1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
|
/** @file
Generic driver using Hardware Sequencing registers.
Copyright (c) 2017-2021, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "SpiCommon.h"
SPI_INSTANCE *mSpiInstance = NULL;
/**
Get SPI Instance from library global data..
@retval SpiInstance Return SPI instance
**/
SPI_INSTANCE *
GetSpiInstance (
VOID
)
{
if (mSpiInstance == NULL) {
mSpiInstance = AllocatePool (sizeof(SPI_INSTANCE));
if (mSpiInstance == NULL) {
return NULL;
}
ZeroMem (mSpiInstance, sizeof(SPI_INSTANCE));
}
return mSpiInstance;
}
/**
Initialize an SPI library.
@retval EFI_SUCCESS The protocol instance was properly initialized
@retval EFI_NOT_FOUND The expected SPI info could not be found
**/
EFI_STATUS
EFIAPI
SpiConstructor (
VOID
)
{
UINT32 ScSpiBar0;
UINT8 Comp0Density;
SPI_INSTANCE *SpiInstance;
EFI_HOB_GUID_TYPE *GuidHob;
SPI_FLASH_INFO *SpiFlashInfo;
//
// Find SPI flash hob
//
GuidHob = GetFirstGuidHob (&gSpiFlashInfoGuid);
if (GuidHob == NULL) {
ASSERT (FALSE);
return EFI_NOT_FOUND;
}
SpiFlashInfo = (SPI_FLASH_INFO *) GET_GUID_HOB_DATA (GuidHob);
//
// Initialize the SPI instance
//
SpiInstance = GetSpiInstance ();
if (SpiInstance == NULL) {
return EFI_NOT_FOUND;
}
DEBUG ((DEBUG_INFO, "SpiInstance = %08X\n", SpiInstance));
SpiInstance->Signature = SC_SPI_PRIVATE_DATA_SIGNATURE;
SpiInstance->Handle = NULL;
//
// Check the SPI address
//
if ((SpiFlashInfo->SpiAddress.AddressSpaceId != EFI_ACPI_3_0_PCI_CONFIGURATION_SPACE) ||
(SpiFlashInfo->SpiAddress.RegisterBitWidth != 32) ||
(SpiFlashInfo->SpiAddress.RegisterBitOffset != 0) ||
(SpiFlashInfo->SpiAddress.AccessSize != EFI_ACPI_3_0_DWORD)){
DEBUG ((DEBUG_ERROR, "SPI FLASH HOB is not expected. need check the hob or enhance SPI flash driver.\n"));
}
SpiInstance->PchSpiBase = (UINT32)(UINTN)SpiFlashInfo->SpiAddress.Address;
SpiInstance->Flags = SpiFlashInfo->Flags;
DEBUG ((DEBUG_INFO, "PchSpiBase at 0x%x\n", SpiInstance->PchSpiBase));
ScSpiBar0 = AcquireSpiBar0 (SpiInstance->PchSpiBase);
DEBUG ((DEBUG_INFO, "ScSpiBar0 at 0x%08X\n", ScSpiBar0));
if (ScSpiBar0 == 0) {
ASSERT (FALSE);
}
if ((MmioRead32 (ScSpiBar0 + R_SPI_HSFS) & B_SPI_HSFS_FDV) == 0) {
DEBUG ((DEBUG_ERROR, "SPI Flash descriptor invalid, cannot use Hardware Sequencing registers!\n"));
ASSERT (FALSE);
}
MmioOr32 (SpiInstance->PchSpiBase + PCI_COMMAND_OFFSET, EFI_PCI_COMMAND_MEMORY_SPACE);
SpiInstance->RegionPermission = MmioRead16 (ScSpiBar0 + R_SPI_FRAP);
SpiInstance->SfdpVscc0Value = MmioRead32 (ScSpiBar0 + R_SPI_LVSCC);
SpiInstance->SfdpVscc1Value = MmioRead32 (ScSpiBar0 + R_SPI_UVSCC);
//
// Select to Flash Map 0 Register to get the number of flash Component
//
MmioAndThenOr32 (
ScSpiBar0 + R_SPI_FDOC,
(UINT32) (~(B_SPI_FDOC_FDSS_MASK | B_SPI_FDOC_FDSI_MASK)),
(UINT32) (V_SPI_FDOC_FDSS_FSDM | R_SPI_FDBAR_FLASH_MAP0)
);
//
// Copy Zero based Number Of Components
//
SpiInstance->NumberOfComponents = (UINT8) ((MmioRead16 (ScSpiBar0 + R_SPI_FDOD) & B_SPI_FDBAR_NC) >> N_SPI_FDBAR_NC);
MmioAndThenOr32 (
ScSpiBar0 + R_SPI_FDOC,
(UINT32) (~(B_SPI_FDOC_FDSS_MASK | B_SPI_FDOC_FDSI_MASK)),
(UINT32) (V_SPI_FDOC_FDSS_COMP | R_SPI_FCBA_FLCOMP)
);
//
// Copy Component 0 Density
//
Comp0Density = (UINT8) MmioRead32 (ScSpiBar0 + R_SPI_FDOD) & B_SPI_FLCOMP_COMP1_MASK;
SpiInstance->Component1StartAddr = (UINT32) (SIZE_512KB << Comp0Density);
//
// Select FLASH_MAP1 to get Flash SC Strap Base Address
//
MmioAndThenOr32 (
(ScSpiBar0 + R_SPI_FDOC),
(UINT32) (~(B_SPI_FDOC_FDSS_MASK | B_SPI_FDOC_FDSI_MASK)),
(UINT32) (V_SPI_FDOC_FDSS_FSDM | R_SPI_FDBAR_FLASH_MAP1)
);
SpiInstance->StrapBaseAddress = MmioRead32 (ScSpiBar0 + R_SPI_FDOD) & B_SPI_FDBAR_FPSBA;
//
// Align FPSBA with address bits for the SC Strap portion of flash descriptor
//
SpiInstance->StrapBaseAddress &= B_SPI_FDBAR_FPSBA;
return EFI_SUCCESS;
}
/**
Read data from the flash part.
@param[in] FlashRegionType The Flash Region type for flash cycle which is listed in the Descriptor.
@param[in] Address The Flash Linear Address must fall within a region for which BIOS has access permissions.
@param[in] ByteCount Number of bytes in the data portion of the SPI cycle.
@param[out] Buffer The Pointer to caller-allocated buffer containing the data received.
It is the caller's responsibility to make sure Buffer is large enough for the total number of bytes read.
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiFlashRead (
IN FLASH_REGION_TYPE FlashRegionType,
IN UINT32 Address,
IN UINT32 ByteCount,
OUT UINT8 *Buffer
)
{
EFI_STATUS Status;
Status = SendSpiCmd (FlashRegionType, FlashCycleRead, Address, ByteCount, Buffer);
return Status;
}
/**
Write data to the flash part.
@param[in] FlashRegionType The Flash Region type for flash cycle which is listed in the Descriptor.
@param[in] Address The Flash Linear Address must fall within a region for which BIOS has access permissions.
@param[in] ByteCount Number of bytes in the data portion of the SPI cycle.
@param[in] Buffer Pointer to caller-allocated buffer containing the data sent during the SPI cycle.
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiFlashWrite (
IN FLASH_REGION_TYPE FlashRegionType,
IN UINT32 Address,
IN UINT32 ByteCount,
IN UINT8 *Buffer
)
{
EFI_STATUS Status;
Status = SendSpiCmd (FlashRegionType, FlashCycleWrite, Address, ByteCount, Buffer);
return Status;
}
/**
Erase some area on the flash part.
@param[in] FlashRegionType The Flash Region type for flash cycle which is listed in the Descriptor.
@param[in] Address The Flash Linear Address must fall within a region for which BIOS has access permissions.
@param[in] ByteCount Number of bytes in the data portion of the SPI cycle.
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiFlashErase (
IN FLASH_REGION_TYPE FlashRegionType,
IN UINT32 Address,
IN UINT32 ByteCount
)
{
EFI_STATUS Status;
Status = SendSpiCmd (FlashRegionType, FlashCycleErase, Address, ByteCount, NULL);
return Status;
}
/**
Read SFDP data from the flash part.
@param[in] ComponentNumber The Component Number for chip select
@param[in] ByteCount Number of bytes in SFDP data portion of the SPI cycle, the max number is 64
@param[out] SfdpData The Pointer to caller-allocated buffer containing the SFDP data received
It is the caller's responsibility to make sure Buffer is large enough for the total number of bytes read.
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiFlashReadSfdp (
IN UINT8 ComponentNumber,
IN UINT32 ByteCount,
OUT UINT8 *SfdpData
)
{
EFI_STATUS Status;
UINT32 Address;
SPI_INSTANCE *SpiInstance;
SpiInstance = GetSpiInstance ();
if (SpiInstance == NULL) {
return EFI_DEVICE_ERROR;
}
if ((ByteCount > 64) || (ComponentNumber > SpiInstance->NumberOfComponents)) {
ASSERT (FALSE);
return EFI_INVALID_PARAMETER;
}
Address = 0;
if (ComponentNumber == FlashComponent1) {
Address = SpiInstance->Component1StartAddr;
}
Status = SendSpiCmd (0, FlashCycleReadSfdp, Address, ByteCount, SfdpData);
return Status;
}
/**
Read Jedec Id from the flash part.
@param[in] ComponentNumber The Component Number for chip select
@param[in] ByteCount Number of bytes in JedecId data portion of the SPI cycle, the data size is 3 typically
@param[out] JedecId The Pointer to caller-allocated buffer containing JEDEC ID received
It is the caller's responsibility to make sure Buffer is large enough for the total number of bytes read.
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiFlashReadJedecId (
IN UINT8 ComponentNumber,
IN UINT32 ByteCount,
OUT UINT8 *JedecId
)
{
EFI_STATUS Status;
UINT32 Address;
SPI_INSTANCE *SpiInstance;
SpiInstance = GetSpiInstance ();
if (SpiInstance == NULL) {
return EFI_DEVICE_ERROR;
}
if (ComponentNumber > SpiInstance->NumberOfComponents) {
ASSERT (FALSE);
return EFI_INVALID_PARAMETER;
}
Address = 0;
if (ComponentNumber == FlashComponent1) {
Address = SpiInstance->Component1StartAddr;
}
Status = SendSpiCmd (0, FlashCycleReadJedecId, Address, ByteCount, JedecId);
return Status;
}
/**
Write the status register in the flash part.
@param[in] ByteCount Number of bytes in Status data portion of the SPI cycle, the data size is 1 typically
@param[in] StatusValue The Pointer to caller-allocated buffer containing the value of Status register writing
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiFlashWriteStatus (
IN UINT32 ByteCount,
IN UINT8 *StatusValue
)
{
EFI_STATUS Status;
Status = SendSpiCmd (0, FlashCycleWriteStatus, 0, ByteCount, StatusValue);
return Status;
}
/**
Read status register in the flash part.
@param[in] ByteCount Number of bytes in Status data portion of the SPI cycle, the data size is 1 typically
@param[out] StatusValue The Pointer to caller-allocated buffer containing the value of Status register received.
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiFlashReadStatus (
IN UINT32 ByteCount,
OUT UINT8 *StatusValue
)
{
EFI_STATUS Status;
Status = SendSpiCmd (0, FlashCycleReadStatus, 0, ByteCount, StatusValue);
return Status;
}
/**
Read SC Soft Strap Values
@param[in] SoftStrapAddr SC Soft Strap address offset from FPSBA.
@param[in] ByteCount Number of bytes in SoftStrap data portion of the SPI cycle
@param[out] SoftStrapValue The Pointer to caller-allocated buffer containing SC Soft Strap Value.
It is the caller's responsibility to make sure Buffer is large enough for the total number of bytes read.
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiReadPchSoftStrap (
IN UINT32 SoftStrapAddr,
IN UINT32 ByteCount,
OUT UINT8 *SoftStrapValue
)
{
UINT32 StrapFlashAddr;
EFI_STATUS Status;
SPI_INSTANCE *SpiInstance;
SpiInstance = GetSpiInstance ();
if (SpiInstance == NULL) {
return EFI_DEVICE_ERROR;
}
ASSERT (SpiInstance->StrapBaseAddress != 0);
//
// SC Strap Flash Address = FPSBA + RamAddr
//
StrapFlashAddr = SpiInstance->StrapBaseAddress + SoftStrapAddr;
Status = SendSpiCmd (FlashRegionDescriptor, FlashCycleRead, StrapFlashAddr, ByteCount, SoftStrapValue);
return Status;
}
/**
This function sends the programmed SPI command to the slave device.
@param[in] FlashRegionType The SPI Region type for flash cycle which is listed in the Descriptor
@param[in] FlashCycleType The Flash SPI cycle type list in HSFC (Hardware Sequencing Flash Control Register) register
@param[in] Address The Flash Linear Address must fall within a region for which BIOS has access permissions.
@param[in] ByteCount Number of bytes in the data portion of the SPI cycle.
@param[in,out] Buffer Pointer to caller-allocated buffer containing the data received or sent during the SPI cycle.
@retval EFI_SUCCESS SPI command completes successfully.
@retval EFI_DEVICE_ERROR Device error, the command aborts abnormally.
@retval EFI_ACCESS_DENIED Some unrecognized command encountered in hardware sequencing mode
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
**/
EFI_STATUS
SendSpiCmd (
IN FLASH_REGION_TYPE FlashRegionType,
IN FLASH_CYCLE_TYPE FlashCycleType,
IN UINT32 Address,
IN UINT32 ByteCount,
IN OUT UINT8 *Buffer
)
{
EFI_STATUS Status;
UINT32 Index;
UINTN SpiBaseAddress;
UINT32 ScSpiBar0;
UINT32 LimitAddress;
UINT32 HardwareSpiAddr;
UINT16 PermissionBit;
UINT32 SpiDataCount;
UINT32 FlashCycle;
UINT8 BiosCtlSave;
SPI_INSTANCE *SpiInstance;
UINT32 Data32;
SpiInstance = GetSpiInstance ();
if (SpiInstance == NULL) {
return EFI_DEVICE_ERROR;
}
Status = EFI_SUCCESS;
SpiBaseAddress = SpiInstance->PchSpiBase;
ScSpiBar0 = AcquireSpiBar0 (SpiBaseAddress);
BiosCtlSave = 0;
SpiInstance->RegionPermission = MmioRead16 (ScSpiBar0 + R_SPI_FRAP);
//
// If it's write cycle, disable Prefetching, Caching and disable BIOS Write Protect
//
if ((FlashCycleType == FlashCycleWrite) || (FlashCycleType == FlashCycleErase)) {
Status = DisableBiosWriteProtect (SpiBaseAddress, mSpiInstance->Flags & FLAGS_SPI_DISABLE_SMM_WRITE_PROTECT);
if (EFI_ERROR (Status)) {
goto SendSpiCmdEnd;
}
BiosCtlSave = SaveAndDisableSpiPrefetchCache (SpiBaseAddress);
}
//
// Make sure it's safe to program the command.
//
if (!WaitForSpiCycleComplete (ScSpiBar0, FALSE)) {
Status = EFI_DEVICE_ERROR;
goto SendSpiCmdEnd;
}
HardwareSpiAddr = Address;
if ((FlashCycleType == FlashCycleRead) ||
(FlashCycleType == FlashCycleWrite) ||
(FlashCycleType == FlashCycleErase)) {
switch (FlashRegionType) {
case FlashRegionDescriptor:
if (FlashCycleType == FlashCycleRead) {
PermissionBit = B_SPI_FRAP_BRRA_FLASHD;
} else {
PermissionBit = B_SPI_FRAP_BRWA_FLASHD;
}
Data32 = MmioRead32 (ScSpiBar0 + R_SPI_FREG0_FLASHD);
HardwareSpiAddr += (Data32 & B_SPI_FREG0_BASE_MASK) << N_SPI_FREG0_BASE;
LimitAddress = (Data32 & B_SPI_FREG0_LIMIT_MASK) >> N_SPI_FREG0_LIMIT;
break;
case FlashRegionBios:
if (FlashCycleType == FlashCycleRead) {
PermissionBit = B_SPI_FRAP_BRRA_BIOS;
} else {
PermissionBit = B_SPI_FRAP_BRWA_BIOS;
}
Data32 = MmioRead32 (ScSpiBar0 + R_SPI_FREG1_BIOS);
HardwareSpiAddr += (Data32 & B_SPI_FREG1_BASE_MASK) << N_SPI_FREG1_BASE;
LimitAddress = (Data32 & B_SPI_FREG1_LIMIT_MASK) >> N_SPI_FREG1_LIMIT;
break;
case FlashRegionMe:
if (FlashCycleType == FlashCycleRead) {
PermissionBit = B_SPI_FRAP_BRRA_SEC;
} else {
PermissionBit = B_SPI_FRAP_BRWA_SEC;
}
Data32 = MmioRead32 (ScSpiBar0 + R_SPI_FREG2_SEC);
HardwareSpiAddr += (Data32 & B_SPI_FREG2_BASE_MASK) << N_SPI_FREG2_BASE;
LimitAddress = (Data32 & B_SPI_FREG2_LIMIT_MASK) >> N_SPI_FREG2_LIMIT;
break;
case FlashRegionGbE:
if (FlashCycleType == FlashCycleRead) {
PermissionBit = B_SPI_FRAP_BRRA_GBE;
} else {
PermissionBit = B_SPI_FRAP_BRWA_GBE;
}
Data32 = MmioRead32 (ScSpiBar0 + R_SPI_FREG3_GBE);
HardwareSpiAddr += (Data32 & B_SPI_FREG3_BASE_MASK) << N_SPI_FREG3_BASE;
LimitAddress = (Data32 & B_SPI_FREG3_LIMIT_MASK) >> N_SPI_FREG3_LIMIT;
break;
case FlashRegionPlatformData:
if (FlashCycleType == FlashCycleRead) {
PermissionBit = B_SPI_FRAP_BRRA_PLATFORM;
} else {
PermissionBit = B_SPI_FRAP_BRWA_PLATFORM;
}
Data32 = MmioRead32 (ScSpiBar0 + R_SPI_FREG4_PLATFORM_DATA);
HardwareSpiAddr += (Data32 & B_SPI_FREG4_BASE_MASK) << N_SPI_FREG4_BASE;
LimitAddress = (Data32 & B_SPI_FREG4_LIMIT_MASK) >> N_SPI_FREG4_LIMIT;
break;
case FlashRegionAll:
//
// FlashRegionAll indicates address is relative to flash device
// No error checking for this case
//
LimitAddress = 0;
PermissionBit = 0;
break;
default:
Status = EFI_UNSUPPORTED;
goto SendSpiCmdEnd;
}
if ((LimitAddress != 0) && (Address > LimitAddress)) {
Status = EFI_INVALID_PARAMETER;
goto SendSpiCmdEnd;
}
//
// If the operation is read, but the region attribute is not read allowed, return error.
// If the operation is write, but the region attribute is not write allowed, return error.
//
if ((PermissionBit != 0) && ((SpiInstance->RegionPermission & PermissionBit) == 0)) {
Status = EFI_ACCESS_DENIED;
goto SendSpiCmdEnd;
}
}
//
// Check for SC SPI hardware sequencing required commands
//
FlashCycle = 0;
switch (FlashCycleType) {
case FlashCycleRead:
FlashCycle = (UINT32) (V_SPI_HSFS_CYCLE_READ << N_SPI_HSFS_CYCLE);
break;
case FlashCycleWrite:
FlashCycle = (UINT32) (V_SPI_HSFS_CYCLE_WRITE << N_SPI_HSFS_CYCLE);
break;
case FlashCycleErase:
if (((ByteCount % SIZE_4KB) != 0) || ((HardwareSpiAddr % SIZE_4KB) != 0)) {
DEBUG ((DEBUG_ERROR, "Erase and erase size must be 4KB aligned. \n"));
ASSERT (FALSE);
Status = EFI_INVALID_PARAMETER;
goto SendSpiCmdEnd;
}
break;
case FlashCycleReadSfdp:
FlashCycle = (UINT32) (V_SPI_HSFS_CYCLE_READ_SFDP << N_SPI_HSFS_CYCLE);
break;
case FlashCycleReadJedecId:
FlashCycle = (UINT32) (V_SPI_HSFS_CYCLE_READ_JEDEC_ID << N_SPI_HSFS_CYCLE);
break;
case FlashCycleWriteStatus:
FlashCycle = (UINT32) (V_SPI_HSFS_CYCLE_WRITE_STATUS << N_SPI_HSFS_CYCLE);
break;
case FlashCycleReadStatus:
FlashCycle = (UINT32) (V_SPI_HSFS_CYCLE_READ_STATUS << N_SPI_HSFS_CYCLE);
break;
default:
//
// Unrecognized Operation
//
ASSERT (FALSE);
Status = EFI_INVALID_PARAMETER;
goto SendSpiCmdEnd;
break;
}
do {
SpiDataCount = ByteCount;
if ((FlashCycleType == FlashCycleRead) || (FlashCycleType == FlashCycleWrite)) {
//
// Trim at 256 byte boundary per operation,
// - SC SPI controller requires trimming at 4KB boundary
// - Some SPI chips require trimming at 256 byte boundary for write operation
// - Trimming has limited performance impact as we can read / write at most 64 byte
// per operation
//
if (HardwareSpiAddr + ByteCount > ((HardwareSpiAddr + BIT8) &~(BIT8 - 1))) {
SpiDataCount = (((UINT32) (HardwareSpiAddr) + BIT8) &~(BIT8 - 1)) - (UINT32) (HardwareSpiAddr);
}
//
// Calculate the number of bytes to shift in/out during the SPI data cycle.
// Valid settings for the number of bytes during each data portion of the
// SC SPI cycles are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32, 40, 48, 56, 64
//
if (SpiDataCount >= 64) {
SpiDataCount = 64;
} else if ((SpiDataCount &~0x07) != 0) {
SpiDataCount = SpiDataCount &~0x07;
}
}
if (FlashCycleType == FlashCycleErase) {
if (((ByteCount / SIZE_64KB) != 0) &&
((ByteCount % SIZE_64KB) == 0) &&
((HardwareSpiAddr % SIZE_64KB) == 0)) {
if (HardwareSpiAddr < SpiInstance->Component1StartAddr) {
//
// Check whether Component0 support 64k Erase
//
if ((SpiInstance->SfdpVscc0Value & B_SPI_LVSCC_EO_64K) != 0) {
SpiDataCount = SIZE_64KB;
} else {
SpiDataCount = SIZE_4KB;
}
} else {
//
// Check whether Component1 support 64k Erase
//
if ((SpiInstance->SfdpVscc1Value & B_SPI_LVSCC_EO_64K) != 0) {
SpiDataCount = SIZE_64KB;
} else {
SpiDataCount = SIZE_4KB;
}
}
} else {
SpiDataCount = SIZE_4KB;
}
if (SpiDataCount == SIZE_4KB) {
FlashCycle = (UINT32) (V_SPI_HSFS_CYCLE_4K_ERASE << N_SPI_HSFS_CYCLE);
} else {
FlashCycle = (UINT32) (V_SPI_HSFS_CYCLE_64K_ERASE << N_SPI_HSFS_CYCLE);
}
}
//
// If it's write cycle, load data into the SPI data buffer.
//
if ((FlashCycleType == FlashCycleWrite) || (FlashCycleType == FlashCycleWriteStatus)) {
if ((SpiDataCount & 0x07) != 0) {
//
// Use Byte write if Data Count is 0, 1, 2, 3, 4, 5, 6, 7
//
for (Index = 0; Index < SpiDataCount; Index++) {
MmioWrite8 (ScSpiBar0 + R_SPI_FDATA00 + Index, Buffer[Index]);
}
} else {
//
// Use Dword write if Data Count is 8, 16, 24, 32, 40, 48, 56, 64
//
for (Index = 0; Index < SpiDataCount; Index += sizeof (UINT32)) {
MmioWrite32 (ScSpiBar0 + R_SPI_FDATA00 + Index, *(UINT32 *) (Buffer + Index));
}
}
}
//
// Set the Flash Address
//
MmioWrite32 (ScSpiBar0 + R_SPI_FADDR, (UINT32) (HardwareSpiAddr & B_SPI_FADDR_MASK));
//
// Set Data count, Flash cycle, and Set Go bit to start a cycle
//
MmioAndThenOr32 (
ScSpiBar0 + R_SPI_HSFS,
(UINT32) (~(B_SPI_HSFS_FDBC_MASK | B_SPI_HSFS_CYCLE_MASK)),
(UINT32) (((SpiDataCount - 1) << N_SPI_HSFS_FDBC) | FlashCycle | B_SPI_HSFS_CYCLE_FGO)
);
//
// Wait for command execution complete.
//
if (!WaitForSpiCycleComplete (ScSpiBar0, TRUE)) {
Status = EFI_DEVICE_ERROR;
goto SendSpiCmdEnd;
}
//
// If it's read cycle, load data into the caller's buffer.
//
if ((FlashCycleType == FlashCycleRead) ||
(FlashCycleType == FlashCycleReadSfdp) ||
(FlashCycleType == FlashCycleReadJedecId) ||
(FlashCycleType == FlashCycleReadStatus)) {
if ((SpiDataCount & 0x07) != 0) {
//
// Use Byte read if Data Count is 0, 1, 2, 3, 4, 5, 6, 7
//
for (Index = 0; Index < SpiDataCount; Index++) {
Buffer[Index] = MmioRead8 (ScSpiBar0 + R_SPI_FDATA00 + Index);
}
} else {
//
// Use Dword read if Data Count is 8, 16, 24, 32, 40, 48, 56, 64
//
for (Index = 0; Index < SpiDataCount; Index += sizeof (UINT32)) {
*(UINT32 *) (Buffer + Index) = MmioRead32 (ScSpiBar0 + R_SPI_FDATA00 + Index);
}
}
}
HardwareSpiAddr += SpiDataCount;
Buffer += SpiDataCount;
ByteCount -= SpiDataCount;
} while (ByteCount > 0);
SendSpiCmdEnd:
///
/// Restore the settings for SPI Prefetching and Caching and enable BIOS Write Protect
///
if ((FlashCycleType == FlashCycleWrite) || (FlashCycleType == FlashCycleErase)) {
EnableBiosWriteProtect (SpiBaseAddress, mSpiInstance->Flags & FLAGS_SPI_DISABLE_SMM_WRITE_PROTECT);
SetSpiBiosControlRegister (SpiBaseAddress, BiosCtlSave);
}
ReleaseSpiBar0 (SpiBaseAddress);
return Status;
}
/**
Wait execution cycle to complete on the SPI interface.
@param[in] ScSpiBar0 Spi MMIO base address
@param[in] ErrorCheck TRUE if the SpiCycle needs to do the error check
@retval TRUE SPI cycle completed on the interface.
@retval FALSE Time out while waiting the SPI cycle to complete.
It's not safe to program the next command on the SPI interface.
**/
BOOLEAN
WaitForSpiCycleComplete (
IN UINT32 ScSpiBar0,
IN BOOLEAN ErrorCheck
)
{
UINT64 WaitTicks;
UINT64 WaitCount;
UINT32 Data32;
//
// Convert the wait period allowed into to tick count
//
WaitCount = WAIT_TIME / WAIT_PERIOD;
//
// Wait for the SPI cycle to complete.
//
for (WaitTicks = 0; WaitTicks < WaitCount; WaitTicks++) {
Data32 = MmioRead32 (ScSpiBar0 + R_SPI_HSFS);
if ((Data32 & B_SPI_HSFS_SCIP) == 0) {
MmioWrite32 (ScSpiBar0 + R_SPI_HSFS, B_SPI_HSFS_FCERR | B_SPI_HSFS_FDONE);
if (((Data32 & B_SPI_HSFS_FCERR) != 0) && ErrorCheck) {
return FALSE;
} else {
return TRUE;
}
}
MicroSecondDelay ( WAIT_PERIOD);
}
return FALSE;
}
/**
Get the SPI region base and size, based on the enum type
@param[in] FlashRegionType The Flash Region type for for the base address which is listed in the Descriptor.
@param[out] BaseAddress The Flash Linear Address for the Region 'n' Base
@param[out] RegionSize The size for the Region 'n'
@retval EFI_SUCCESS Read success
@retval EFI_INVALID_PARAMETER Invalid region type given
@retval EFI_DEVICE_ERROR The region is not used
**/
EFI_STATUS
EFIAPI
SpiGetRegionAddress (
IN FLASH_REGION_TYPE FlashRegionType,
OUT UINT32 *BaseAddress, OPTIONAL
OUT UINT32 *RegionSize OPTIONAL
)
{
UINT32 ScSpiBar0;
UINT32 ReadValue;
UINT32 Base;
SPI_INSTANCE *SpiInstance;
if (FlashRegionType >= FlashRegionMax) {
return EFI_INVALID_PARAMETER;
}
SpiInstance = GetSpiInstance();
if (SpiInstance == NULL) {
return EFI_DEVICE_ERROR;
}
if (FlashRegionType == FlashRegionAll) {
if (BaseAddress != NULL) {
*BaseAddress = 0;
}
if (RegionSize != NULL) {
*RegionSize = SpiInstance->Component1StartAddr;
}
return EFI_SUCCESS;
}
ScSpiBar0 = AcquireSpiBar0 (SpiInstance->PchSpiBase);
ReadValue = MmioRead32 (ScSpiBar0 + R_SPI_FREG0_FLASHD + S_SPI_FREGX * (UINT32) FlashRegionType);
ReleaseSpiBar0 (SpiInstance->PchSpiBase);
//
// If the region is not used, the Region Base is 7FFFh and Region Limit is 0000h
//
if (ReadValue == B_SPI_FREGX_BASE_MASK) {
return EFI_DEVICE_ERROR;
}
Base = (ReadValue & B_SPI_FREG1_BASE_MASK) << N_SPI_FREG1_BASE;
if (BaseAddress != NULL) {
*BaseAddress = Base;
}
if (RegionSize != NULL) {
*RegionSize = ((((ReadValue & B_SPI_FREGX_LIMIT_MASK) >> N_SPI_FREGX_LIMIT) + 1) <<
N_SPI_FREGX_LIMIT_REPR) - Base;
}
return EFI_SUCCESS;
}
|