm64: Add memcg accounting to KVM allocations
KVM: arm64: vgic: Add memcg accounting to vgic allocations
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Inspired by commit 254272ce6505 ("kvm: x86: Add memcg accounting to KVM
allocations"), it would be better to make arm64 vgic consistent with
common kvm codes.
The memory allocations of VM scope should be charged into VM process
cgroup, hence change GFP_KERNEL to GFP_KERNEL_ACCOUNT.
There remain a few cases since these allocations are global, not in VM
scope.
Signed-off-by: Jia He <justin.he@arm.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210907123112.10232-2-justin.he@arm.com
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Verify that the ITS region does not extend beyond the VM-specified IPA
range (phys_size).
base + size > phys_size AND base < phys_size
Add the missing check into vgic_its_set_attr() which is called when
setting the region.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211005011921.437353-5-ricarkol@google.com
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull kvm updates from Paolo Bonzini:
"This is a large update by KVM standards, including AMD PSP (Platform
Security Processor, aka "AMD Secure Technology") and ARM CoreSight
(debug and trace) changes.
ARM:
- CoreSight: Add support for ETE and TRBE
- Stage-2 isolation for the host kernel when running in protected
mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- AMD PSP driver changes
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation, zap under
read lock, enable/disably dirty page logging under read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing the
architecture-specific code
- a handful of "Get rid of oprofile leftovers" patches
- Some selftests improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
KVM: selftests: Speed up set_memory_region_test
selftests: kvm: Fix the check of return value
KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
KVM: SVM: Skip SEV cache flush if no ASIDs have been used
KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
KVM: SVM: Drop redundant svm_sev_enabled() helper
KVM: SVM: Move SEV VMCB tracking allocation to sev.c
KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
KVM: SVM: Unconditionally invoke sev_hardware_teardown()
KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
KVM: SVM: Move SEV module params/variables to sev.c
KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
KVM: SVM: Zero out the VMCB array used to track SEV ASID association
x86/sev: Drop redundant and potentially misleading 'sev_enabled'
KVM: x86: Move reverse CPUID helpers to separate header file
KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Before GICv4.1, we don't have direct access to the VLPI state. So
we simply let it fail early when encountering any VLPI in saving.
But now we don't have to return -EACCES directly if on GICv4.1. Let’s
change the hard code and give a chance to save the VLPI state (and
preserve the UAPI).
Signed-off-by: Shenming Lu <lushenming@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210322060158.1584-7-lushenming@huawei.com
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
list_sort() internally casts the comparison function passed to it
to a different type with constant struct list_head pointers, and
uses this pointer to call the functions, which trips indirect call
Control-Flow Integrity (CFI) checking.
Instead of removing the consts, this change defines the
list_cmp_func_t type and changes the comparison function types of
all list_sort() callers to use const pointers, thus avoiding type
mismatches.
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210408182843.1754385-10-samitolvanen@google.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On a system that uses SPIs to implement MSIs (as it would be
the case on a GICv2 system exposing a GICv2m to its guests),
we deny the possibility of injecting SPIs on the in-atomic
fast-path.
This results in a very large amount of context-switches
(roughly equivalent to twice the interrupt rate) on the host,
and suboptimal performance for the guest (as measured with
a test workload involving a virtio interface backed by vhost-net).
Given that GICv2 systems are usually on the low-end of the spectrum
performance wise, they could do without the aggravation.
We solved this for GICv3+ITS by having a translation cache. But
SPIs do not need any extra infrastructure, and can be immediately
injected in the virtual distributor as the locking is already
heavy enough that we don't need to worry about anything.
This halves the number of context switches for the same workload.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Now that the 32bit KVM/arm host is a distant memory, let's move the
whole of the KVM/arm64 code into the arm64 tree.
As they said in the song: Welcome Home (Sanitarium).
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20200513104034.74741-1-maz@kernel.org
|