// SPDX-License-Identifier: GPL-2.0 /* * lib/locking-selftest.c * * Testsuite for various locking APIs: spinlocks, rwlocks, * mutexes and rw-semaphores. * * It is checking both false positives and false negatives. * * Started by Ingo Molnar: * * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar */ #include #include #include #include #include #include #include #include #include #include #include #include /* * Change this to 1 if you want to see the failure printouts: */ static unsigned int debug_locks_verbose; static DEFINE_WW_CLASS(ww_lockdep); static int __init setup_debug_locks_verbose(char *str) { get_option(&str, &debug_locks_verbose); return 1; } __setup("debug_locks_verbose=", setup_debug_locks_verbose); #define FAILURE 0 #define SUCCESS 1 #define LOCKTYPE_SPIN 0x1 #define LOCKTYPE_RWLOCK 0x2 #define LOCKTYPE_MUTEX 0x4 #define LOCKTYPE_RWSEM 0x8 #define LOCKTYPE_WW 0x10 #define LOCKTYPE_RTMUTEX 0x20 static struct ww_acquire_ctx t, t2; static struct ww_mutex o, o2, o3; /* * Normal standalone locks, for the circular and irq-context * dependency tests: */ static DEFINE_RAW_SPINLOCK(lock_A); static DEFINE_RAW_SPINLOCK(lock_B); static DEFINE_RAW_SPINLOCK(lock_C); static DEFINE_RAW_SPINLOCK(lock_D); static DEFINE_RWLOCK(rwlock_A); static DEFINE_RWLOCK(rwlock_B); static DEFINE_RWLOCK(rwlock_C); static DEFINE_RWLOCK(rwlock_D); static DEFINE_MUTEX(mutex_A); static DEFINE_MUTEX(mutex_B); static DEFINE_MUTEX(mutex_C); static DEFINE_MUTEX(mutex_D); static DECLARE_RWSEM(rwsem_A); static DECLARE_RWSEM(rwsem_B); static DECLARE_RWSEM(rwsem_C); static DECLARE_RWSEM(rwsem_D); #ifdef CONFIG_RT_MUTEXES static DEFINE_RT_MUTEX(rtmutex_A); static DEFINE_RT_MUTEX(rtmutex_B); static DEFINE_RT_MUTEX(rtmutex_C); static DEFINE_RT_MUTEX(rtmutex_D); #endif /* * Locks that we initialize dynamically as well so that * e.g. X1 and X2 becomes two instances of the same class, * but X* and Y* are different classes. We do this so that * we do not trigger a real lockup: */ static DEFINE_RAW_SPINLOCK(lock_X1); static DEFINE_RAW_SPINLOCK(lock_X2); static DEFINE_RAW_SPINLOCK(lock_Y1); static DEFINE_RAW_SPINLOCK(lock_Y2); static DEFINE_RAW_SPINLOCK(lock_Z1); static DEFINE_RAW_SPINLOCK(lock_Z2); static DEFINE_RWLOCK(rwlock_X1); static DEFINE_RWLOCK(rwlock_X2); static DEFINE_RWLOCK(rwlock_Y1); static DEFINE_RWLOCK(rwlock_Y2); static DEFINE_RWLOCK(rwlock_Z1); static DEFINE_RWLOCK(rwlock_Z2); static DEFINE_MUTEX(mutex_X1); static DEFINE_MUTEX(mutex_X2); static DEFINE_MUTEX(mutex_Y1); static DEFINE_MUTEX(mutex_Y2); static DEFINE_MUTEX(mutex_Z1); static DEFINE_MUTEX(mutex_Z2); static DECLARE_RWSEM(rwsem_X1); static DECLARE_RWSEM(rwsem_X2); static DECLARE_RWSEM(rwsem_Y1); static DECLARE_RWSEM(rwsem_Y2); static DECLARE_RWSEM(rwsem_Z1); static DECLARE_RWSEM(rwsem_Z2); #ifdef CONFIG_RT_MUTEXES static DEFINE_RT_MUTEX(rtmutex_X1); static DEFINE_RT_MUTEX(rtmutex_X2); static DEFINE_RT_MUTEX(rtmutex_Y1); static DEFINE_RT_MUTEX(rtmutex_Y2); static DEFINE_RT_MUTEX(rtmutex_Z1); static DEFINE_RT_MUTEX(rtmutex_Z2); #endif /* * non-inlined runtime initializers, to let separate locks share * the same lock-class: */ #define INIT_CLASS_FUNC(class) \ static noinline void \ init_class_##class(raw_spinlock_t *lock, rwlock_t *rwlock, \ struct mutex *mutex, struct rw_semaphore *rwsem)\ { \ raw_spin_lock_init(lock); \ rwlock_init(rwlock); \ mutex_init(mutex); \ init_rwsem(rwsem); \ } INIT_CLASS_FUNC(X) INIT_CLASS_FUNC(Y) INIT_CLASS_FUNC(Z) static void init_shared_classes(void) { #ifdef CONFIG_RT_MUTEXES static struct lock_class_key rt_X, rt_Y, rt_Z; __rt_mutex_init(&rtmutex_X1, __func__, &rt_X); __rt_mutex_init(&rtmutex_X2, __func__, &rt_X); __rt_mutex_init(&rtmutex_Y1, __func__, &rt_Y); __rt_mutex_init(&rtmutex_Y2, __func__, &rt_Y); __rt_mutex_init(&rtmutex_Z1, __func__, &rt_Z); __rt_mutex_init(&rtmutex_Z2, __func__, &rt_Z); #endif init_class_X(&lock_X1, &rwlock_X1, &mutex_X1, &rwsem_X1); init_class_X(&lock_X2, &rwlock_X2, &mutex_X2, &rwsem_X2); init_class_Y(&lock_Y1, &rwlock_Y1, &mutex_Y1, &rwsem_Y1); init_class_Y(&lock_Y2, &rwlock_Y2, &mutex_Y2, &rwsem_Y2); init_class_Z(&lock_Z1, &rwlock_Z1, &mutex_Z1, &rwsem_Z1); init_class_Z(&lock_Z2, &rwlock_Z2, &mutex_Z2, &rwsem_Z2); } /* * For spinlocks and rwlocks we also do hardirq-safe / softirq-safe tests. * The following functions use a lock from a simulated hardirq/softirq * context, causing the locks to be marked as hardirq-safe/softirq-safe: */ #define HARDIRQ_DISABLE local_irq_disable #define HARDIRQ_ENABLE local_irq_enable #define HARDIRQ_ENTER() \ local_irq_disable(); \ __irq_enter(); \ WARN_ON(!in_irq()); #define HARDIRQ_EXIT() \ __irq_exit(); \ local_irq_enable(); #define SOFTIRQ_DISABLE local_bh_disable #define SOFTIRQ_ENABLE local_bh_enable #define SOFTIRQ_ENTER() \ local_bh_disable(); \ local_irq_disable(); \ lockdep_softirq_enter(); \ WARN_ON(!in_softirq()); #define SOFTIRQ_EXIT() \ lockdep_softirq_exit(); \ local_irq_enable(); \ local_bh_enable(); /* * Shortcuts for lock/unlock API variants, to keep * the testcases compact: */ #define L(x) raw_spin_lock(&lock_##x) #define U(x) raw_spin_unlock(&lock_##x) #define LU(x) L(x); U(x) #define SI(x) raw_spin_lock_init(&lock_##x) #define WL(x) write_lock(&rwlock_##x) #define WU(x) write_unlock(&rwlock_##x) #define WLU(x) WL(x); WU(x) #define RL(x) read_lock(&rwlock_##x) #define RU(x) read_unlock(&rwlock_##x) #define RLU(x) RL(x); RU(x) #define RWI(x) rwlock_init(&rwlock_##x) #define ML(x) mutex_lock(&mutex_##x) #define MU(x) mutex_unlock(&mutex_##x) #define MI(x) mutex_init(&mutex_##x) #define RTL(x) rt_mutex_lock(&rtmutex_##x) #define RTU(x) rt_mutex_unlock(&rtmutex_##x) #define RTI(x) rt_mutex_init(&rtmutex_##x) #define WSL(x) down_write(&rwsem_##x) #define WSU(x) up_write(&rwsem_##x) #define RSL(x) down_read(&rwsem_##x) #define RSU(x) up_read(&rwsem_##x) #define RWSI(x) init_rwsem(&rwsem_##x) #ifndef CONFIG_DEBUG_WW_MUTEX_SLOWPATH #define WWAI(x) ww_acquire_init(x, &ww_lockdep) #else #define WWAI(x) do { ww_acquire_init(x, &ww_lockdep); (x)->deadlock_inject_countdown = ~0U; } while (0) #endif #define WWAD(x) ww_acquire_done(x) #define WWAF(x) ww_acquire_fini(x) #define WWL(x, c) ww_mutex_lock(x, c) #define WWT(x) ww_mutex_trylock(x) #define WWL1(x) ww_mutex_lock(x, NULL) #define WWU(x) ww_mutex_unlock(x) #define LOCK_UNLOCK_2(x,y) LOCK(x); LOCK(y); UNLOCK(y); UNLOCK(x) /* * Generate different permutations of the same testcase, using * the same basic lock-dependency/state events: */ #define GENERATE_TESTCASE(name) \ \ static void name(void) { E(); } #define GENERATE_PERMUTATIONS_2_EVENTS(name) \ \ static void name##_12(void) { E1(); E2(); } \ static void name##_21(void) { E2(); E1(); } #define GENERATE_PERMUTATIONS_3_EVENTS(name) \ \ static void name##_123(void) { E1(); E2(); E3(); } \ static void name##_132(void) { E1(); E3(); E2(); } \ static void name##_213(void) { E2(); E1(); E3(); } \ static void name##_231(void) { E2(); E3(); E1(); } \ static void name##_312(void) { E3(); E1(); E2(); } \ static void name##_321(void) { E3(); E2(); E1(); } /* * AA deadlock: */ #define E() \ \ LOCK(X1); \ LOCK(X2); /* this one should fail */ /* * 6 testcases: */ #include "locking-selftest-spin.h" GENERATE_TESTCASE(AA_spin) #include "locking-selftest-wlock.h" GENERATE_TESTCASE(AA_wlock) #include "locking-selftest-rlock.h" GENERATE_TESTCASE(AA_rlock) #include "locking-selftest-mutex.h" GENERATE_TESTCASE(AA_mutex) #include "locking-selftest-wsem.h" GENERATE_TESTCASE(AA_wsem) #include "locking-selftest-rsem.h" GENERATE_TESTCASE(AA_rsem) #ifdef CONFIG_RT_MUTEXES #include "locking-selftest-rtmutex.h" GENERATE_TESTCASE(AA_rtmutex); #endif #undef E /* * Special-case for read-locking, they are * allowed to recurse on the same lock class: */ static void rlock_AA1(void) { RL(X1); RL(X1); // this one should NOT fail } static void rlock_AA1B(void) { RL(X1); RL(X2); // this one should NOT fail } static void rsem_AA1(void) { RSL(X1); RSL(X1); // this one should fail } static void rsem_AA1B(void) { RSL(X1); RSL(X2); // this one should fail } /* * The mixing of read and write locks is not allowed: */ static void rlock_AA2(void) { RL(X1); WL(X2); // this one should fail } static void rsem_AA2(void) { RSL(X1); WSL(X2); // this one should fail } static void rlock_AA3(void) { WL(X1); RL(X2); // this one should fail } static void rsem_AA3(void) { WSL(X1); RSL(X2); // this one should fail } /* * read_lock(A) * spin_lock(B) * spin_lock(B) * write_lock(A) */ static void rlock_ABBA1(void) { RL(X1); L(Y1); U(Y1); RU(X1); L(Y1); WL(X1); WU(X1); U(Y1); // should fail } static void rwsem_ABBA1(void) { RSL(X1); ML(Y1); MU(Y1); RSU(X1); ML(Y1); WSL(X1); WSU(X1); MU(Y1); // should fail } /* * read_lock(A) * spin_lock(B) * spin_lock(B) * read_lock(A) */ static void rlock_ABBA2(void) { RL(X1); L(Y1); U(Y1); RU(X1); L(Y1); RL(X1); RU(X1); U(Y1); // should NOT fail } static void rwsem_ABBA2(void) { RSL(X1); ML(Y1); MU(Y1); RSU(X1); ML(Y1); RSL(X1); RSU(X1); MU(Y1); // should fail } /* * write_lock(A) * spin_lock(B) * spin_lock(B) * write_lock(A) */ static void rlock_ABBA3(void) { WL(X1); L(Y1); U(Y1); WU(X1); L(Y1); WL(X1); WU(X1); U(Y1); // should fail } static void rwsem_ABBA3(void) { WSL(X1); ML(Y1); MU(Y1); WSU(X1); ML(Y1); WSL(X1); WSU(X1); MU(Y1); // should fail } /* * ABBA deadlock: */ #define E() \ \ LOCK_UNLOCK_2(A, B); \ LOCK_UNLOCK_2(B, A); /* fail */ /* * 6 testcases: */ #include "locking-selftest-spin.h" GENERATE_TESTCASE(ABBA_spin) #include "locking-selftest-wlock.h" GENERATE_TESTCASE(ABBA_wlock) #include "locking-selftest-rlock.h" GENERATE_TESTCASE(ABBA_rlock) #include "locking-selftest-mutex.h" GENERATE_TESTCASE(ABBA_mutex) #include "locking-selftest-wsem.h" GENERATE_TESTCASE(ABBA_wsem) #include "locking-selftest-rsem.h" GENERATE_TESTCASE(ABBA_rsem) #ifdef CONFIG_RT_MUTEXES #include "locking-selftest-rtmutex.h" GENERATE_TESTCASE(ABBA_rtmutex); #endif #undef E /* * AB BC CA deadlock: */ #define E() \ \ LOCK_UNLOCK_2(A, B); \ LOCK_UNLOCK_2(B, C); \ LOCK_UNLOCK_2(C, A); /* fail */ /* * 6 testcases: */ #include "locking-selftest-spin.h" GENERATE_TESTCASE(ABBCCA_spin) #include "locking-selftest-wlock.h" GENERATE_TESTCASE(ABBCCA_wlock) #include "locking-selftest-rlock.h" GENERATE_TESTCASE(ABBCCA_rlock) #include "locking-selftest-mutex.h" GENERATE_TESTCASE(ABBCCA_mutex) #include "locking-selftest-wsem.h" GENERATE_TESTCASE(ABBCCA_wsem) #include "locking-selftest-rsem.h" GENERATE_TESTCASE(ABBCCA_rsem) #ifdef CONFIG_RT_MUTEXES #include "locking-selftest-rtmutex.h" GENERATE_TESTCASE(ABBCCA_rtmutex); #endif #undef E /* * AB CA BC deadlock: */ #define E() \ \ LOCK_UNLOCK_2(A, B); \ LOCK_UNLOCK_2(C, A); \ LOCK_UNLOCK_2(B, C); /* fail */ /* * 6 testcases: */ #include "locking-selftest-spin.h" GENERATE_TESTCASE(ABCABC_spin) #include "locking-selftest-wlock.h" GENERATE_TESTCASE(ABCABC_wlock) #include "locking-selftest-rlock.h" GENERATE_TESTCASE(ABCABC_rlock) #include "locking-selftest-mutex.h" GENERATE_TESTCASE(ABCABC_mutex) #include "locking-selftest-wsem.h" GENERATE_TESTCASE(ABCABC_wsem) #include "locking-selftest-rsem.h" GENERATE_TESTCASE(ABCABC_rsem) #ifdef CONFIG_RT_MUTEXES #include "locking-selftest-rtmutex.h" GENERATE_TESTCASE(ABCABC_rtmutex); #endif #undef E /* * AB BC CD DA deadlock: */ #define E() \ \ LOCK_UNLOCK_2(A, B); \ LOCK_UNLOCK_2(B, C); \ LOCK_UNLOCK_2(C, D); \ LOCK_UNLOCK_2(D, A); /* fail */ /* * 6 testcases: */ #include "locking-selftest-spin.h" GENERATE_TESTCASE(ABBCCDDA_spin) #include "locking-selftest-wlock.h" GENERATE_TESTCASE(ABBCCDDA_wlock) #include "locking-selftest-rlock.h" GENERATE_TESTCASE(ABBCCDDA_rlock) #include "locking-selftest-mutex.h" GENERATE_TESTCASE(ABBCCDDA_mutex) #include "locking-selftest-wsem.h" GENERATE_TESTCASE(ABBCCDDA_wsem) #include "locking-selftest-rsem.h" GENERATE_TESTCASE(ABBCCDDA_rsem) #ifdef CONFIG_RT_MUTEXES #include "locking-selftest-rtmutex.h" GENERATE_TESTCASE(ABBCCDDA_rtmutex); #endif #undef E /* * AB CD BD DA deadlock: */ #define E() \ \ LOCK_UNLOCK_2(A, B); \ LOCK_UNLOCK_2(C, D); \ LOCK_UNLOCK_2(B, D); \ LOCK_UNLOCK_2(D, A); /* fail */ /* * 6 testcases: */ #include "locking-selftest-spin.h" GENERATE_TESTCASE(ABCDBDDA_spin) #include "locking-selftest-wlock.h" GENERATE_TESTCASE(ABCDBDDA_wlock) #include "locking-selftest-rlock.h" GENERATE_TESTCASE(ABCDBDDA_rlock) #include "locking-selftest-mutex.h" GENERATE_TESTCASE(ABCDBDDA_mutex) #include "locking-selftest-wsem.h" GENERATE_TESTCASE(ABCDBDDA_wsem) #include "locking-selftest-rsem.h" GENERATE_TESTCASE(ABCDBDDA_rsem) #ifdef CONFIG_RT_MUTEXES #include "locking-selftest-rtmutex.h" GENERATE_TESTCASE(ABCDBDDA_rtmutex); #endif #undef E /* * AB CD BC DA deadlock: */ #define E() \ \ LOCK_UNLOCK_2(A, B); \ LOCK_UNLOCK_2(C, D); \ LOCK_UNLOCK_2(B, C); \ LOCK_UNLOCK_2(D, A); /* fail */ /* * 6 testcases: */ #include "locking-selftest-spin.h" GENERATE_TESTCASE(ABCDBCDA_spin) #include "locking-selftest-wlock.h" GENERATE_TESTCASE(ABCDBCDA_wlock) #include "locking-selftest-rlock.h" GENERATE_TESTCASE(ABCDBCDA_rlock) #include "locking-selftest-mutex.h" GENERATE_TESTCASE(ABCDBCDA_mutex) #include "locking-selftest-wsem.h" GENERATE_TESTCASE(ABCDBCDA_wsem) #include "locking-selftest-rsem.h" GENERATE_TESTCASE(ABCDBCDA_rsem) #ifdef CONFIG_RT_MUTEXES #include "locking-selftest-rtmutex.h" GENERATE_TESTCASE(ABCDBCDA_rtmutex); #endif #undef E /* * Double unlock: */ #define E() \ \ LOCK(A); \ UNLOCK(A); \ UNLOCK(A); /* fail */ /* * 6 testcases: */ #include "locking-selftest-spin.h" GENERATE_TESTCASE(double_unlock_spin) #include "locking-selftest-wlock.h" GENERATE_TESTCASE(double_unlock_wlock) #include "locking-selftest-rlock.h" GENERATE_TESTCASE(double_unlock_rlock) #include "locking-selftest-mutex.h" GENERATE_TESTCASE(double_unlock_mutex) #include "locking-selftest-wsem.h" GENERATE_TESTCASE(double_unlock_wsem) #include "locking-selftest-rsem.h" GENERATE_TESTCASE(double_unlock_rsem) #ifdef CONFIG_RT_MUTEXES #include "locking-selftest-rtmutex.h" GENERATE_TESTCASE(double_unlock_rtmutex); #endif #undef E /* * initializing a held lock: */ #define E() \ \ LOCK(A); \ INIT(A); /* fail */ /* * 6 testcases: */ #include "locking-selftest-spin.h" GENERATE_TESTCASE(init_held_spin) #include "locking-selftest-wlock.h" GENERATE_TESTCASE(init_held_wlock) #include "locking-selftest-rlock.h" GENERATE_TESTCASE(init_held_rlock) #include "locking-selftest-mutex.h" GENERATE_TESTCASE(init_held_mutex) #include "locking-selftest-wsem.h" GENERATE_TESTCASE(init_held_wsem) #include "locking-selftest-rsem.h" GENERATE_TESTCASE(init_held_rsem) #ifdef CONFIG_RT_MUTEXES #include "locking-selftest-rtmutex.h" GENERATE_TESTCASE(init_held_rtmutex); #endif #undef E /* * locking an irq-safe lock with irqs enabled: */ #define E1() \ \ IRQ_ENTER(); \ LOCK(A); \ UNLOCK(A); \ IRQ_EXIT(); #define E2() \ \ LOCK(A); \ UNLOCK(A); /* * Generate 24 testcases: */ #include "locking-selftest-spin-hardirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe1_hard_spin) #include "locking-selftest-rlock-hardirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe1_hard_rlock) #include "locking-selftest-wlock-hardirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe1_hard_wlock) #include "locking-selftest-spin-softirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe1_soft_spin) #include "locking-selftest-rlock-softirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe1_soft_rlock) #include "locking-selftest-wlock-softirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe1_soft_wlock) #undef E1 #undef E2 /* * Enabling hardirqs with a softirq-safe lock held: */ #define E1() \ \ SOFTIRQ_ENTER(); \ LOCK(A); \ UNLOCK(A); \ SOFTIRQ_EXIT(); #define E2() \ \ HARDIRQ_DISABLE(); \ LOCK(A); \ HARDIRQ_ENABLE(); \ UNLOCK(A); /* * Generate 12 testcases: */ #include "locking-selftest-spin.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2A_spin) #include "locking-selftest-wlock.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2A_wlock) #include "locking-selftest-rlock.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2A_rlock) #undef E1 #undef E2 /* * Enabling irqs with an irq-safe lock held: */ #define E1() \ \ IRQ_ENTER(); \ LOCK(A); \ UNLOCK(A); \ IRQ_EXIT(); #define E2() \ \ IRQ_DISABLE(); \ LOCK(A); \ IRQ_ENABLE(); \ UNLOCK(A); /* * Generate 24 testcases: */ #include "locking-selftest-spin-hardirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2B_hard_spin) #include "locking-selftest-rlock-hardirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2B_hard_rlock) #include "locking-selftest-wlock-hardirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2B_hard_wlock) #include "locking-selftest-spin-softirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2B_soft_spin) #include "locking-selftest-rlock-softirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2B_soft_rlock) #include "locking-selftest-wlock-softirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2B_soft_wlock) #undef E1 #undef E2 /* * Acquiring a irq-unsafe lock while holding an irq-safe-lock: */ #define E1() \ \ LOCK(A); \ LOCK(B); \ UNLOCK(B); \ UNLOCK(A); \ #define E2() \ \ LOCK(B); \ UNLOCK(B); #define E3() \ \ IRQ_ENTER(); \ LOCK(A); \ UNLOCK(A); \ IRQ_EXIT(); /* * Generate 36 testcases: */ #include "locking-selftest-spin-hardirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe3_hard_spin) #include "locking-selftest-rlock-hardirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe3_hard_rlock) #include "locking-selftest-wlock-hardirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe3_hard_wlock) #include "locking-selftest-spin-softirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe3_soft_spin) #include "locking-selftest-rlock-softirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe3_soft_rlock) #include "locking-selftest-wlock-softirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe3_soft_wlock) #undef E1 #undef E2 #undef E3 /* * If a lock turns into softirq-safe, but earlier it took * a softirq-unsafe lock: */ #define E1() \ IRQ_DISABLE(); \ LOCK(A); \ LOCK(B); \ UNLOCK(B); \ UNLOCK(A); \ IRQ_ENABLE(); #define E2() \ LOCK(B); \ UNLOCK(B); #define E3() \ IRQ_ENTER(); \ LOCK(A); \ UNLOCK(A); \ IRQ_EXIT(); /* * Generate 36 testcases: */ #include "locking-selftest-spin-hardirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe4_hard_spin) #include "locking-selftest-rlock-hardirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe4_hard_rlock) #include "locking-selftest-wlock-hardirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe4_hard_wlock) #include "locking-selftest-spin-softirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe4_soft_spin) #include "locking-selftest-rlock-softirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe4_soft_rlock) #include "locking-selftest-wlock-softirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe4_soft_wlock) #undef E1 #undef E2 #undef E3 /* * read-lock / write-lock irq inversion. * * Deadlock scenario: * * CPU#1 is at #1, i.e. it has write-locked A, but has not * taken B yet. * * CPU#2 is at #2, i.e. it has locked B. * * Hardirq hits CPU#2 at point #2 and is trying to read-lock A. * * The deadlock occurs because CPU#1 will spin on B, and CPU#2 * will spin on A. */ #define E1() \ \ IRQ_DISABLE(); \ WL(A); \ LOCK(B); \ UNLOCK(B); \ WU(A); \ IRQ_ENABLE(); #define E2() \ \ LOCK(B); \ UNLOCK(B); #define E3() \ \ IRQ_ENTER(); \ RL(A); \ RU(A); \ IRQ_EXIT(); /* * Generate 36 testcases: */ #include "locking-selftest-spin-hardirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irq_inversion_hard_spin) #include "locking-selftest-rlock-hardirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irq_inversion_hard_rlock) #include "locking-selftest-wlock-hardirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irq_inversion_hard_wlock) #include "locking-selftest-spin-softirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irq_inversion_soft_spin) #include "locking-selftest-rlock-softirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irq_inversion_soft_rlock) #include "locking-selftest-wlock-softirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irq_inversion_soft_wlock) #undef E1 #undef E2 #undef E3 /* * read-lock / write-lock recursion that is actually safe. */ #define E1() \ \ IRQ_DISABLE(); \ WL(A); \ WU(A); \ IRQ_ENABLE(); #define E2() \ \ RL(A); \ RU(A); \ #define E3() \ \ IRQ_ENTER(); \ RL(A); \ L(B); \ U(B); \ RU(A); \ IRQ_EXIT(); /* * Generate 12 testcases: */ #include "locking-selftest-hardirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irq_read_recursion_hard) #include "locking-selftest-softirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irq_read_recursion_soft) #undef E1 #undef E2 #undef E3 /* * read-lock / write-lock recursion that is unsafe. */ #define E1() \ \ IRQ_DISABLE(); \ L(B); \ WL(A); \ WU(A); \ U(B); \ IRQ_ENABLE(); #define E2() \ \ RL(A); \ RU(A); \ #define E3() \ \ IRQ_ENTER(); \ L(B); \ U(B); \ IRQ_EXIT(); /* * Generate 12 testcases: */ #include "locking-selftest-hardirq.h" // GENERATE_PERMUTATIONS_3_EVENTS(irq_read_recursion2_hard) #include "locking-selftest-softirq.h" // GENERATE_PERMUTATIONS_3_EVENTS(irq_read_recursion2_soft) #ifdef CONFIG_DEBUG_LOCK_ALLOC # define I_SPINLOCK(x) lockdep_reset_lock(&lock_##x.dep_map) # define I_RWLOCK(x) lockdep_reset_lock(&rwlock_##x.dep_map) # define I_MUTEX(x) lockdep_reset_lock(&mutex_##x.dep_map) # define I_RWSEM(x) lockdep_reset_lock(&rwsem_##x.dep_map) # define I_WW(x) lockdep_reset_lock(&x.dep_map) #ifdef CONFIG_RT_MUTEXES # define I_RTMUTEX(x) lockdep_reset_lock(&rtmutex_##x.dep_map) #endif #else # define I_SPINLOCK(x) # define I_RWLOCK(x) # define I_MUTEX(x) # define I_RWSEM(x) # define I_WW(x) #endif #ifndef I_RTMUTEX # define I_RTMUTEX(x) #endif #ifdef CONFIG_RT_MUTEXES #define I2_RTMUTEX(x) rt_mutex_init(&rtmutex_##x) #else #define I2_RTMUTEX(x) #endif #define I1(x) \ do { \ I_SPINLOCK(x); \ I_RWLOCK(x); \ I_MUTEX(x); \ I_RWSEM(x); \ I_RTMUTEX(x); \ } while (0) #define I2(x) \ do { \ raw_spin_lock_init(&lock_##x); \ rwlock_init(&rwlock_##x); \ mutex_init(&mutex_##x); \ init_rwsem(&rwsem_##x); \ I2_RTMUTEX(x); \ } while (0) static void reset_locks(void) { local_irq_disable(); lockdep_free_key_range(&ww_lockdep.acquire_key, 1); lockdep_free_key_range(&ww_lockdep.mutex_key, 1); I1(A); I1(B); I1(C); I1(D); I1(X1); I1(X2); I1(Y1); I1(Y2); I1(Z1); I1(Z2); I_WW(t); I_WW(t2); I_WW(o.base); I_WW(o2.base); I_WW(o3.base); lockdep_reset(); I2(A); I2(B); I2(C); I2(D); init_shared_classes(); ww_mutex_init(&o, &ww_lockdep); ww_mutex_init(&o2, &ww_lockdep); ww_mutex_init(&o3, &ww_lockdep); memset(&t, 0, sizeof(t)); memset(&t2, 0, sizeof(t2)); memset(&ww_lockdep.acquire_key, 0, sizeof(ww_lockdep.acquire_key)); memset(&ww_lockdep.mutex_key, 0, sizeof(ww_lockdep.mutex_key)); local_irq_enable(); } #undef I static int testcase_total; static int testcase_successes; static int expected_testcase_failures; static int unexpected_testcase_failures; static void dotest(void (*testcase_fn)(void), int expected, int lockclass_mask) { unsigned long saved_preempt_count = preempt_count(); WARN_ON(irqs_disabled()); testcase_fn(); /* * Filter out expected failures: */ #ifndef CONFIG_PROVE_LOCKING if (expected == FAILURE && debug_locks) { expected_testcase_failures++; pr_cont("failed|"); } else #endif if (debug_locks != expected) { unexpected_testcase_failures++; pr_cont("FAILED|"); } else { testcase_successes++; pr_cont(" ok |"); } testcase_total++; if (debug_locks_verbose) pr_cont(" lockclass mask: %x, debug_locks: %d, expected: %d\n", lockclass_mask, debug_locks, expected); /* * Some tests (e.g. double-unlock) might corrupt the preemption * count, so restore it: */ preempt_count_set(saved_preempt_count); #ifdef CONFIG_TRACE_IRQFLAGS if (softirq_count()) current->softirqs_enabled = 0; else current->softirqs_enabled = 1; #endif reset_locks(); } #ifdef CONFIG_RT_MUTEXES #define dotest_rt(fn, e, m) dotest((fn), (e), (m)) #else #define dotest_rt(fn, e, m) #endif static inline void print_testname(const char *testname) { printk("%33s:", testname); } #define DO_TESTCASE_1(desc, name, nr) \ print_testname(desc"/"#nr); \ dotest(name##_##nr, SUCCESS, LOCKTYPE_RWLOCK); \ pr_cont("\n"); #define DO_TESTCASE_1B(desc, name, nr) \ print_testname(desc"/"#nr); \ dotest(name##_##nr, FAILURE, LOCKTYPE_RWLOCK); \ pr_cont("\n"); #define DO_TESTCASE_3(desc, name, nr) \ print_testname(desc"/"#nr); \ dotest(name##_spin_##nr, FAILURE, LOCKTYPE_SPIN); \ dotest(name##_wlock_##nr, FAILURE, LOCKTYPE_RWLOCK); \ dotest(name##_rlock_##nr, SUCCESS, LOCKTYPE_RWLOCK); \ pr_cont("\n"); #define DO_TESTCASE_3RW(desc, name, nr) \ print_testname(desc"/"#nr); \ dotest(name##_spin_##nr, FAILURE, LOCKTYPE_SPIN|LOCKTYPE_RWLOCK);\ dotest(name##_wlock_##nr, FAILURE, LOCKTYPE_RWLOCK); \ dotest(name##_rlock_##nr, SUCCESS, LOCKTYPE_RWLOCK); \ pr_cont("\n"); #define DO_TESTCASE_6(desc, name) \ print_testname(desc); \ dotest(name##_spin, FAILURE, LOCKTYPE_SPIN); \ dotest(name##_wlock, FAILURE, LOCKTYPE_RWLOCK); \ dotest(name##_rlock, FAILURE, LOCKTYPE_RWLOCK); \ dotest(name##_mutex, FAILURE, LOCKTYPE_MUTEX); \ dotest(name##_wsem, FAILURE, LOCKTYPE_RWSEM); \ dotest(name##_rsem, FAILURE, LOCKTYPE_RWSEM); \ dotest_rt(name##_rtmutex, FAILURE, LOCKTYPE_RTMUTEX); \ pr_cont("\n"); #define DO_TESTCASE_6_SUCCESS(desc, name) \ print_testname(desc); \ dotest(name##_spin, SUCCESS, LOCKTYPE_SPIN); \ dotest(name##_wlock, SUCCESS, LOCKTYPE_RWLOCK); \ dotest(name##_rlock, SUCCESS, LOCKTYPE_RWLOCK); \ dotest(name##_mutex, SUCCESS, LOCKTYPE_MUTEX); \ dotest(name##_wsem, SUCCESS, LOCKTYPE_RWSEM); \ dotest(name##_rsem, SUCCESS, LOCKTYPE_RWSEM); \ dotest_rt(name##_rtmutex, SUCCESS, LOCKTYPE_RTMUTEX); \ pr_cont("\n"); /* * 'read' variant: rlocks must not trigger. */ #define DO_TESTCASE_6R(desc, name) \ print_testname(desc); \ dotest(name##_spin, FAILURE, LOCKTYPE_SPIN); \ dotest(name##_wlock, FAILURE, LOCKTYPE_RWLOCK); \ dotest(name##_rlock, SUCCESS, LOCKTYPE_RWLOCK); \ dotest(name##_mutex, FAILURE, LOCKTYPE_MUTEX); \ dotest(name##_wsem, FAILURE, LOCKTYPE_RWSEM); \ dotest(name##_rsem, FAILURE, LOCKTYPE_RWSEM); \ dotest_rt(name##_rtmutex, FAILURE, LOCKTYPE_RTMUTEX); \ pr_cont("\n"); #define DO_TESTCASE_2I(desc, name, nr) \ DO_TESTCASE_1("hard-"desc, name##_hard, nr); \ DO_TESTCASE_1("soft-"desc, name##_soft, nr); #define DO_TESTCASE_2IB(desc, name, nr) \ DO_TESTCASE_1B("hard-"desc, name##_hard, nr); \ DO_TESTCASE_1B("soft-"desc, name##_soft, nr); #define DO_TESTCASE_6I(desc, name, nr) \ DO_TESTCASE_3("hard-"desc, name##_hard, nr); \ DO_TESTCASE_3("soft-"desc, name##_soft, nr); #define DO_TESTCASE_6IRW(desc, name, nr) \ DO_TESTCASE_3RW("hard-"desc, name##_hard, nr); \ DO_TESTCASE_3RW("soft-"desc, name##_soft, nr); #define DO_TESTCASE_2x3(desc, name) \ DO_TESTCASE_3(desc, name, 12); \ DO_TESTCASE_3(desc, name, 21); #define DO_TESTCASE_2x6(desc, name) \ DO_TESTCASE_6I(desc, name, 12); \ DO_TESTCASE_6I(desc, name, 21); #define DO_TESTCASE_6x2(desc, name) \ DO_TESTCASE_2I(desc, name, 123); \ DO_TESTCASE_2I(desc, name, 132); \ DO_TESTCASE_2I(desc, name, 213); \ DO_TESTCASE_2I(desc, name, 231); \ DO_TESTCASE_2I(desc, name, 312); \ DO_TESTCASE_2I(desc, name, 321); #define DO_TESTCASE_6x2B(desc, name) \ DO_TESTCASE_2IB(desc, name, 123); \ DO_TESTCASE_2IB(desc, name, 132); \ DO_TESTCASE_2IB(desc, name, 213); \ DO_TESTCASE_2IB(desc, name, 231); \ DO_TESTCASE_2IB(desc, name, 312); \ DO_TESTCASE_2IB(desc, name, 321); #define DO_TESTCASE_6x6(desc, name) \ DO_TESTCASE_6I(desc, name, 123); \ DO_TESTCASE_6I(desc, name, 132); \ DO_TESTCASE_6I(desc, name, 213); \ DO_TESTCASE_6I(desc, name, 231); \ DO_TESTCASE_6I(desc, name, 312); \ DO_TESTCASE_6I(desc, name, 321); #define DO_TESTCASE_6x6RW(desc, name) \ DO_TESTCASE_6IRW(desc, name, 123); \ DO_TESTCASE_6IRW(desc, name, 132); \ DO_TESTCASE_6IRW(desc, name, 213); \ DO_TESTCASE_6IRW(desc, name, 231); \ DO_TESTCASE_6IRW(desc, name, 312); \ DO_TESTCASE_6IRW(desc, name, 321); static void ww_test_fail_acquire(void) { int ret; WWAI(&t); t.stamp++; ret = WWL(&o, &t); if (WARN_ON(!o.ctx) || WARN_ON(ret)) return; /* No lockdep test, pure API */ ret = WWL(&o, &t); WARN_ON(ret != -EALREADY); ret = WWT(&o); WARN_ON(ret); t2 = t; t2.stamp++; ret = WWL(&o, &t2); WARN_ON(ret != -EDEADLK); WWU(&o); if (WWT(&o)) WWU(&o); #ifdef CONFIG_DEBUG_LOCK_ALLOC else DEBUG_LOCKS_WARN_ON(1); #endif } static void ww_test_normal(void) { int ret; WWAI(&t); /* * None of the ww_mutex codepaths should be taken in the 'normal' * mutex calls. The easiest way to verify this is by using the * normal mutex calls, and making sure o.ctx is unmodified. */ /* mutex_lock (and indirectly, mutex_lock_nested) */ o.ctx = (void *)~0UL; mutex_lock(&o.base); mutex_unlock(&o.base); WARN_ON(o.ctx != (void *)~0UL); /* mutex_lock_interruptible (and *_nested) */ o.ctx = (void *)~0UL; ret = mutex_lock_interruptible(&o.base); if (!ret) mutex_unlock(&o.base); else WARN_ON(1); WARN_ON(o.ctx != (void *)~0UL); /* mutex_lock_killable (and *_nested) */ o.ctx = (void *)~0UL; ret = mutex_lock_killable(&o.base); if (!ret) mutex_unlock(&o.base); else WARN_ON(1); WARN_ON(o.ctx != (void *)~0UL); /* trylock, succeeding */ o.ctx = (void *)~0UL; ret = mutex_trylock(&o.base); WARN_ON(!ret); if (ret) mutex_unlock(&o.base); else WARN_ON(1); WARN_ON(o.ctx != (void *)~0UL); /* trylock, failing */ o.ctx = (void *)~0UL; mutex_lock(&o.base); ret = mutex_trylock(&o.base); WARN_ON(ret); mutex_unlock(&o.base); WARN_ON(o.ctx != (void *)~0UL); /* nest_lock */ o.ctx = (void *)~0UL; mutex_lock_nest_lock(&o.base, &t); mutex_unlock(&o.base); WARN_ON(o.ctx != (void *)~0UL); } static void ww_test_two_contexts(void) { WWAI(&t); WWAI(&t2); } static void ww_test_diff_class(void) { WWAI(&t); #ifdef CONFIG_DEBUG_MUTEXES t.ww_class = NULL; #endif WWL(&o, &t); } static void ww_test_context_done_twice(void) { WWAI(&t); WWAD(&t); WWAD(&t); WWAF(&t); } static void ww_test_context_unlock_twice(void) { WWAI(&t); WWAD(&t); WWAF(&t); WWAF(&t); } static void ww_test_context_fini_early(void) { WWAI(&t); WWL(&o, &t); WWAD(&t); WWAF(&t); } static void ww_test_context_lock_after_done(void) { WWAI(&t); WWAD(&t); WWL(&o, &t); } static void ww_test_object_unlock_twice(void) { WWL1(&o); WWU(&o); WWU(&o); } static void ww_test_object_lock_unbalanced(void) { WWAI(&t); WWL(&o, &t); t.acquired = 0; WWU(&o); WWAF(&t); } static void ww_test_object_lock_stale_context(void) { WWAI(&t); o.ctx = &t2; WWL(&o, &t); } static void ww_test_edeadlk_normal(void) { int ret; mutex_lock(&o2.base); o2.ctx = &t2; mutex_release(&o2.base.dep_map, 1, _THIS_IP_); WWAI(&t); t2 = t; t2.stamp--; ret = WWL(&o, &t); WARN_ON(ret); ret = WWL(&o2, &t); WARN_ON(ret != -EDEADLK); o2.ctx = NULL; mutex_acquire(&o2.base.dep_map, 0, 1, _THIS_IP_); mutex_unlock(&o2.base); WWU(&o); WWL(&o2, &t); } static void ww_test_edeadlk_normal_slow(void) { int ret; mutex_lock(&o2.base); mutex_release(&o2.base.dep_map, 1, _THIS_IP_); o2.ctx = &t2; WWAI(&t); t2 = t; t2.stamp--; ret = WWL(&o, &t); WARN_ON(ret); ret = WWL(&o2, &t); WARN_ON(ret != -EDEADLK); o2.ctx = NULL; mutex_acquire(&o2.base.dep_map, 0, 1, _THIS_IP_); mutex_unlock(&o2.base); WWU(&o); ww_mutex_lock_slow(&o2, &t); } static void ww_test_edeadlk_no_unlock(void) { int ret; mutex_lock(&o2.base); o2.ctx = &t2; mutex_release(&o2.base.dep_map, 1, _THIS_IP_); WWAI(&t); t2 = t; t2.stamp--; ret = WWL(&o, &t); WARN_ON(ret); ret = WWL(&o2, &t); WARN_ON(ret != -EDEADLK); o2.ctx = NULL; mutex_acquire(&o2.base.dep_map, 0, 1, _THIS_IP_); mutex_unlock(&o2.base); WWL(&o2, &t); } static void ww_test_edeadlk_no_unlock_slow(void) { int ret; mutex_lock(&o2.base); mutex_release(&o2.base.dep_map, 1, _THIS_IP_); o2.ctx = &t2; WWAI(&t); t2 = t; t2.stamp--; ret = WWL(&o, &t); WARN_ON(ret); ret = WWL(&o2, &t); WARN_ON(ret != -EDEADLK); o2.ctx = NULL; mutex_acquire(&o2.base.dep_map, 0, 1, _THIS_IP_); mutex_unlock(&o2.base); ww_mutex_lock_slow(&o2, &t); } static void ww_test_edeadlk_acquire_more(void) { int ret; mutex_lock(&o2.base); mutex_release(&o2.base.dep_map, 1, _THIS_IP_); o2.ctx = &t2; WWAI(&t); t2 = t; t2.stamp--; ret = WWL(&o, &t); WARN_ON(ret); ret = WWL(&o2, &t); WARN_ON(ret != -EDEADLK); ret = WWL(&o3, &t); } static void ww_test_edeadlk_acquire_more_slow(void) { int ret; mutex_lock(&o2.base); mutex_release(&o2.base.dep_map, 1, _THIS_IP_); o2.ctx = &t2; WWAI(&t); t2 = t; t2.stamp--; ret = WWL(&o, &t); WARN_ON(ret); ret = WWL(&o2, &t); WARN_ON(ret != -EDEADLK); ww_mutex_lock_slow(&o3, &t); } static void ww_test_edeadlk_acquire_more_edeadlk(void) { int ret; mutex_lock(&o2.base); mutex_release(&o2.base.dep_map, 1, _THIS_IP_); o2.ctx = &t2; mutex_lock(&o3.base); mutex_release(&o3.base.dep_map, 1, _THIS_IP_); o3.ctx = &t2; WWAI(&t); t2 = t; t2.stamp--; ret = WWL(&o, &t); WARN_ON(ret); ret = WWL(&o2, &t); WARN_ON(ret != -EDEADLK); ret = WWL(&o3, &t); WARN_ON(ret != -EDEADLK); } static void ww_test_edeadlk_acquire_more_edeadlk_slow(void) { int ret; mutex_lock(&o2.base); mutex_release(&o2.base.dep_map, 1, _THIS_IP_); o2.ctx = &t2; mutex_lock(&o3.base); mutex_release(&o3.base.dep_map, 1, _THIS_IP_); o3.ctx = &t2; WWAI(&t); t2 = t; t2.stamp--; ret = WWL(&o, &t); WARN_ON(ret); ret = WWL(&o2, &t); WARN_ON(ret != -EDEADLK); ww_mutex_lock_slow(&o3, &t); } static void ww_test_edeadlk_acquire_wrong(void) { int ret; mutex_lock(&o2.base); mutex_release(&o2.base.dep_map, 1, _THIS_IP_); o2.ctx = &t2; WWAI(&t); t2 = t; t2.stamp--; ret = WWL(&o, &t); WARN_ON(ret); ret = WWL(&o2, &t); WARN_ON(ret != -EDEADLK); if (!ret) WWU(&o2); WWU(&o); ret = WWL(&o3, &t); } static void ww_test_edeadlk_acquire_wrong_slow(void) { int ret; mutex_lock(&o2.base); mutex_release(&o2.base.dep_map, 1, _THIS_IP_); o2.ctx = &t2; WWAI(&t); t2 = t; t2.stamp--; ret = WWL(&o, &t); WARN_ON(ret); ret = WWL(&o2, &t); WARN_ON(ret != -EDEADLK); if (!ret) WWU(&o2); WWU(&o); ww_mutex_lock_slow(&o3, &t); } static void ww_test_spin_nest_unlocked(void) { raw_spin_lock_nest_lock(&lock_A, &o.base); U(A); } static void ww_test_unneeded_slow(void) { WWAI(&t); ww_mutex_lock_slow(&o, &t); } static void ww_test_context_block(void) { int ret; WWAI(&t); ret = WWL(&o, &t); WARN_ON(ret); WWL1(&o2); } static void ww_test_context_try(void) { int ret; WWAI(&t); ret = WWL(&o, &t); WARN_ON(ret); ret = WWT(&o2); WARN_ON(!ret); WWU(&o2); WWU(&o); } static void ww_test_context_context(void) { int ret; WWAI(&t); ret = WWL(&o, &t); WARN_ON(ret); ret = WWL(&o2, &t); WARN_ON(ret); WWU(&o2); WWU(&o); } static void ww_test_try_block(void) { bool ret; ret = WWT(&o); WARN_ON(!ret); WWL1(&o2); WWU(&o2); WWU(&o); } static void ww_test_try_try(void) { bool ret; ret = WWT(&o); WARN_ON(!ret); ret = WWT(&o2); WARN_ON(!ret); WWU(&o2); WWU(&o); } static void ww_test_try_context(void) { int ret; ret = WWT(&o); WARN_ON(!ret); WWAI(&t); ret = WWL(&o2, &t); WARN_ON(ret); } static void ww_test_block_block(void) { WWL1(&o); WWL1(&o2); } static void ww_test_block_try(void) { bool ret; WWL1(&o); ret = WWT(&o2); WARN_ON(!ret); } static void ww_test_block_context(void) { int ret; WWL1(&o); WWAI(&t); ret = WWL(&o2, &t); WARN_ON(ret); } static void ww_test_spin_block(void) { L(A); U(A); WWL1(&o); L(A); U(A); WWU(&o); L(A); WWL1(&o); WWU(&o); U(A); } static void ww_test_spin_try(void) { bool ret; L(A); U(A); ret = WWT(&o); WARN_ON(!ret); L(A); U(A); WWU(&o); L(A); ret = WWT(&o); WARN_ON(!ret); WWU(&o); U(A); } static void ww_test_spin_context(void) { int ret; L(A); U(A); WWAI(&t); ret = WWL(&o, &t); WARN_ON(ret); L(A); U(A); WWU(&o); L(A); ret = WWL(&o, &t); WARN_ON(ret); WWU(&o); U(A); } static void ww_tests(void) { printk(" --------------------------------------------------------------------------\n"); printk(" | Wound/wait tests |\n"); printk(" ---------------------\n"); print_testname("ww api failures"); dotest(ww_test_fail_acquire, SUCCESS, LOCKTYPE_WW); dotest(ww_test_normal, SUCCESS, LOCKTYPE_WW); dotest(ww_test_unneeded_slow, FAILURE, LOCKTYPE_WW); pr_cont("\n"); print_testname("ww contexts mixing"); dotest(ww_test_two_contexts, FAILURE, LOCKTYPE_WW); dotest(ww_test_diff_class, FAILURE, LOCKTYPE_WW); pr_cont("\n"); print_testname("finishing ww context"); dotest(ww_test_context_done_twice, FAILURE, LOCKTYPE_WW); dotest(ww_test_context_unlock_twice, FAILURE, LOCKTYPE_WW); dotest(ww_test_context_fini_early, FAILURE, LOCKTYPE_WW); dotest(ww_test_context_lock_after_done, FAILURE, LOCKTYPE_WW); pr_cont("\n"); print_testname("locking mismatches"); dotest(ww_test_object_unlock_twice, FAILURE, LOCKTYPE_WW); dotest(ww_test_object_lock_unbalanced, FAILURE, LOCKTYPE_WW); dotest(ww_test_object_lock_stale_context, FAILURE, LOCKTYPE_WW); pr_cont("\n"); print_testname("EDEADLK handling"); dotest(ww_test_edeadlk_normal, SUCCESS, LOCKTYPE_WW); dotest(ww_test_edeadlk_normal_slow, SUCCESS, LOCKTYPE_WW); dotest(ww_test_edeadlk_no_unlock, FAILURE, LOCKTYPE_WW); dotest(ww_test_edeadlk_no_unlock_slow, FAILURE, LOCKTYPE_WW); dotest(ww_test_edeadlk_acquire_more, FAILURE, LOCKTYPE_WW); dotest(ww_test_edeadlk_acquire_more_slow, FAILURE, LOCKTYPE_WW); dotest(ww_test_edeadlk_acquire_more_edeadlk, FAILURE, LOCKTYPE_WW); dotest(ww_test_edeadlk_acquire_more_edeadlk_slow, FAILURE, LOCKTYPE_WW); dotest(ww_test_edeadlk_acquire_wrong, FAILURE, LOCKTYPE_WW); dotest(ww_test_edeadlk_acquire_wrong_slow, FAILURE, LOCKTYPE_WW); pr_cont("\n"); print_testname("spinlock nest unlocked"); dotest(ww_test_spin_nest_unlocked, FAILURE, LOCKTYPE_WW); pr_cont("\n"); printk(" -----------------------------------------------------\n"); printk(" |block | try |context|\n"); printk(" -----------------------------------------------------\n"); print_testname("context"); dotest(ww_test_context_block, FAILURE, LOCKTYPE_WW); dotest(ww_test_context_try, SUCCESS, LOCKTYPE_WW); dotest(ww_test_context_context, SUCCESS, LOCKTYPE_WW); pr_cont("\n"); print_testname("try"); dotest(ww_test_try_block, FAILURE, LOCKTYPE_WW); dotest(ww_test_try_try, SUCCESS, LOCKTYPE_WW); dotest(ww_test_try_context, FAILURE, LOCKTYPE_WW); pr_cont("\n"); print_testname("block"); dotest(ww_test_block_block, FAILURE, LOCKTYPE_WW); dotest(ww_test_block_try, SUCCESS, LOCKTYPE_WW); dotest(ww_test_block_context, FAILURE, LOCKTYPE_WW); pr_cont("\n"); print_testname("spinlock"); dotest(ww_test_spin_block, FAILURE, LOCKTYPE_WW); dotest(ww_test_spin_try, SUCCESS, LOCKTYPE_WW); dotest(ww_test_spin_context, FAILURE, LOCKTYPE_WW); pr_cont("\n"); } void locking_selftest(void) { /* * Got a locking failure before the selftest ran? */ if (!debug_locks) { printk("----------------------------------\n"); printk("| Locking API testsuite disabled |\n"); printk("----------------------------------\n"); return; } /* * Run the testsuite: */ printk("------------------------\n"); printk("| Locking API testsuite:\n"); printk("----------------------------------------------------------------------------\n"); printk(" | spin |wlock |rlock |mutex | wsem | rsem |\n"); printk(" --------------------------------------------------------------------------\n"); init_shared_classes(); debug_locks_silent = !debug_locks_verbose; DO_TESTCASE_6R("A-A deadlock", AA); DO_TESTCASE_6R("A-B-B-A deadlock", ABBA); DO_TESTCASE_6R("A-B-B-C-C-A deadlock", ABBCCA); DO_TESTCASE_6R("A-B-C-A-B-C deadlock", ABCABC); DO_TESTCASE_6R("A-B-B-C-C-D-D-A deadlock", ABBCCDDA); DO_TESTCASE_6R("A-B-C-D-B-D-D-A deadlock", ABCDBDDA); DO_TESTCASE_6R("A-B-C-D-B-C-D-A deadlock", ABCDBCDA); DO_TESTCASE_6("double unlock", double_unlock); DO_TESTCASE_6("initialize held", init_held); printk(" --------------------------------------------------------------------------\n"); print_testname("recursive read-lock"); pr_cont(" |"); dotest(rlock_AA1, SUCCESS, LOCKTYPE_RWLOCK); pr_cont(" |"); dotest(rsem_AA1, FAILURE, LOCKTYPE_RWSEM); pr_cont("\n"); print_testname("recursive read-lock #2"); pr_cont(" |"); dotest(rlock_AA1B, SUCCESS, LOCKTYPE_RWLOCK); pr_cont(" |"); dotest(rsem_AA1B, FAILURE, LOCKTYPE_RWSEM); pr_cont("\n"); print_testname("mixed read-write-lock"); pr_cont(" |"); dotest(rlock_AA2, FAILURE, LOCKTYPE_RWLOCK); pr_cont(" |"); dotest(rsem_AA2, FAILURE, LOCKTYPE_RWSEM); pr_cont("\n"); print_testname("mixed write-read-lock"); pr_cont(" |"); dotest(rlock_AA3, FAILURE, LOCKTYPE_RWLOCK); pr_cont(" |"); dotest(rsem_AA3, FAILURE, LOCKTYPE_RWSEM); pr_cont("\n"); print_testname("mixed read-lock/lock-write ABBA"); pr_cont(" |"); dotest(rlock_ABBA1, FAILURE, LOCKTYPE_RWLOCK); #ifdef CONFIG_PROVE_LOCKING /* * Lockdep does indeed fail here, but there's nothing we can do about * that now. Don't kill lockdep for it. */ unexpected_testcase_failures--; #endif pr_cont(" |"); dotest(rwsem_ABBA1, FAILURE, LOCKTYPE_RWSEM); print_testname("mixed read-lock/lock-read ABBA"); pr_cont(" |"); dotest(rlock_ABBA2, SUCCESS, LOCKTYPE_RWLOCK); pr_cont(" |"); dotest(rwsem_ABBA2, FAILURE, LOCKTYPE_RWSEM); print_testname("mixed write-lock/lock-write ABBA"); pr_cont(" |"); dotest(rlock_ABBA3, FAILURE, LOCKTYPE_RWLOCK); pr_cont(" |"); dotest(rwsem_ABBA3, FAILURE, LOCKTYPE_RWSEM); printk(" --------------------------------------------------------------------------\n"); /* * irq-context testcases: */ DO_TESTCASE_2x6("irqs-on + irq-safe-A", irqsafe1); DO_TESTCASE_2x3("sirq-safe-A => hirqs-on", irqsafe2A); DO_TESTCASE_2x6("safe-A + irqs-on", irqsafe2B); DO_TESTCASE_6x6("safe-A + unsafe-B #1", irqsafe3); DO_TESTCASE_6x6("safe-A + unsafe-B #2", irqsafe4); DO_TESTCASE_6x6RW("irq lock-inversion", irq_inversion); DO_TESTCASE_6x2("irq read-recursion", irq_read_recursion); // DO_TESTCASE_6x2B("irq read-recursion #2", irq_read_recursion2); ww_tests(); if (unexpected_testcase_failures) { printk("-----------------------------------------------------------------\n"); debug_locks = 0; printk("BUG: %3d unexpected failures (out of %3d) - debugging disabled! |\n", unexpected_testcase_failures, testcase_total); printk("-----------------------------------------------------------------\n"); } else if (expected_testcase_failures && testcase_successes) { printk("--------------------------------------------------------\n"); printk("%3d out of %3d testcases failed, as expected. |\n", expected_testcase_failures, testcase_total); printk("----------------------------------------------------\n"); debug_locks = 1; } else if (expected_testcase_failures && !testcase_successes) { printk("--------------------------------------------------------\n"); printk("All %3d testcases failed, as expected. |\n", expected_testcase_failures); printk("----------------------------------------\n"); debug_locks = 1; } else { printk("-------------------------------------------------------\n"); printk("Good, all %3d testcases passed! |\n", testcase_successes); printk("---------------------------------\n"); debug_locks = 1; } debug_locks_silent = 0; } 1189'>1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
/*
 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
 *  Routines for control of CS4231(A)/CS4232/InterWave & compatible chips
 *
 *  Bugs:
 *     - sometimes record brokes playback with WSS portion of
 *       Yamaha OPL3-SA3 chip
 *     - CS4231 (GUS MAX) - still trouble with occasional noises
 *			  - broken initialization?
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */

#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <sound/core.h>
#include <sound/wss.h>
#include <sound/pcm_params.h>
#include <sound/tlv.h>

#include <asm/io.h>
#include <asm/dma.h>
#include <asm/irq.h>

MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
MODULE_DESCRIPTION("Routines for control of CS4231(A)/CS4232/InterWave & compatible chips");
MODULE_LICENSE("GPL");

#if 0
#define SNDRV_DEBUG_MCE
#endif

/*
 *  Some variables
 */

static unsigned char freq_bits[14] = {
	/* 5510 */	0x00 | CS4231_XTAL2,
	/* 6620 */	0x0E | CS4231_XTAL2,
	/* 8000 */	0x00 | CS4231_XTAL1,
	/* 9600 */	0x0E | CS4231_XTAL1,
	/* 11025 */	0x02 | CS4231_XTAL2,
	/* 16000 */	0x02 | CS4231_XTAL1,
	/* 18900 */	0x04 | CS4231_XTAL2,
	/* 22050 */	0x06 | CS4231_XTAL2,
	/* 27042 */	0x04 | CS4231_XTAL1,
	/* 32000 */	0x06 | CS4231_XTAL1,
	/* 33075 */	0x0C | CS4231_XTAL2,
	/* 37800 */	0x08 | CS4231_XTAL2,
	/* 44100 */	0x0A | CS4231_XTAL2,
	/* 48000 */	0x0C | CS4231_XTAL1
};

static unsigned int rates[14] = {
	5510, 6620, 8000, 9600, 11025, 16000, 18900, 22050,
	27042, 32000, 33075, 37800, 44100, 48000
};

static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
	.count = ARRAY_SIZE(rates),
	.list = rates,
	.mask = 0,
};

static int snd_wss_xrate(struct snd_pcm_runtime *runtime)
{
	return snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
					  &hw_constraints_rates);
}

static unsigned char snd_wss_original_image[32] =
{
	0x00,			/* 00/00 - lic */
	0x00,			/* 01/01 - ric */
	0x9f,			/* 02/02 - la1ic */
	0x9f,			/* 03/03 - ra1ic */
	0x9f,			/* 04/04 - la2ic */
	0x9f,			/* 05/05 - ra2ic */
	0xbf,			/* 06/06 - loc */
	0xbf,			/* 07/07 - roc */
	0x20,			/* 08/08 - pdfr */
	CS4231_AUTOCALIB,	/* 09/09 - ic */
	0x00,			/* 0a/10 - pc */
	0x00,			/* 0b/11 - ti */
	CS4231_MODE2,		/* 0c/12 - mi */
	0xfc,			/* 0d/13 - lbc */
	0x00,			/* 0e/14 - pbru */
	0x00,			/* 0f/15 - pbrl */
	0x80,			/* 10/16 - afei */
	0x01,			/* 11/17 - afeii */
	0x9f,			/* 12/18 - llic */
	0x9f,			/* 13/19 - rlic */
	0x00,			/* 14/20 - tlb */
	0x00,			/* 15/21 - thb */
	0x00,			/* 16/22 - la3mic/reserved */
	0x00,			/* 17/23 - ra3mic/reserved */
	0x00,			/* 18/24 - afs */
	0x00,			/* 19/25 - lamoc/version */
	0xcf,			/* 1a/26 - mioc */
	0x00,			/* 1b/27 - ramoc/reserved */
	0x20,			/* 1c/28 - cdfr */
	0x00,			/* 1d/29 - res4 */
	0x00,			/* 1e/30 - cbru */
	0x00,			/* 1f/31 - cbrl */
};

static unsigned char snd_opti93x_original_image[32] =
{
	0x00,		/* 00/00 - l_mixout_outctrl */
	0x00,		/* 01/01 - r_mixout_outctrl */
	0x88,		/* 02/02 - l_cd_inctrl */
	0x88,		/* 03/03 - r_cd_inctrl */
	0x88,		/* 04/04 - l_a1/fm_inctrl */
	0x88,		/* 05/05 - r_a1/fm_inctrl */
	0x80,		/* 06/06 - l_dac_inctrl */
	0x80,		/* 07/07 - r_dac_inctrl */
	0x00,		/* 08/08 - ply_dataform_reg */
	0x00,		/* 09/09 - if_conf */
	0x00,		/* 0a/10 - pin_ctrl */
	0x00,		/* 0b/11 - err_init_reg */
	0x0a,		/* 0c/12 - id_reg */
	0x00,		/* 0d/13 - reserved */
	0x00,		/* 0e/14 - ply_upcount_reg */
	0x00,		/* 0f/15 - ply_lowcount_reg */
	0x88,		/* 10/16 - reserved/l_a1_inctrl */
	0x88,		/* 11/17 - reserved/r_a1_inctrl */
	0x88,		/* 12/18 - l_line_inctrl */
	0x88,		/* 13/19 - r_line_inctrl */
	0x88,		/* 14/20 - l_mic_inctrl */
	0x88,		/* 15/21 - r_mic_inctrl */
	0x80,		/* 16/22 - l_out_outctrl */
	0x80,		/* 17/23 - r_out_outctrl */
	0x00,		/* 18/24 - reserved */
	0x00,		/* 19/25 - reserved */
	0x00,		/* 1a/26 - reserved */
	0x00,		/* 1b/27 - reserved */
	0x00,		/* 1c/28 - cap_dataform_reg */
	0x00,		/* 1d/29 - reserved */
	0x00,		/* 1e/30 - cap_upcount_reg */
	0x00		/* 1f/31 - cap_lowcount_reg */
};

/*
 *  Basic I/O functions
 */

static inline void wss_outb(struct snd_wss *chip, u8 offset, u8 val)
{
	outb(val, chip->port + offset);
}

static inline u8 wss_inb(struct snd_wss *chip, u8 offset)
{
	return inb(chip->port + offset);
}

static void snd_wss_wait(struct snd_wss *chip)
{
	int timeout;

	for (timeout = 250;
	     timeout > 0 && (wss_inb(chip, CS4231P(REGSEL)) & CS4231_INIT);
	     timeout--)
		udelay(100);
}

static void snd_wss_dout(struct snd_wss *chip, unsigned char reg,
			 unsigned char value)
{
	int timeout;

	for (timeout = 250;
	     timeout > 0 && (wss_inb(chip, CS4231P(REGSEL)) & CS4231_INIT);
	     timeout--)
		udelay(10);
	wss_outb(chip, CS4231P(REGSEL), chip->mce_bit | reg);
	wss_outb(chip, CS4231P(REG), value);
	mb();
}

void snd_wss_out(struct snd_wss *chip, unsigned char reg, unsigned char value)
{
	snd_wss_wait(chip);
#ifdef CONFIG_SND_DEBUG
	if (wss_inb(chip, CS4231P(REGSEL)) & CS4231_INIT)
		snd_printk(KERN_DEBUG "out: auto calibration time out "
			   "- reg = 0x%x, value = 0x%x\n", reg, value);
#endif
	wss_outb(chip, CS4231P(REGSEL), chip->mce_bit | reg);
	wss_outb(chip, CS4231P(REG), value);
	chip->image[reg] = value;
	mb();
	snd_printdd("codec out - reg 0x%x = 0x%x\n",
			chip->mce_bit | reg, value);
}
EXPORT_SYMBOL(snd_wss_out);

unsigned char snd_wss_in(struct snd_wss *chip, unsigned char reg)
{
	snd_wss_wait(chip);
#ifdef CONFIG_SND_DEBUG
	if (wss_inb(chip, CS4231P(REGSEL)) & CS4231_INIT)
		snd_printk(KERN_DEBUG "in: auto calibration time out "
			   "- reg = 0x%x\n", reg);
#endif
	wss_outb(chip, CS4231P(REGSEL), chip->mce_bit | reg);
	mb();
	return wss_inb(chip, CS4231P(REG));
}
EXPORT_SYMBOL(snd_wss_in);

void snd_cs4236_ext_out(struct snd_wss *chip, unsigned char reg,
			unsigned char val)
{
	wss_outb(chip, CS4231P(REGSEL), chip->mce_bit | 0x17);
	wss_outb(chip, CS4231P(REG),
		 reg | (chip->image[CS4236_EXT_REG] & 0x01));
	wss_outb(chip, CS4231P(REG), val);
	chip->eimage[CS4236_REG(reg)] = val;
#if 0
	printk(KERN_DEBUG "ext out : reg = 0x%x, val = 0x%x\n", reg, val);
#endif
}
EXPORT_SYMBOL(snd_cs4236_ext_out);

unsigned char snd_cs4236_ext_in(struct snd_wss *chip, unsigned char reg)
{
	wss_outb(chip, CS4231P(REGSEL), chip->mce_bit | 0x17);
	wss_outb(chip, CS4231P(REG),
		 reg | (chip->image[CS4236_EXT_REG] & 0x01));
#if 1
	return wss_inb(chip, CS4231P(REG));
#else
	{
		unsigned char res;
		res = wss_inb(chip, CS4231P(REG));
		printk(KERN_DEBUG "ext in : reg = 0x%x, val = 0x%x\n",
		       reg, res);
		return res;
	}
#endif
}
EXPORT_SYMBOL(snd_cs4236_ext_in);

#if 0

static void snd_wss_debug(struct snd_wss *chip)
{
	printk(KERN_DEBUG
		"CS4231 REGS:      INDEX = 0x%02x  "
		"                 STATUS = 0x%02x\n",
					wss_inb(chip, CS4231P(REGSEL)),
					wss_inb(chip, CS4231P(STATUS)));
	printk(KERN_DEBUG
		"  0x00: left input      = 0x%02x  "
		"  0x10: alt 1 (CFIG 2)  = 0x%02x\n",
					snd_wss_in(chip, 0x00),
					snd_wss_in(chip, 0x10));
	printk(KERN_DEBUG
		"  0x01: right input     = 0x%02x  "
		"  0x11: alt 2 (CFIG 3)  = 0x%02x\n",
					snd_wss_in(chip, 0x01),
					snd_wss_in(chip, 0x11));
	printk(KERN_DEBUG
		"  0x02: GF1 left input  = 0x%02x  "
		"  0x12: left line in    = 0x%02x\n",
					snd_wss_in(chip, 0x02),
					snd_wss_in(chip, 0x12));
	printk(KERN_DEBUG
		"  0x03: GF1 right input = 0x%02x  "
		"  0x13: right line in   = 0x%02x\n",
					snd_wss_in(chip, 0x03),
					snd_wss_in(chip, 0x13));
	printk(KERN_DEBUG
		"  0x04: CD left input   = 0x%02x  "
		"  0x14: timer low       = 0x%02x\n",
					snd_wss_in(chip, 0x04),
					snd_wss_in(chip, 0x14));
	printk(KERN_DEBUG
		"  0x05: CD right input  = 0x%02x  "
		"  0x15: timer high      = 0x%02x\n",
					snd_wss_in(chip, 0x05),
					snd_wss_in(chip, 0x15));
	printk(KERN_DEBUG
		"  0x06: left output     = 0x%02x  "
		"  0x16: left MIC (PnP)  = 0x%02x\n",
					snd_wss_in(chip, 0x06),
					snd_wss_in(chip, 0x16));
	printk(KERN_DEBUG
		"  0x07: right output    = 0x%02x  "
		"  0x17: right MIC (PnP) = 0x%02x\n",
					snd_wss_in(chip, 0x07),
					snd_wss_in(chip, 0x17));
	printk(KERN_DEBUG
		"  0x08: playback format = 0x%02x  "
		"  0x18: IRQ status      = 0x%02x\n",
					snd_wss_in(chip, 0x08),
					snd_wss_in(chip, 0x18));
	printk(KERN_DEBUG
		"  0x09: iface (CFIG 1)  = 0x%02x  "
		"  0x19: left line out   = 0x%02x\n",
					snd_wss_in(chip, 0x09),
					snd_wss_in(chip, 0x19));
	printk(KERN_DEBUG
		"  0x0a: pin control     = 0x%02x  "
		"  0x1a: mono control    = 0x%02x\n",
					snd_wss_in(chip, 0x0a),
					snd_wss_in(chip, 0x1a));
	printk(KERN_DEBUG
		"  0x0b: init & status   = 0x%02x  "
		"  0x1b: right line out  = 0x%02x\n",
					snd_wss_in(chip, 0x0b),
					snd_wss_in(chip, 0x1b));
	printk(KERN_DEBUG
		"  0x0c: revision & mode = 0x%02x  "
		"  0x1c: record format   = 0x%02x\n",
					snd_wss_in(chip, 0x0c),
					snd_wss_in(chip, 0x1c));
	printk(KERN_DEBUG
		"  0x0d: loopback        = 0x%02x  "
		"  0x1d: var freq (PnP)  = 0x%02x\n",
					snd_wss_in(chip, 0x0d),
					snd_wss_in(chip, 0x1d));
	printk(KERN_DEBUG
		"  0x0e: ply upr count   = 0x%02x  "
		"  0x1e: ply lwr count   = 0x%02x\n",
					snd_wss_in(chip, 0x0e),
					snd_wss_in(chip, 0x1e));
	printk(KERN_DEBUG
		"  0x0f: rec upr count   = 0x%02x  "
		"  0x1f: rec lwr count   = 0x%02x\n",
					snd_wss_in(chip, 0x0f),
					snd_wss_in(chip, 0x1f));
}

#endif

/*
 *  CS4231 detection / MCE routines
 */

static void snd_wss_busy_wait(struct snd_wss *chip)
{
	int timeout;

	/* huh.. looks like this sequence is proper for CS4231A chip (GUS MAX) */
	for (timeout = 5; timeout > 0; timeout--)
		wss_inb(chip, CS4231P(REGSEL));
	/* end of cleanup sequence */
	for (timeout = 25000;
	     timeout > 0 && (wss_inb(chip, CS4231P(REGSEL)) & CS4231_INIT);
	     timeout--)
		udelay(10);
}

void snd_wss_mce_up(struct snd_wss *chip)
{
	unsigned long flags;
	int timeout;

	snd_wss_wait(chip);
#ifdef CONFIG_SND_DEBUG
	if (wss_inb(chip, CS4231P(REGSEL)) & CS4231_INIT)
		snd_printk(KERN_DEBUG
			   "mce_up - auto calibration time out (0)\n");
#endif
	spin_lock_irqsave(&chip->reg_lock, flags);
	chip->mce_bit |= CS4231_MCE;
	timeout = wss_inb(chip, CS4231P(REGSEL));
	if (timeout == 0x80)
		snd_printk(KERN_DEBUG "mce_up [0x%lx]: "
			   "serious init problem - codec still busy\n",
			   chip->port);
	if (!(timeout & CS4231_MCE))
		wss_outb(chip, CS4231P(REGSEL),
			 chip->mce_bit | (timeout & 0x1f));
	spin_unlock_irqrestore(&chip->reg_lock, flags);
}
EXPORT_SYMBOL(snd_wss_mce_up);

void snd_wss_mce_down(struct snd_wss *chip)
{
	unsigned long flags;
	unsigned long end_time;
	int timeout;
	int hw_mask = WSS_HW_CS4231_MASK | WSS_HW_CS4232_MASK | WSS_HW_AD1848;

	snd_wss_busy_wait(chip);

#ifdef CONFIG_SND_DEBUG
	if (wss_inb(chip, CS4231P(REGSEL)) & CS4231_INIT)
		snd_printk(KERN_DEBUG "mce_down [0x%lx] - "
			   "auto calibration time out (0)\n",
			   (long)CS4231P(REGSEL));
#endif
	spin_lock_irqsave(&chip->reg_lock, flags);
	chip->mce_bit &= ~CS4231_MCE;
	timeout = wss_inb(chip, CS4231P(REGSEL));
	wss_outb(chip, CS4231P(REGSEL), chip->mce_bit | (timeout & 0x1f));
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	if (timeout == 0x80)
		snd_printk(KERN_DEBUG "mce_down [0x%lx]: "
			   "serious init problem - codec still busy\n",
			   chip->port);
	if ((timeout & CS4231_MCE) == 0 || !(chip->hardware & hw_mask))
		return;

	/*
	 * Wait for (possible -- during init auto-calibration may not be set)
	 * calibration process to start. Needs up to 5 sample periods on AD1848
	 * which at the slowest possible rate of 5.5125 kHz means 907 us.
	 */
	msleep(1);

	snd_printdd("(1) jiffies = %lu\n", jiffies);

	/* check condition up to 250 ms */
	end_time = jiffies + msecs_to_jiffies(250);
	while (snd_wss_in(chip, CS4231_TEST_INIT) &
		CS4231_CALIB_IN_PROGRESS) {

		if (time_after(jiffies, end_time)) {
			snd_printk(KERN_ERR "mce_down - "
					"auto calibration time out (2)\n");
			return;
		}
		msleep(1);
	}

	snd_printdd("(2) jiffies = %lu\n", jiffies);

	/* check condition up to 100 ms */
	end_time = jiffies + msecs_to_jiffies(100);
	while (wss_inb(chip, CS4231P(REGSEL)) & CS4231_INIT) {
		if (time_after(jiffies, end_time)) {
			snd_printk(KERN_ERR "mce_down - auto calibration time out (3)\n");
			return;
		}
		msleep(1);
	}

	snd_printdd("(3) jiffies = %lu\n", jiffies);
	snd_printd("mce_down - exit = 0x%x\n", wss_inb(chip, CS4231P(REGSEL)));
}
EXPORT_SYMBOL(snd_wss_mce_down);

static unsigned int snd_wss_get_count(unsigned char format, unsigned int size)
{
	switch (format & 0xe0) {
	case CS4231_LINEAR_16:
	case CS4231_LINEAR_16_BIG:
		size >>= 1;
		break;
	case CS4231_ADPCM_16:
		return size >> 2;
	}
	if (format & CS4231_STEREO)
		size >>= 1;
	return size;
}

static int snd_wss_trigger(struct snd_pcm_substream *substream,
			   int cmd)
{
	struct snd_wss *chip = snd_pcm_substream_chip(substream);
	int result = 0;
	unsigned int what;
	struct snd_pcm_substream *s;
	int do_start;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
		do_start = 1; break;
	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
		do_start = 0; break;
	default:
		return -EINVAL;
	}

	what = 0;
	snd_pcm_group_for_each_entry(s, substream) {
		if (s == chip->playback_substream) {
			what |= CS4231_PLAYBACK_ENABLE;
			snd_pcm_trigger_done(s, substream);
		} else if (s == chip->capture_substream) {
			what |= CS4231_RECORD_ENABLE;
			snd_pcm_trigger_done(s, substream);
		}
	}
	spin_lock(&chip->reg_lock);
	if (do_start) {
		chip->image[CS4231_IFACE_CTRL] |= what;
		if (chip->trigger)
			chip->trigger(chip, what, 1);
	} else {
		chip->image[CS4231_IFACE_CTRL] &= ~what;
		if (chip->trigger)
			chip->trigger(chip, what, 0);
	}
	snd_wss_out(chip, CS4231_IFACE_CTRL, chip->image[CS4231_IFACE_CTRL]);
	spin_unlock(&chip->reg_lock);
#if 0
	snd_wss_debug(chip);
#endif
	return result;
}

/*
 *  CODEC I/O
 */

static unsigned char snd_wss_get_rate(unsigned int rate)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(rates); i++)
		if (rate == rates[i])
			return freq_bits[i];
	// snd_BUG();
	return freq_bits[ARRAY_SIZE(rates) - 1];
}

static unsigned char snd_wss_get_format(struct snd_wss *chip,
					int format,
					int channels)
{
	unsigned char rformat;

	rformat = CS4231_LINEAR_8;
	switch (format) {
	case SNDRV_PCM_FORMAT_MU_LAW:	rformat = CS4231_ULAW_8; break;
	case SNDRV_PCM_FORMAT_A_LAW:	rformat = CS4231_ALAW_8; break;
	case SNDRV_PCM_FORMAT_S16_LE:	rformat = CS4231_LINEAR_16; break;
	case SNDRV_PCM_FORMAT_S16_BE:	rformat = CS4231_LINEAR_16_BIG; break;
	case SNDRV_PCM_FORMAT_IMA_ADPCM:	rformat = CS4231_ADPCM_16; break;
	}
	if (channels > 1)
		rformat |= CS4231_STEREO;
#if 0
	snd_printk(KERN_DEBUG "get_format: 0x%x (mode=0x%x)\n", format, mode);
#endif
	return rformat;
}

static void snd_wss_calibrate_mute(struct snd_wss *chip, int mute)
{
	unsigned long flags;

	mute = mute ? 0x80 : 0;
	spin_lock_irqsave(&chip->reg_lock, flags);
	if (chip->calibrate_mute == mute) {
		spin_unlock_irqrestore(&chip->reg_lock, flags);
		return;
	}
	if (!mute) {
		snd_wss_dout(chip, CS4231_LEFT_INPUT,
			     chip->image[CS4231_LEFT_INPUT]);
		snd_wss_dout(chip, CS4231_RIGHT_INPUT,
			     chip->image[CS4231_RIGHT_INPUT]);
		snd_wss_dout(chip, CS4231_LOOPBACK,
			     chip->image[CS4231_LOOPBACK]);
	} else {
		snd_wss_dout(chip, CS4231_LEFT_INPUT,
			     0);
		snd_wss_dout(chip, CS4231_RIGHT_INPUT,
			     0);
		snd_wss_dout(chip, CS4231_LOOPBACK,
			     0xfd);
	}

	snd_wss_dout(chip, CS4231_AUX1_LEFT_INPUT,
		     mute | chip->image[CS4231_AUX1_LEFT_INPUT]);
	snd_wss_dout(chip, CS4231_AUX1_RIGHT_INPUT,
		     mute | chip->image[CS4231_AUX1_RIGHT_INPUT]);
	snd_wss_dout(chip, CS4231_AUX2_LEFT_INPUT,
		     mute | chip->image[CS4231_AUX2_LEFT_INPUT]);
	snd_wss_dout(chip, CS4231_AUX2_RIGHT_INPUT,
		     mute | chip->image[CS4231_AUX2_RIGHT_INPUT]);
	snd_wss_dout(chip, CS4231_LEFT_OUTPUT,
		     mute | chip->image[CS4231_LEFT_OUTPUT]);
	snd_wss_dout(chip, CS4231_RIGHT_OUTPUT,
		     mute | chip->image[CS4231_RIGHT_OUTPUT]);
	if (!(chip->hardware & WSS_HW_AD1848_MASK)) {
		snd_wss_dout(chip, CS4231_LEFT_LINE_IN,
			     mute | chip->image[CS4231_LEFT_LINE_IN]);
		snd_wss_dout(chip, CS4231_RIGHT_LINE_IN,
			     mute | chip->image[CS4231_RIGHT_LINE_IN]);
		snd_wss_dout(chip, CS4231_MONO_CTRL,
			     mute ? 0xc0 : chip->image[CS4231_MONO_CTRL]);
	}
	if (chip->hardware == WSS_HW_INTERWAVE) {
		snd_wss_dout(chip, CS4231_LEFT_MIC_INPUT,
			     mute | chip->image[CS4231_LEFT_MIC_INPUT]);
		snd_wss_dout(chip, CS4231_RIGHT_MIC_INPUT,
			     mute | chip->image[CS4231_RIGHT_MIC_INPUT]);
		snd_wss_dout(chip, CS4231_LINE_LEFT_OUTPUT,
			     mute | chip->image[CS4231_LINE_LEFT_OUTPUT]);
		snd_wss_dout(chip, CS4231_LINE_RIGHT_OUTPUT,
			     mute | chip->image[CS4231_LINE_RIGHT_OUTPUT]);
	}
	chip->calibrate_mute = mute;
	spin_unlock_irqrestore(&chip->reg_lock, flags);
}

static void snd_wss_playback_format(struct snd_wss *chip,
				       struct snd_pcm_hw_params *params,
				       unsigned char pdfr)
{
	unsigned long flags;
	int full_calib = 1;

	mutex_lock(&chip->mce_mutex);
	if (chip->hardware == WSS_HW_CS4231A ||
	    (chip->hardware & WSS_HW_CS4232_MASK)) {
		spin_lock_irqsave(&chip->reg_lock, flags);
		if ((chip->image[CS4231_PLAYBK_FORMAT] & 0x0f) == (pdfr & 0x0f)) {	/* rate is same? */
			snd_wss_out(chip, CS4231_ALT_FEATURE_1,
				    chip->image[CS4231_ALT_FEATURE_1] | 0x10);
			chip->image[CS4231_PLAYBK_FORMAT] = pdfr;
			snd_wss_out(chip, CS4231_PLAYBK_FORMAT,
				    chip->image[CS4231_PLAYBK_FORMAT]);
			snd_wss_out(chip, CS4231_ALT_FEATURE_1,
				    chip->image[CS4231_ALT_FEATURE_1] &= ~0x10);
			udelay(100); /* Fixes audible clicks at least on GUS MAX */
			full_calib = 0;
		}
		spin_unlock_irqrestore(&chip->reg_lock, flags);
	} else if (chip->hardware == WSS_HW_AD1845) {
		unsigned rate = params_rate(params);

		/*
		 * Program the AD1845 correctly for the playback stream.
		 * Note that we do NOT need to toggle the MCE bit because
		 * the PLAYBACK_ENABLE bit of the Interface Configuration
		 * register is set.
		 *
		 * NOTE: We seem to need to write to the MSB before the LSB
		 *       to get the correct sample frequency.
		 */
		spin_lock_irqsave(&chip->reg_lock, flags);
		snd_wss_out(chip, CS4231_PLAYBK_FORMAT, (pdfr & 0xf0));
		snd_wss_out(chip, AD1845_UPR_FREQ_SEL, (rate >> 8) & 0xff);
		snd_wss_out(chip, AD1845_LWR_FREQ_SEL, rate & 0xff);
		full_calib = 0;
		spin_unlock_irqrestore(&chip->reg_lock, flags);
	}
	if (full_calib) {
		snd_wss_mce_up(chip);
		spin_lock_irqsave(&chip->reg_lock, flags);
		if (chip->hardware != WSS_HW_INTERWAVE && !chip->single_dma) {
			if (chip->image[CS4231_IFACE_CTRL] & CS4231_RECORD_ENABLE)
				pdfr = (pdfr & 0xf0) |
				       (chip->image[CS4231_REC_FORMAT] & 0x0f);
		} else {
			chip->image[CS4231_PLAYBK_FORMAT] = pdfr;
		}
		snd_wss_out(chip, CS4231_PLAYBK_FORMAT, pdfr);
		spin_unlock_irqrestore(&chip->reg_lock, flags);
		if (chip->hardware == WSS_HW_OPL3SA2)
			udelay(100);	/* this seems to help */
		snd_wss_mce_down(chip);
	}
	mutex_unlock(&chip->mce_mutex);
}

static void snd_wss_capture_format(struct snd_wss *chip,
				   struct snd_pcm_hw_params *params,
				   unsigned char cdfr)
{
	unsigned long flags;
	int full_calib = 1;

	mutex_lock(&chip->mce_mutex);
	if (chip->hardware == WSS_HW_CS4231A ||
	    (chip->hardware & WSS_HW_CS4232_MASK)) {
		spin_lock_irqsave(&chip->reg_lock, flags);
		if ((chip->image[CS4231_PLAYBK_FORMAT] & 0x0f) == (cdfr & 0x0f) ||	/* rate is same? */
		    (chip->image[CS4231_IFACE_CTRL] & CS4231_PLAYBACK_ENABLE)) {
			snd_wss_out(chip, CS4231_ALT_FEATURE_1,
				chip->image[CS4231_ALT_FEATURE_1] | 0x20);
			snd_wss_out(chip, CS4231_REC_FORMAT,
				chip->image[CS4231_REC_FORMAT] = cdfr);
			snd_wss_out(chip, CS4231_ALT_FEATURE_1,
				chip->image[CS4231_ALT_FEATURE_1] &= ~0x20);
			full_calib = 0;
		}
		spin_unlock_irqrestore(&chip->reg_lock, flags);
	} else if (chip->hardware == WSS_HW_AD1845) {
		unsigned rate = params_rate(params);

		/*
		 * Program the AD1845 correctly for the capture stream.
		 * Note that we do NOT need to toggle the MCE bit because
		 * the PLAYBACK_ENABLE bit of the Interface Configuration
		 * register is set.
		 *
		 * NOTE: We seem to need to write to the MSB before the LSB
		 *       to get the correct sample frequency.
		 */
		spin_lock_irqsave(&chip->reg_lock, flags);
		snd_wss_out(chip, CS4231_REC_FORMAT, (cdfr & 0xf0));
		snd_wss_out(chip, AD1845_UPR_FREQ_SEL, (rate >> 8) & 0xff);
		snd_wss_out(chip, AD1845_LWR_FREQ_SEL, rate & 0xff);
		full_calib = 0;
		spin_unlock_irqrestore(&chip->reg_lock, flags);
	}
	if (full_calib) {
		snd_wss_mce_up(chip);
		spin_lock_irqsave(&chip->reg_lock, flags);
		if (chip->hardware != WSS_HW_INTERWAVE &&
		    !(chip->image[CS4231_IFACE_CTRL] & CS4231_PLAYBACK_ENABLE)) {
			if (chip->single_dma)
				snd_wss_out(chip, CS4231_PLAYBK_FORMAT, cdfr);
			else
				snd_wss_out(chip, CS4231_PLAYBK_FORMAT,
				   (chip->image[CS4231_PLAYBK_FORMAT] & 0xf0) |
				   (cdfr & 0x0f));
			spin_unlock_irqrestore(&chip->reg_lock, flags);
			snd_wss_mce_down(chip);
			snd_wss_mce_up(chip);
			spin_lock_irqsave(&chip->reg_lock, flags);
		}
		if (chip->hardware & WSS_HW_AD1848_MASK)
			snd_wss_out(chip, CS4231_PLAYBK_FORMAT, cdfr);
		else
			snd_wss_out(chip, CS4231_REC_FORMAT, cdfr);
		spin_unlock_irqrestore(&chip->reg_lock, flags);
		snd_wss_mce_down(chip);
	}
	mutex_unlock(&chip->mce_mutex);
}

/*
 *  Timer interface
 */

static unsigned long snd_wss_timer_resolution(struct snd_timer *timer)
{
	struct snd_wss *chip = snd_timer_chip(timer);
	if (chip->hardware & WSS_HW_CS4236B_MASK)
		return 14467;
	else
		return chip->image[CS4231_PLAYBK_FORMAT] & 1 ? 9969 : 9920;
}

static int snd_wss_timer_start(struct snd_timer *timer)
{
	unsigned long flags;
	unsigned int ticks;
	struct snd_wss *chip = snd_timer_chip(timer);
	spin_lock_irqsave(&chip->reg_lock, flags);
	ticks = timer->sticks;
	if ((chip->image[CS4231_ALT_FEATURE_1] & CS4231_TIMER_ENABLE) == 0 ||
	    (unsigned char)(ticks >> 8) != chip->image[CS4231_TIMER_HIGH] ||
	    (unsigned char)ticks != chip->image[CS4231_TIMER_LOW]) {
		chip->image[CS4231_TIMER_HIGH] = (unsigned char) (ticks >> 8);
		snd_wss_out(chip, CS4231_TIMER_HIGH,
			    chip->image[CS4231_TIMER_HIGH]);
		chip->image[CS4231_TIMER_LOW] = (unsigned char) ticks;
		snd_wss_out(chip, CS4231_TIMER_LOW,
			    chip->image[CS4231_TIMER_LOW]);
		snd_wss_out(chip, CS4231_ALT_FEATURE_1,
			    chip->image[CS4231_ALT_FEATURE_1] |
			    CS4231_TIMER_ENABLE);
	}
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	return 0;
}

static int snd_wss_timer_stop(struct snd_timer *timer)
{
	unsigned long flags;
	struct snd_wss *chip = snd_timer_chip(timer);
	spin_lock_irqsave(&chip->reg_lock, flags);
	chip->image[CS4231_ALT_FEATURE_1] &= ~CS4231_TIMER_ENABLE;
	snd_wss_out(chip, CS4231_ALT_FEATURE_1,
		    chip->image[CS4231_ALT_FEATURE_1]);
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	return 0;
}

static void snd_wss_init(struct snd_wss *chip)
{
	unsigned long flags;

	snd_wss_calibrate_mute(chip, 1);
	snd_wss_mce_down(chip);

#ifdef SNDRV_DEBUG_MCE
	snd_printk(KERN_DEBUG "init: (1)\n");
#endif
	snd_wss_mce_up(chip);
	spin_lock_irqsave(&chip->reg_lock, flags);
	chip->image[CS4231_IFACE_CTRL] &= ~(CS4231_PLAYBACK_ENABLE |
					    CS4231_PLAYBACK_PIO |
					    CS4231_RECORD_ENABLE |
					    CS4231_RECORD_PIO |
					    CS4231_CALIB_MODE);
	chip->image[CS4231_IFACE_CTRL] |= CS4231_AUTOCALIB;
	snd_wss_out(chip, CS4231_IFACE_CTRL, chip->image[CS4231_IFACE_CTRL]);
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	snd_wss_mce_down(chip);

#ifdef SNDRV_DEBUG_MCE
	snd_printk(KERN_DEBUG "init: (2)\n");
#endif

	snd_wss_mce_up(chip);
	spin_lock_irqsave(&chip->reg_lock, flags);
	chip->image[CS4231_IFACE_CTRL] &= ~CS4231_AUTOCALIB;
	snd_wss_out(chip, CS4231_IFACE_CTRL, chip->image[CS4231_IFACE_CTRL]);
	snd_wss_out(chip,
		    CS4231_ALT_FEATURE_1, chip->image[CS4231_ALT_FEATURE_1]);
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	snd_wss_mce_down(chip);

#ifdef SNDRV_DEBUG_MCE
	snd_printk(KERN_DEBUG "init: (3) - afei = 0x%x\n",
		   chip->image[CS4231_ALT_FEATURE_1]);
#endif

	spin_lock_irqsave(&chip->reg_lock, flags);
	snd_wss_out(chip, CS4231_ALT_FEATURE_2,
		    chip->image[CS4231_ALT_FEATURE_2]);
	spin_unlock_irqrestore(&chip->reg_lock, flags);

	snd_wss_mce_up(chip);
	spin_lock_irqsave(&chip->reg_lock, flags);
	snd_wss_out(chip, CS4231_PLAYBK_FORMAT,
		    chip->image[CS4231_PLAYBK_FORMAT]);
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	snd_wss_mce_down(chip);

#ifdef SNDRV_DEBUG_MCE
	snd_printk(KERN_DEBUG "init: (4)\n");
#endif

	snd_wss_mce_up(chip);
	spin_lock_irqsave(&chip->reg_lock, flags);
	if (!(chip->hardware & WSS_HW_AD1848_MASK))
		snd_wss_out(chip, CS4231_REC_FORMAT,
			    chip->image[CS4231_REC_FORMAT]);
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	snd_wss_mce_down(chip);
	snd_wss_calibrate_mute(chip, 0);

#ifdef SNDRV_DEBUG_MCE
	snd_printk(KERN_DEBUG "init: (5)\n");
#endif
}

static int snd_wss_open(struct snd_wss *chip, unsigned int mode)
{
	unsigned long flags;

	mutex_lock(&chip->open_mutex);
	if ((chip->mode & mode) ||
	    ((chip->mode & WSS_MODE_OPEN) && chip->single_dma)) {
		mutex_unlock(&chip->open_mutex);
		return -EAGAIN;
	}
	if (chip->mode & WSS_MODE_OPEN) {
		chip->mode |= mode;
		mutex_unlock(&chip->open_mutex);
		return 0;
	}
	/* ok. now enable and ack CODEC IRQ */
	spin_lock_irqsave(&chip->reg_lock, flags);
	if (!(chip->hardware & WSS_HW_AD1848_MASK)) {
		snd_wss_out(chip, CS4231_IRQ_STATUS,
			    CS4231_PLAYBACK_IRQ |
			    CS4231_RECORD_IRQ |
			    CS4231_TIMER_IRQ);
		snd_wss_out(chip, CS4231_IRQ_STATUS, 0);
	}
	wss_outb(chip, CS4231P(STATUS), 0);	/* clear IRQ */
	wss_outb(chip, CS4231P(STATUS), 0);	/* clear IRQ */
	chip->image[CS4231_PIN_CTRL] |= CS4231_IRQ_ENABLE;
	snd_wss_out(chip, CS4231_PIN_CTRL, chip->image[CS4231_PIN_CTRL]);
	if (!(chip->hardware & WSS_HW_AD1848_MASK)) {
		snd_wss_out(chip, CS4231_IRQ_STATUS,
			    CS4231_PLAYBACK_IRQ |
			    CS4231_RECORD_IRQ |
			    CS4231_TIMER_IRQ);
		snd_wss_out(chip, CS4231_IRQ_STATUS, 0);
	}
	spin_unlock_irqrestore(&chip->reg_lock, flags);

	chip->mode = mode;
	mutex_unlock(&chip->open_mutex);
	return 0;
}

static void snd_wss_close(struct snd_wss *chip, unsigned int mode)
{
	unsigned long flags;

	mutex_lock(&chip->open_mutex);
	chip->mode &= ~mode;
	if (chip->mode & WSS_MODE_OPEN) {
		mutex_unlock(&chip->open_mutex);
		return;
	}
	/* disable IRQ */
	spin_lock_irqsave(&chip->reg_lock, flags);
	if (!(chip->hardware & WSS_HW_AD1848_MASK))
		snd_wss_out(chip, CS4231_IRQ_STATUS, 0);
	wss_outb(chip, CS4231P(STATUS), 0);	/* clear IRQ */
	wss_outb(chip, CS4231P(STATUS), 0);	/* clear IRQ */
	chip->image[CS4231_PIN_CTRL] &= ~CS4231_IRQ_ENABLE;
	snd_wss_out(chip, CS4231_PIN_CTRL, chip->image[CS4231_PIN_CTRL]);

	/* now disable record & playback */

	if (chip->image[CS4231_IFACE_CTRL] & (CS4231_PLAYBACK_ENABLE | CS4231_PLAYBACK_PIO |
					       CS4231_RECORD_ENABLE | CS4231_RECORD_PIO)) {
		spin_unlock_irqrestore(&chip->reg_lock, flags);
		snd_wss_mce_up(chip);
		spin_lock_irqsave(&chip->reg_lock, flags);
		chip->image[CS4231_IFACE_CTRL] &= ~(CS4231_PLAYBACK_ENABLE | CS4231_PLAYBACK_PIO |
						     CS4231_RECORD_ENABLE | CS4231_RECORD_PIO);
		snd_wss_out(chip, CS4231_IFACE_CTRL,
			    chip->image[CS4231_IFACE_CTRL]);
		spin_unlock_irqrestore(&chip->reg_lock, flags);
		snd_wss_mce_down(chip);
		spin_lock_irqsave(&chip->reg_lock, flags);
	}

	/* clear IRQ again */
	if (!(chip->hardware & WSS_HW_AD1848_MASK))
		snd_wss_out(chip, CS4231_IRQ_STATUS, 0);
	wss_outb(chip, CS4231P(STATUS), 0);	/* clear IRQ */
	wss_outb(chip, CS4231P(STATUS), 0);	/* clear IRQ */
	spin_unlock_irqrestore(&chip->reg_lock, flags);

	chip->mode = 0;
	mutex_unlock(&chip->open_mutex);
}

/*
 *  timer open/close
 */

static int snd_wss_timer_open(struct snd_timer *timer)
{
	struct snd_wss *chip = snd_timer_chip(timer);
	snd_wss_open(chip, WSS_MODE_TIMER);
	return 0;
}

static int snd_wss_timer_close(struct snd_timer *timer)
{
	struct snd_wss *chip = snd_timer_chip(timer);
	snd_wss_close(chip, WSS_MODE_TIMER);
	return 0;
}

static struct snd_timer_hardware snd_wss_timer_table =
{
	.flags =	SNDRV_TIMER_HW_AUTO,
	.resolution =	9945,
	.ticks =	65535,
	.open =		snd_wss_timer_open,
	.close =	snd_wss_timer_close,
	.c_resolution = snd_wss_timer_resolution,
	.start =	snd_wss_timer_start,
	.stop =		snd_wss_timer_stop,
};

/*
 *  ok.. exported functions..
 */

static int snd_wss_playback_hw_params(struct snd_pcm_substream *substream,
					 struct snd_pcm_hw_params *hw_params)
{
	struct snd_wss *chip = snd_pcm_substream_chip(substream);
	unsigned char new_pdfr;
	int err;

	if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
		return err;
	new_pdfr = snd_wss_get_format(chip, params_format(hw_params),
				params_channels(hw_params)) |
				snd_wss_get_rate(params_rate(hw_params));
	chip->set_playback_format(chip, hw_params, new_pdfr);
	return 0;
}

static int snd_wss_playback_hw_free(struct snd_pcm_substream *substream)
{
	return snd_pcm_lib_free_pages(substream);
}

static int snd_wss_playback_prepare(struct snd_pcm_substream *substream)
{
	struct snd_wss *chip = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;
	unsigned long flags;
	unsigned int size = snd_pcm_lib_buffer_bytes(substream);
	unsigned int count = snd_pcm_lib_period_bytes(substream);

	spin_lock_irqsave(&chip->reg_lock, flags);
	chip->p_dma_size = size;
	chip->image[CS4231_IFACE_CTRL] &= ~(CS4231_PLAYBACK_ENABLE | CS4231_PLAYBACK_PIO);
	snd_dma_program(chip->dma1, runtime->dma_addr, size, DMA_MODE_WRITE | DMA_AUTOINIT);
	count = snd_wss_get_count(chip->image[CS4231_PLAYBK_FORMAT], count) - 1;
	snd_wss_out(chip, CS4231_PLY_LWR_CNT, (unsigned char) count);
	snd_wss_out(chip, CS4231_PLY_UPR_CNT, (unsigned char) (count >> 8));
	spin_unlock_irqrestore(&chip->reg_lock, flags);
#if 0
	snd_wss_debug(chip);
#endif
	return 0;
}

static int snd_wss_capture_hw_params(struct snd_pcm_substream *substream,
					struct snd_pcm_hw_params *hw_params)
{
	struct snd_wss *chip = snd_pcm_substream_chip(substream);
	unsigned char new_cdfr;
	int err;

	if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
		return err;
	new_cdfr = snd_wss_get_format(chip, params_format(hw_params),
			   params_channels(hw_params)) |
			   snd_wss_get_rate(params_rate(hw_params));
	chip->set_capture_format(chip, hw_params, new_cdfr);
	return 0;
}

static int snd_wss_capture_hw_free(struct snd_pcm_substream *substream)
{
	return snd_pcm_lib_free_pages(substream);
}

static int snd_wss_capture_prepare(struct snd_pcm_substream *substream)
{
	struct snd_wss *chip = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;
	unsigned long flags;
	unsigned int size = snd_pcm_lib_buffer_bytes(substream);
	unsigned int count = snd_pcm_lib_period_bytes(substream);

	spin_lock_irqsave(&chip->reg_lock, flags);
	chip->c_dma_size = size;
	chip->image[CS4231_IFACE_CTRL] &= ~(CS4231_RECORD_ENABLE | CS4231_RECORD_PIO);
	snd_dma_program(chip->dma2, runtime->dma_addr, size, DMA_MODE_READ | DMA_AUTOINIT);
	if (chip->hardware & WSS_HW_AD1848_MASK)
		count = snd_wss_get_count(chip->image[CS4231_PLAYBK_FORMAT],
					  count);
	else
		count = snd_wss_get_count(chip->image[CS4231_REC_FORMAT],
					  count);
	count--;
	if (chip->single_dma && chip->hardware != WSS_HW_INTERWAVE) {
		snd_wss_out(chip, CS4231_PLY_LWR_CNT, (unsigned char) count);
		snd_wss_out(chip, CS4231_PLY_UPR_CNT,
			    (unsigned char) (count >> 8));
	} else {
		snd_wss_out(chip, CS4231_REC_LWR_CNT, (unsigned char) count);
		snd_wss_out(chip, CS4231_REC_UPR_CNT,
			    (unsigned char) (count >> 8));
	}
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	return 0;
}

void snd_wss_overrange(struct snd_wss *chip)
{
	unsigned long flags;
	unsigned char res;

	spin_lock_irqsave(&chip->reg_lock, flags);
	res = snd_wss_in(chip, CS4231_TEST_INIT);
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	if (res & (0x08 | 0x02))	/* detect overrange only above 0dB; may be user selectable? */
		chip->capture_substream->runtime->overrange++;
}
EXPORT_SYMBOL(snd_wss_overrange);

irqreturn_t snd_wss_interrupt(int irq, void *dev_id)
{
	struct snd_wss *chip = dev_id;
	unsigned char status;

	if (chip->hardware & WSS_HW_AD1848_MASK)
		/* pretend it was the only possible irq for AD1848 */
		status = CS4231_PLAYBACK_IRQ;
	else
		status = snd_wss_in(chip, CS4231_IRQ_STATUS);
	if (status & CS4231_TIMER_IRQ) {
		if (chip->timer)
			snd_timer_interrupt(chip->timer, chip->timer->sticks);
	}
	if (chip->single_dma && chip->hardware != WSS_HW_INTERWAVE) {
		if (status & CS4231_PLAYBACK_IRQ) {
			if (chip->mode & WSS_MODE_PLAY) {
				if (chip->playback_substream)
					snd_pcm_period_elapsed(chip->playback_substream);
			}
			if (chip->mode & WSS_MODE_RECORD) {
				if (chip->capture_substream) {
					snd_wss_overrange(chip);
					snd_pcm_period_elapsed(chip->capture_substream);
				}
			}
		}
	} else {
		if (status & CS4231_PLAYBACK_IRQ) {
			if (chip->playback_substream)
				snd_pcm_period_elapsed(chip->playback_substream);
		}
		if (status & CS4231_RECORD_IRQ) {
			if (chip->capture_substream) {
				snd_wss_overrange(chip);
				snd_pcm_period_elapsed(chip->capture_substream);
			}
		}
	}

	spin_lock(&chip->reg_lock);
	status = ~CS4231_ALL_IRQS | ~status;
	if (chip->hardware & WSS_HW_AD1848_MASK)
		wss_outb(chip, CS4231P(STATUS), 0);
	else
		snd_wss_out(chip, CS4231_IRQ_STATUS, status);
	spin_unlock(&chip->reg_lock);
	return IRQ_HANDLED;
}
EXPORT_SYMBOL(snd_wss_interrupt);

static snd_pcm_uframes_t snd_wss_playback_pointer(struct snd_pcm_substream *substream)
{
	struct snd_wss *chip = snd_pcm_substream_chip(substream);
	size_t ptr;

	if (!(chip->image[CS4231_IFACE_CTRL] & CS4231_PLAYBACK_ENABLE))
		return 0;
	ptr = snd_dma_pointer(chip->dma1, chip->p_dma_size);
	return bytes_to_frames(substream->runtime, ptr);
}

static snd_pcm_uframes_t snd_wss_capture_pointer(struct snd_pcm_substream *substream)
{
	struct snd_wss *chip = snd_pcm_substream_chip(substream);
	size_t ptr;

	if (!(chip->image[CS4231_IFACE_CTRL] & CS4231_RECORD_ENABLE))
		return 0;
	ptr = snd_dma_pointer(chip->dma2, chip->c_dma_size);
	return bytes_to_frames(substream->runtime, ptr);
}

/*

 */

static int snd_ad1848_probe(struct snd_wss *chip)
{
	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
	unsigned long flags;
	unsigned char r;
	unsigned short hardware = 0;
	int err = 0;
	int i;

	while (wss_inb(chip, CS4231P(REGSEL)) & CS4231_INIT) {
		if (time_after(jiffies, timeout))
			return -ENODEV;
		cond_resched();
	}
	spin_lock_irqsave(&chip->reg_lock, flags);

	/* set CS423x MODE 1 */
	snd_wss_dout(chip, CS4231_MISC_INFO, 0);

	snd_wss_dout(chip, CS4231_RIGHT_INPUT, 0x45); /* 0x55 & ~0x10 */
	r = snd_wss_in(chip, CS4231_RIGHT_INPUT);
	if (r != 0x45) {
		/* RMGE always high on AD1847 */
		if ((r & ~CS4231_ENABLE_MIC_GAIN) != 0x45) {
			err = -ENODEV;
			goto out;
		}
		hardware = WSS_HW_AD1847;
	} else {
		snd_wss_dout(chip, CS4231_LEFT_INPUT,  0xaa);
		r = snd_wss_in(chip, CS4231_LEFT_INPUT);
		/* L/RMGE always low on AT2320 */
		if ((r | CS4231_ENABLE_MIC_GAIN) != 0xaa) {
			err = -ENODEV;
			goto out;
		}
	}

	/* clear pending IRQ */
	wss_inb(chip, CS4231P(STATUS));
	wss_outb(chip, CS4231P(STATUS), 0);
	mb();

	if ((chip->hardware & WSS_HW_TYPE_MASK) != WSS_HW_DETECT)
		goto out;

	if (hardware) {
		chip->hardware = hardware;
		goto out;
	}

	r = snd_wss_in(chip, CS4231_MISC_INFO);

	/* set CS423x MODE 2 */
	snd_wss_dout(chip, CS4231_MISC_INFO, CS4231_MODE2);
	for (i = 0; i < 16; i++) {
		if (snd_wss_in(chip, i) != snd_wss_in(chip, 16 + i)) {
			/* we have more than 16 registers: check ID */
			if ((r & 0xf) != 0xa)
				goto out_mode;
			/*
			 * on CMI8330, CS4231_VERSION is volume control and
			 * can be set to 0
			 */
			snd_wss_dout(chip, CS4231_VERSION, 0);
			r = snd_wss_in(chip, CS4231_VERSION) & 0xe7;
			if (!r)
				chip->hardware = WSS_HW_CMI8330;
			goto out_mode;
		}
	}
	if (r & 0x80)
		chip->hardware = WSS_HW_CS4248;
	else
		chip->hardware = WSS_HW_AD1848;
out_mode:
	snd_wss_dout(chip, CS4231_MISC_INFO, 0);
out:
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	return err;
}

static int snd_wss_probe(struct snd_wss *chip)
{
	unsigned long flags;
	int i, id, rev, regnum;
	unsigned char *ptr;
	unsigned int hw;

	id = snd_ad1848_probe(chip);
	if (id < 0)
		return id;

	hw = chip->hardware;
	if ((hw & WSS_HW_TYPE_MASK) == WSS_HW_DETECT) {
		for (i = 0; i < 50; i++) {
			mb();
			if (wss_inb(chip, CS4231P(REGSEL)) & CS4231_INIT)
				msleep(2);
			else {
				spin_lock_irqsave(&chip->reg_lock, flags);
				snd_wss_out(chip, CS4231_MISC_INFO,
					    CS4231_MODE2);
				id = snd_wss_in(chip, CS4231_MISC_INFO) & 0x0f;
				spin_unlock_irqrestore(&chip->reg_lock, flags);
				if (id == 0x0a)
					break;	/* this is valid value */
			}
		}
		snd_printdd("wss: port = 0x%lx, id = 0x%x\n", chip->port, id);
		if (id != 0x0a)
			return -ENODEV;	/* no valid device found */

		rev = snd_wss_in(chip, CS4231_VERSION) & 0xe7;
		snd_printdd("CS4231: VERSION (I25) = 0x%x\n", rev);
		if (rev == 0x80) {
			unsigned char tmp = snd_wss_in(chip, 23);
			snd_wss_out(chip, 23, ~tmp);
			if (snd_wss_in(chip, 23) != tmp)
				chip->hardware = WSS_HW_AD1845;
			else
				chip->hardware = WSS_HW_CS4231;
		} else if (rev == 0xa0) {
			chip->hardware = WSS_HW_CS4231A;
		} else if (rev == 0xa2) {
			chip->hardware = WSS_HW_CS4232;
		} else if (rev == 0xb2) {
			chip->hardware = WSS_HW_CS4232A;
		} else if (rev == 0x83) {
			chip->hardware = WSS_HW_CS4236;
		} else if (rev == 0x03) {
			chip->hardware = WSS_HW_CS4236B;
		} else {
			snd_printk(KERN_ERR
				   "unknown CS chip with version 0x%x\n", rev);
			return -ENODEV;		/* unknown CS4231 chip? */
		}
	}
	spin_lock_irqsave(&chip->reg_lock, flags);
	wss_inb(chip, CS4231P(STATUS));	/* clear any pendings IRQ */
	wss_outb(chip, CS4231P(STATUS), 0);
	mb();
	spin_unlock_irqrestore(&chip->reg_lock, flags);

	if (!(chip->hardware & WSS_HW_AD1848_MASK))
		chip->image[CS4231_MISC_INFO] = CS4231_MODE2;
	switch (chip->hardware) {
	case WSS_HW_INTERWAVE:
		chip->image[CS4231_MISC_INFO] = CS4231_IW_MODE3;
		break;
	case WSS_HW_CS4235:
	case WSS_HW_CS4236B:
	case WSS_HW_CS4237B:
	case WSS_HW_CS4238B:
	case WSS_HW_CS4239:
		if (hw == WSS_HW_DETECT3)
			chip->image[CS4231_MISC_INFO] = CS4231_4236_MODE3;
		else
			chip->hardware = WSS_HW_CS4236;
		break;
	}

	chip->image[CS4231_IFACE_CTRL] =
	    (chip->image[CS4231_IFACE_CTRL] & ~CS4231_SINGLE_DMA) |
	    (chip->single_dma ? CS4231_SINGLE_DMA : 0);
	if (chip->hardware != WSS_HW_OPTI93X) {
		chip->image[CS4231_ALT_FEATURE_1] = 0x80;
		chip->image[CS4231_ALT_FEATURE_2] =
			chip->hardware == WSS_HW_INTERWAVE ? 0xc2 : 0x01;
	}
	/* enable fine grained frequency selection */
	if (chip->hardware == WSS_HW_AD1845)
		chip->image[AD1845_PWR_DOWN] = 8;

	ptr = (unsigned char *) &chip->image;
	regnum = (chip->hardware & WSS_HW_AD1848_MASK) ? 16 : 32;
	snd_wss_mce_down(chip);
	spin_lock_irqsave(&chip->reg_lock, flags);
	for (i = 0; i < regnum; i++)	/* ok.. fill all registers */
		snd_wss_out(chip, i, *ptr++);
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	snd_wss_mce_up(chip);
	snd_wss_mce_down(chip);

	mdelay(2);

	/* ok.. try check hardware version for CS4236+ chips */
	if ((hw & WSS_HW_TYPE_MASK) == WSS_HW_DETECT) {
		if (chip->hardware == WSS_HW_CS4236B) {
			rev = snd_cs4236_ext_in(chip, CS4236_VERSION);
			snd_cs4236_ext_out(chip, CS4236_VERSION, 0xff);
			id = snd_cs4236_ext_in(chip, CS4236_VERSION);
			snd_cs4236_ext_out(chip, CS4236_VERSION, rev);
			snd_printdd("CS4231: ext version; rev = 0x%x, id = 0x%x\n", rev, id);
			if ((id & 0x1f) == 0x1d) {	/* CS4235 */
				chip->hardware = WSS_HW_CS4235;
				switch (id >> 5) {
				case 4:
				case 5:
				case 6:
					break;
				default:
					snd_printk(KERN_WARNING
						"unknown CS4235 chip "
						"(enhanced version = 0x%x)\n",
						id);
				}
			} else if ((id & 0x1f) == 0x0b) {	/* CS4236/B */
				switch (id >> 5) {
				case 4:
				case 5:
				case 6:
				case 7:
					chip->hardware = WSS_HW_CS4236B;
					break;
				default:
					snd_printk(KERN_WARNING
						"unknown CS4236 chip "
						"(enhanced version = 0x%x)\n",
						id);
				}
			} else if ((id & 0x1f) == 0x08) {	/* CS4237B */
				chip->hardware = WSS_HW_CS4237B;
				switch (id >> 5) {
				case 4:
				case 5:
				case 6:
				case 7:
					break;
				default:
					snd_printk(KERN_WARNING
						"unknown CS4237B chip "
						"(enhanced version = 0x%x)\n",
						id);
				}
			} else if ((id & 0x1f) == 0x09) {	/* CS4238B */
				chip->hardware = WSS_HW_CS4238B;
				switch (id >> 5) {
				case 5:
				case 6:
				case 7:
					break;
				default:
					snd_printk(KERN_WARNING
						"unknown CS4238B chip "
						"(enhanced version = 0x%x)\n",
						id);
				}
			} else if ((id & 0x1f) == 0x1e) {	/* CS4239 */
				chip->hardware = WSS_HW_CS4239;
				switch (id >> 5) {
				case 4:
				case 5:
				case 6:
					break;
				default:
					snd_printk(KERN_WARNING
						"unknown CS4239 chip "
						"(enhanced version = 0x%x)\n",
						id);
				}
			} else {
				snd_printk(KERN_WARNING
					   "unknown CS4236/CS423xB chip "
					   "(enhanced version = 0x%x)\n", id);
			}
		}
	}
	return 0;		/* all things are ok.. */
}

/*

 */

static struct snd_pcm_hardware snd_wss_playback =
{
	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
				 SNDRV_PCM_INFO_MMAP_VALID |
				 SNDRV_PCM_INFO_SYNC_START),
	.formats =		(SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW | SNDRV_PCM_FMTBIT_IMA_ADPCM |
				 SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE),
	.rates =		SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
	.rate_min =		5510,
	.rate_max =		48000,
	.channels_min =		1,
	.channels_max =		2,
	.buffer_bytes_max =	(128*1024),
	.period_bytes_min =	64,
	.period_bytes_max =	(128*1024),
	.periods_min =		1,
	.periods_max =		1024,
	.fifo_size =		0,
};

static struct snd_pcm_hardware snd_wss_capture =
{
	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
				 SNDRV_PCM_INFO_MMAP_VALID |
				 SNDRV_PCM_INFO_RESUME |
				 SNDRV_PCM_INFO_SYNC_START),
	.formats =		(SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW | SNDRV_PCM_FMTBIT_IMA_ADPCM |
				 SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE),
	.rates =		SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
	.rate_min =		5510,
	.rate_max =		48000,
	.channels_min =		1,
	.channels_max =		2,
	.buffer_bytes_max =	(128*1024),
	.period_bytes_min =	64,
	.period_bytes_max =	(128*1024),
	.periods_min =		1,
	.periods_max =		1024,
	.fifo_size =		0,
};

/*

 */

static int snd_wss_playback_open(struct snd_pcm_substream *substream)
{
	struct snd_wss *chip = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err;

	runtime->hw = snd_wss_playback;

	/* hardware limitation of older chipsets */
	if (chip->hardware & WSS_HW_AD1848_MASK)
		runtime->hw.formats &= ~(SNDRV_PCM_FMTBIT_IMA_ADPCM |
					 SNDRV_PCM_FMTBIT_S16_BE);

	/* hardware bug in InterWave chipset */
	if (chip->hardware == WSS_HW_INTERWAVE && chip->dma1 > 3)
		runtime->hw.formats &= ~SNDRV_PCM_FMTBIT_MU_LAW;

	/* hardware limitation of cheap chips */
	if (chip->hardware == WSS_HW_CS4235 ||
	    chip->hardware == WSS_HW_CS4239)
		runtime->hw.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE;

	snd_pcm_limit_isa_dma_size(chip->dma1, &runtime->hw.buffer_bytes_max);
	snd_pcm_limit_isa_dma_size(chip->dma1, &runtime->hw.period_bytes_max);

	if (chip->claim_dma) {
		if ((err = chip->claim_dma(chip, chip->dma_private_data, chip->dma1)) < 0)
			return err;
	}

	err = snd_wss_open(chip, WSS_MODE_PLAY);
	if (err < 0) {
		if (chip->release_dma)
			chip->release_dma(chip, chip->dma_private_data, chip->dma1);
		snd_free_pages(runtime->dma_area, runtime->dma_bytes);
		return err;
	}
	chip->playback_substream = substream;
	snd_pcm_set_sync(substream);
	chip->rate_constraint(runtime);
	return 0;
}

static int snd_wss_capture_open(struct snd_pcm_substream *substream)
{
	struct snd_wss *chip = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err;

	runtime->hw = snd_wss_capture;

	/* hardware limitation of older chipsets */
	if (chip->hardware & WSS_HW_AD1848_MASK)
		runtime->hw.formats &= ~(SNDRV_PCM_FMTBIT_IMA_ADPCM |
					 SNDRV_PCM_FMTBIT_S16_BE);

	/* hardware limitation of cheap chips */
	if (chip->hardware == WSS_HW_CS4235 ||
	    chip->hardware == WSS_HW_CS4239 ||
	    chip->hardware == WSS_HW_OPTI93X)
		runtime->hw.formats = SNDRV_PCM_FMTBIT_U8 |
				      SNDRV_PCM_FMTBIT_S16_LE;

	snd_pcm_limit_isa_dma_size(chip->dma2, &runtime->hw.buffer_bytes_max);
	snd_pcm_limit_isa_dma_size(chip->dma2, &runtime->hw.period_bytes_max);

	if (chip->claim_dma) {
		if ((err = chip->claim_dma(chip, chip->dma_private_data, chip->dma2)) < 0)
			return err;
	}

	err = snd_wss_open(chip, WSS_MODE_RECORD);
	if (err < 0) {
		if (chip->release_dma)
			chip->release_dma(chip, chip->dma_private_data, chip->dma2);
		snd_free_pages(runtime->dma_area, runtime->dma_bytes);
		return err;
	}
	chip->capture_substream = substream;
	snd_pcm_set_sync(substream);
	chip->rate_constraint(runtime);
	return 0;
}

static int snd_wss_playback_close(struct snd_pcm_substream *substream)
{
	struct snd_wss *chip = snd_pcm_substream_chip(substream);

	chip->playback_substream = NULL;
	snd_wss_close(chip, WSS_MODE_PLAY);
	return 0;
}

static int snd_wss_capture_close(struct snd_pcm_substream *substream)
{
	struct snd_wss *chip = snd_pcm_substream_chip(substream);

	chip->capture_substream = NULL;
	snd_wss_close(chip, WSS_MODE_RECORD);
	return 0;
}

static void snd_wss_thinkpad_twiddle(struct snd_wss *chip, int on)
{
	int tmp;

	if (!chip->thinkpad_flag)
		return;

	outb(0x1c, AD1848_THINKPAD_CTL_PORT1);
	tmp = inb(AD1848_THINKPAD_CTL_PORT2);

	if (on)
		/* turn it on */
		tmp |= AD1848_THINKPAD_CS4248_ENABLE_BIT;
	else
		/* turn it off */
		tmp &= ~AD1848_THINKPAD_CS4248_ENABLE_BIT;

	outb(tmp, AD1848_THINKPAD_CTL_PORT2);
}

#ifdef CONFIG_PM

/* lowlevel suspend callback for CS4231 */
static void snd_wss_suspend(struct snd_wss *chip)
{
	int reg;
	unsigned long flags;

	snd_pcm_suspend_all(chip->pcm);
	spin_lock_irqsave(&chip->reg_lock, flags);
	for (reg = 0; reg < 32; reg++)
		chip->image[reg] = snd_wss_in(chip, reg);
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	if (chip->thinkpad_flag)
		snd_wss_thinkpad_twiddle(chip, 0);
}

/* lowlevel resume callback for CS4231 */
static void snd_wss_resume(struct snd_wss *chip)
{
	int reg;
	unsigned long flags;
	/* int timeout; */

	if (chip->thinkpad_flag)
		snd_wss_thinkpad_twiddle(chip, 1);
	snd_wss_mce_up(chip);
	spin_lock_irqsave(&chip->reg_lock, flags);
	for (reg = 0; reg < 32; reg++) {
		switch (reg) {
		case CS4231_VERSION:
			break;
		default:
			snd_wss_out(chip, reg, chip->image[reg]);
			break;
		}
	}
	/* Yamaha needs this to resume properly */
	if (chip->hardware == WSS_HW_OPL3SA2)
		snd_wss_out(chip, CS4231_PLAYBK_FORMAT,
			    chip->image[CS4231_PLAYBK_FORMAT]);
	spin_unlock_irqrestore(&chip->reg_lock, flags);
#if 1
	snd_wss_mce_down(chip);
#else
	/* The following is a workaround to avoid freeze after resume on TP600E.
	   This is the first half of copy of snd_wss_mce_down(), but doesn't
	   include rescheduling.  -- iwai
	   */
	snd_wss_busy_wait(chip);
	spin_lock_irqsave(&chip->reg_lock, flags);
	chip->mce_bit &= ~CS4231_MCE;
	timeout = wss_inb(chip, CS4231P(REGSEL));
	wss_outb(chip, CS4231P(REGSEL), chip->mce_bit | (timeout & 0x1f));
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	if (timeout == 0x80)
		snd_printk(KERN_ERR "down [0x%lx]: serious init problem "
			   "- codec still busy\n", chip->port);
	if ((timeout & CS4231_MCE) == 0 ||
	    !(chip->hardware & (WSS_HW_CS4231_MASK | WSS_HW_CS4232_MASK))) {
		return;
	}
	snd_wss_busy_wait(chip);
#endif
}
#endif /* CONFIG_PM */

static int snd_wss_free(struct snd_wss *chip)
{
	release_and_free_resource(chip->res_port);
	release_and_free_resource(chip->res_cport);
	if (chip->irq >= 0) {
		disable_irq(chip->irq);
		if (!(chip->hwshare & WSS_HWSHARE_IRQ))
			free_irq(chip->irq, (void *) chip);
	}
	if (!(chip->hwshare & WSS_HWSHARE_DMA1) && chip->dma1 >= 0) {
		snd_dma_disable(chip->dma1);
		free_dma(chip->dma1);
	}
	if (!(chip->hwshare & WSS_HWSHARE_DMA2) &&
	    chip->dma2 >= 0 && chip->dma2 != chip->dma1) {
		snd_dma_disable(chip->dma2);
		free_dma(chip->dma2);
	}
	if (chip->timer)
		snd_device_free(chip->card, chip->timer);
	kfree(chip);
	return 0;
}

static int snd_wss_dev_free(struct snd_device *device)
{
	struct snd_wss *chip = device->device_data;
	return snd_wss_free(chip);
}

const char *snd_wss_chip_id(struct snd_wss *chip)
{
	switch (chip->hardware) {
	case WSS_HW_CS4231:
		return "CS4231";
	case WSS_HW_CS4231A:
		return "CS4231A";
	case WSS_HW_CS4232:
		return "CS4232";
	case WSS_HW_CS4232A:
		return "CS4232A";
	case WSS_HW_CS4235:
		return "CS4235";
	case WSS_HW_CS4236:
		return "CS4236";
	case WSS_HW_CS4236B:
		return "CS4236B";
	case WSS_HW_CS4237B:
		return "CS4237B";
	case WSS_HW_CS4238B:
		return "CS4238B";
	case WSS_HW_CS4239:
		return "CS4239";
	case WSS_HW_INTERWAVE:
		return "AMD InterWave";
	case WSS_HW_OPL3SA2:
		return chip->card->shortname;
	case WSS_HW_AD1845:
		return "AD1845";
	case WSS_HW_OPTI93X:
		return "OPTi 93x";
	case WSS_HW_AD1847:
		return "AD1847";
	case WSS_HW_AD1848:
		return "AD1848";
	case WSS_HW_CS4248:
		return "CS4248";
	case WSS_HW_CMI8330:
		return "CMI8330/C3D";
	default:
		return "???";
	}
}
EXPORT_SYMBOL(snd_wss_chip_id);

static int snd_wss_new(struct snd_card *card,
			  unsigned short hardware,
			  unsigned short hwshare,
			  struct snd_wss **rchip)
{
	struct snd_wss *chip;

	*rchip = NULL;
	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
	if (chip == NULL)
		return -ENOMEM;
	chip->hardware = hardware;
	chip->hwshare = hwshare;

	spin_lock_init(&chip->reg_lock);
	mutex_init(&chip->mce_mutex);
	mutex_init(&chip->open_mutex);
	chip->card = card;
	chip->rate_constraint = snd_wss_xrate;
	chip->set_playback_format = snd_wss_playback_format;
	chip->set_capture_format = snd_wss_capture_format;
	if (chip->hardware == WSS_HW_OPTI93X)
		memcpy(&chip->image, &snd_opti93x_original_image,
		       sizeof(snd_opti93x_original_image));
	else
		memcpy(&chip->image, &snd_wss_original_image,
		       sizeof(snd_wss_original_image));
	if (chip->hardware & WSS_HW_AD1848_MASK) {
		chip->image[CS4231_PIN_CTRL] = 0;
		chip->image[CS4231_TEST_INIT] = 0;
	}

	*rchip = chip;
	return 0;
}

int snd_wss_create(struct snd_card *card,
		      unsigned long port,
		      unsigned long cport,
		      int irq, int dma1, int dma2,
		      unsigned short hardware,
		      unsigned short hwshare,
		      struct snd_wss **rchip)
{
	static struct snd_device_ops ops = {
		.dev_free =	snd_wss_dev_free,
	};
	struct snd_wss *chip;
	int err;

	err = snd_wss_new(card, hardware, hwshare, &chip);
	if (err < 0)
		return err;

	chip->irq = -1;
	chip->dma1 = -1;
	chip->dma2 = -1;

	chip->res_port = request_region(port, 4, "WSS");
	if (!chip->res_port) {
		snd_printk(KERN_ERR "wss: can't grab port 0x%lx\n", port);
		snd_wss_free(chip);
		return -EBUSY;
	}
	chip->port = port;
	if ((long)cport >= 0) {
		chip->res_cport = request_region(cport, 8, "CS4232 Control");
		if (!chip->res_cport) {
			snd_printk(KERN_ERR
				"wss: can't grab control port 0x%lx\n", cport);
			snd_wss_free(chip);
			return -ENODEV;
		}
	}
	chip->cport = cport;
	if (!(hwshare & WSS_HWSHARE_IRQ))
		if (request_irq(irq, snd_wss_interrupt, 0,
				"WSS", (void *) chip)) {
			snd_printk(KERN_ERR "wss: can't grab IRQ %d\n", irq);
			snd_wss_free(chip);
			return -EBUSY;
		}
	chip->irq = irq;
	if (!(hwshare & WSS_HWSHARE_DMA1) && request_dma(dma1, "WSS - 1")) {
		snd_printk(KERN_ERR "wss: can't grab DMA1 %d\n", dma1);
		snd_wss_free(chip);
		return -EBUSY;
	}
	chip->dma1 = dma1;