aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMichael Brown <mcb30@ipxe.org>2024-10-15 13:50:51 +0100
committerMichael Brown <mcb30@ipxe.org>2024-10-15 13:50:51 +0100
commit2bf16c6ffca1e294bb8233d19c9c36e43b31f041 (patch)
treed685c77f9e63e709ec80b84439e17f16ee5b5a40
parentf78c5a763cc7bb2e2b7b437e7cc74a3efb876960 (diff)
downloadipxe-2bf16c6ffca1e294bb8233d19c9c36e43b31f041.tar.gz
[crypto] Separate out bigint_reduce() from bigint_mod_multiply()
Faster modular multiplication algorithms such as Montgomery multiplication will still require the ability to perform a single direct modular reduction. Neaten up the implementation of direct reduction and split it out into a separate bigint_reduce() function, complete with its own unit tests. Signed-off-by: Michael Brown <mcb30@ipxe.org>
-rw-r--r--src/crypto/bigint.c213
-rw-r--r--src/include/ipxe/bigint.h34
-rw-r--r--src/tests/bigint_test.c86
3 files changed, 296 insertions, 37 deletions
diff --git a/src/crypto/bigint.c b/src/crypto/bigint.c
index c7b6dafc9..a8b99ec3c 100644
--- a/src/crypto/bigint.c
+++ b/src/crypto/bigint.c
@@ -34,22 +34,14 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
* Big integer support
*/
+/** Modular direct reduction profiler */
+static struct profiler bigint_mod_profiler __profiler =
+ { .name = "bigint_mod" };
+
/** Modular multiplication overall profiler */
static struct profiler bigint_mod_multiply_profiler __profiler =
{ .name = "bigint_mod_multiply" };
-/** Modular multiplication multiply step profiler */
-static struct profiler bigint_mod_multiply_multiply_profiler __profiler =
- { .name = "bigint_mod_multiply.multiply" };
-
-/** Modular multiplication rescale step profiler */
-static struct profiler bigint_mod_multiply_rescale_profiler __profiler =
- { .name = "bigint_mod_multiply.rescale" };
-
-/** Modular multiplication subtract step profiler */
-static struct profiler bigint_mod_multiply_subtract_profiler __profiler =
- { .name = "bigint_mod_multiply.subtract" };
-
/**
* Conditionally swap big integers (in constant time)
*
@@ -145,6 +137,175 @@ void bigint_multiply_raw ( const bigint_element_t *multiplicand0,
}
/**
+ * Reduce big integer
+ *
+ * @v minuend0 Element 0 of big integer to be reduced
+ * @v minuend_size Number of elements in minuend
+ * @v modulus0 Element 0 of big integer modulus
+ * @v modulus_size Number of elements in modulus and result
+ * @v result0 Element 0 of big integer to hold result
+ * @v tmp Temporary working space
+ */
+void bigint_reduce_raw ( const bigint_element_t *minuend0,
+ unsigned int minuend_size,
+ const bigint_element_t *modulus0,
+ unsigned int modulus_size,
+ bigint_element_t *result0, void *tmp ) {
+ const bigint_t ( minuend_size ) __attribute__ (( may_alias ))
+ *minuend = ( ( const void * ) minuend0 );
+ const bigint_t ( modulus_size ) __attribute__ (( may_alias ))
+ *modulus = ( ( const void * ) modulus0 );
+ bigint_t ( modulus_size ) __attribute__ (( may_alias ))
+ *result = ( ( void * ) result0 );
+ struct {
+ bigint_t ( minuend_size ) minuend;
+ bigint_t ( minuend_size ) modulus;
+ } *temp = tmp;
+ const unsigned int width = ( 8 * sizeof ( bigint_element_t ) );
+ const bigint_element_t msb_mask = ( 1UL << ( width - 1 ) );
+ bigint_element_t *element;
+ unsigned int minuend_max;
+ unsigned int modulus_max;
+ unsigned int subshift;
+ bigint_element_t msb;
+ int offset;
+ int shift;
+ int i;
+
+ /* Start profiling */
+ profile_start ( &bigint_mod_profiler );
+
+ /* Sanity check */
+ assert ( minuend_size >= modulus_size );
+ assert ( sizeof ( *temp ) == bigint_reduce_tmp_len ( minuend ) );
+
+ /* Copy minuend and modulus to temporary working space */
+ bigint_shrink ( minuend, &temp->minuend );
+ bigint_grow ( modulus, &temp->modulus );
+
+ /* Normalise the modulus
+ *
+ * Scale the modulus by shifting left such that both modulus
+ * "m" and minuend "x" have the same most significant set bit.
+ * (If this is not possible, then the minuend is already less
+ * than the modulus, and we may therefore skip reduction
+ * completely.)
+ */
+ minuend_max = bigint_max_set_bit ( minuend );
+ modulus_max = bigint_max_set_bit ( modulus );
+ shift = ( minuend_max - modulus_max );
+ if ( shift < 0 )
+ goto skip;
+ subshift = ( shift & ( width - 1 ) );
+ offset = ( shift / width );
+ element = temp->modulus.element;
+ for ( i = ( ( minuend_max - 1 ) / width ) ; ; i-- ) {
+ element[i] = ( element[ i - offset ] << subshift );
+ if ( i <= offset )
+ break;
+ if ( subshift ) {
+ element[i] |= ( element[ i - offset - 1 ]
+ >> ( width - subshift ) );
+ }
+ }
+ for ( i-- ; i >= 0 ; i-- )
+ element[i] = 0;
+
+ /* Reduce the minuend "x" by iteratively adding or subtracting
+ * the scaled modulus "m".
+ *
+ * On each loop iteration, we maintain the invariant:
+ *
+ * -2m <= x < 2m
+ *
+ * If x is positive, we obtain the new minuend x' by
+ * subtracting m, otherwise we add m:
+ *
+ * 0 <= x < 2m => x' := x - m => -m <= x' < m
+ * -2m <= x < 0 => x' := x + m => -m <= x' < m
+ *
+ * and then halve the modulus (by shifting right):
+ *
+ * m' = m/2
+ *
+ * We therefore end up with:
+ *
+ * -m <= x' < m => -2m' <= x' < 2m'
+ *
+ * i.e. we have preseved the invariant while reducing the
+ * bounds on x' by one power of two.
+ *
+ * The issue remains of how to determine on each iteration
+ * whether or not x is currently positive, given that both
+ * input values are unsigned big integers that may use all
+ * available bits (including the MSB).
+ *
+ * On the first loop iteration, we may simply assume that x is
+ * positive, since it is unmodified from the input value and
+ * so is positive by definition (even if the MSB is set). We
+ * therefore unconditionally perform a subtraction on the
+ * first loop iteration.
+ *
+ * Let k be the MSB after normalisation. We then have:
+ *
+ * 2^k <= m < 2^(k+1)
+ * 2^k <= x < 2^(k+1)
+ *
+ * On the first loop iteration, we therefore have:
+ *
+ * x' = (x - m)
+ * < 2^(k+1) - 2^k
+ * < 2^k
+ *
+ * Any positive value of x' therefore has its MSB set to zero,
+ * and so we may validly treat the MSB of x' as a sign bit at
+ * the end of the first loop iteration.
+ *
+ * On all subsequent loop iterations, the starting value m is
+ * guaranteed to have its MSB set to zero (since it has
+ * already been shifted right at least once). Since we know
+ * from above that we preserve the loop invariant:
+ *
+ * -m <= x' < m
+ *
+ * we immediately know that any positive value of x' also has
+ * its MSB set to zero, and so we may validly treat the MSB of
+ * x' as a sign bit at the end of all subsequent loop
+ * iterations.
+ *
+ * After the last loop iteration (when m' has been shifted
+ * back down to the original value of the modulus), we may
+ * need to add a single multiple of m' to ensure that x' is
+ * positive, i.e. lies within the range 0 <= x' < m'. To
+ * allow for reusing the (inlined) expansion of
+ * bigint_subtract(), we achieve this via a potential
+ * additional loop iteration that performs the addition and is
+ * then guaranteed to terminate (since the result will be
+ * positive).
+ */
+ for ( msb = 0 ; ( msb || ( shift >= 0 ) ) ; shift-- ) {
+ if ( msb ) {
+ bigint_add ( &temp->modulus, &temp->minuend );
+ } else {
+ bigint_subtract ( &temp->modulus, &temp->minuend );
+ }
+ msb = ( temp->minuend.element[ minuend_size - 1 ] & msb_mask );
+ if ( shift > 0 )
+ bigint_shr ( &temp->modulus );
+ }
+
+ skip:
+ /* Sanity check */
+ assert ( ! bigint_is_geq ( &temp->minuend, &temp->modulus ) );
+
+ /* Copy result */
+ bigint_shrink ( &temp->minuend, result );
+
+ /* Stop profiling */
+ profile_stop ( &bigint_mod_profiler );
+}
+
+/**
* Perform modular multiplication of big integers
*
* @v multiplicand0 Element 0 of big integer to be multiplied
@@ -171,8 +332,6 @@ void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
bigint_t ( size * 2 ) result;
bigint_t ( size * 2 ) modulus;
} *temp = tmp;
- int shift;
- int i;
/* Start profiling */
profile_start ( &bigint_mod_multiply_profiler );
@@ -181,33 +340,13 @@ void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
assert ( sizeof ( *temp ) == bigint_mod_multiply_tmp_len ( modulus ) );
/* Perform multiplication */
- profile_start ( &bigint_mod_multiply_multiply_profiler );
bigint_multiply ( multiplicand, multiplier, &temp->result );
- profile_stop ( &bigint_mod_multiply_multiply_profiler );
-
- /* Rescale modulus to match result */
- profile_start ( &bigint_mod_multiply_rescale_profiler );
- bigint_grow ( modulus, &temp->modulus );
- shift = ( bigint_max_set_bit ( &temp->result ) -
- bigint_max_set_bit ( &temp->modulus ) );
- for ( i = 0 ; i < shift ; i++ )
- bigint_shl ( &temp->modulus );
- profile_stop ( &bigint_mod_multiply_rescale_profiler );
-
- /* Subtract multiples of modulus */
- profile_start ( &bigint_mod_multiply_subtract_profiler );
- for ( i = 0 ; i <= shift ; i++ ) {
- if ( bigint_is_geq ( &temp->result, &temp->modulus ) )
- bigint_subtract ( &temp->modulus, &temp->result );
- bigint_shr ( &temp->modulus );
- }
- profile_stop ( &bigint_mod_multiply_subtract_profiler );
- /* Resize result */
- bigint_shrink ( &temp->result, result );
+ /* Reduce result */
+ bigint_reduce ( &temp->result, modulus, result, temp );
/* Sanity check */
- assert ( bigint_is_geq ( modulus, result ) );
+ assert ( ! bigint_is_geq ( result, modulus ) );
/* Stop profiling */
profile_stop ( &bigint_mod_multiply_profiler );
diff --git a/src/include/ipxe/bigint.h b/src/include/ipxe/bigint.h
index c556afbc1..c56b2155f 100644
--- a/src/include/ipxe/bigint.h
+++ b/src/include/ipxe/bigint.h
@@ -218,6 +218,35 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
} while ( 0 )
/**
+ * Reduce big integer
+ *
+ * @v minuend Big integer to be reduced
+ * @v modulus Big integer modulus
+ * @v result Big integer to hold result
+ * @v tmp Temporary working space
+ */
+#define bigint_reduce( minuend, modulus, result, tmp ) do { \
+ unsigned int minuend_size = bigint_size (minuend); \
+ unsigned int modulus_size = bigint_size (modulus); \
+ bigint_reduce_raw ( (minuend)->element, minuend_size, \
+ (modulus)->element, modulus_size, \
+ (result)->element, tmp ); \
+ } while ( 0 )
+
+/**
+ * Calculate temporary working space required for reduction
+ *
+ * @v minuend Big integer to be reduced
+ * @ret len Length of temporary working space
+ */
+#define bigint_reduce_tmp_len( minuend ) ( { \
+ unsigned int size = bigint_size (minuend); \
+ sizeof ( struct { \
+ bigint_t ( size ) temp_minuend; \
+ bigint_t ( size ) temp_modulus; \
+ } ); } )
+
+/**
* Perform modular multiplication of big integers
*
* @v multiplicand Big integer to be multiplied
@@ -339,6 +368,11 @@ void bigint_multiply_raw ( const bigint_element_t *multiplicand0,
const bigint_element_t *multiplier0,
unsigned int multiplier_size,
bigint_element_t *result0 );
+void bigint_reduce_raw ( const bigint_element_t *minuend0,
+ unsigned int minuend_size,
+ const bigint_element_t *modulus0,
+ unsigned int modulus_size,
+ bigint_element_t *result0, void *tmp );
void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
const bigint_element_t *multiplier0,
const bigint_element_t *modulus0,
diff --git a/src/tests/bigint_test.c b/src/tests/bigint_test.c
index 65f124f24..104e1f362 100644
--- a/src/tests/bigint_test.c
+++ b/src/tests/bigint_test.c
@@ -185,6 +185,21 @@ void bigint_multiply_sample ( const bigint_element_t *multiplicand0,
bigint_multiply ( multiplicand, multiplier, result );
}
+void bigint_reduce_sample ( const bigint_element_t *minuend0,
+ unsigned int minuend_size,
+ const bigint_element_t *modulus0,
+ unsigned int modulus_size,
+ bigint_element_t *result0, void *tmp ) {
+ const bigint_t ( minuend_size ) __attribute__ (( may_alias ))
+ *minuend = ( ( const void * ) minuend0 );
+ const bigint_t ( modulus_size ) __attribute__ (( may_alias ))
+ *modulus = ( ( const void * ) modulus0 );
+ bigint_t ( modulus_size ) __attribute__ (( may_alias ))
+ *result = ( ( void * ) result0 );
+
+ bigint_reduce ( minuend, modulus, result, tmp );
+}
+
void bigint_mod_multiply_sample ( const bigint_element_t *multiplicand0,
const bigint_element_t *multiplier0,
const bigint_element_t *modulus0,
@@ -517,6 +532,48 @@ void bigint_mod_exp_sample ( const bigint_element_t *base0,
} while ( 0 )
/**
+ * Report result of big integer modular direct reduction test
+ *
+ * @v minuend Big integer to be reduced
+ * @v modulus Big integer modulus
+ * @v expected Big integer expected result
+ */
+#define bigint_reduce_ok( minuend, modulus, expected ) do { \
+ static const uint8_t minuend_raw[] = minuend; \
+ static const uint8_t modulus_raw[] = modulus; \
+ static const uint8_t expected_raw[] = expected; \
+ uint8_t result_raw[ sizeof ( expected_raw ) ]; \
+ unsigned int minuend_size = \
+ bigint_required_size ( sizeof ( minuend_raw ) ); \
+ unsigned int modulus_size = \
+ bigint_required_size ( sizeof ( modulus_raw ) ); \
+ bigint_t ( minuend_size ) minuend_temp; \
+ bigint_t ( modulus_size ) modulus_temp; \
+ bigint_t ( modulus_size ) result_temp; \
+ size_t tmp_len = bigint_reduce_tmp_len ( &minuend_temp ); \
+ uint8_t tmp[tmp_len]; \
+ {} /* Fix emacs alignment */ \
+ \
+ assert ( bigint_size ( &result_temp ) == \
+ bigint_size ( &modulus_temp ) ); \
+ bigint_init ( &minuend_temp, minuend_raw, \
+ sizeof ( minuend_raw ) ); \
+ bigint_init ( &modulus_temp, modulus_raw, \
+ sizeof ( modulus_raw ) ); \
+ DBG ( "Modular reduce:\n" ); \
+ DBG_HDA ( 0, &minuend_temp, sizeof ( minuend_temp ) ); \
+ DBG_HDA ( 0, &modulus_temp, sizeof ( modulus_temp ) ); \
+ bigint_reduce ( &minuend_temp, &modulus_temp, &result_temp, \
+ tmp ); \
+ DBG_HDA ( 0, &result_temp, sizeof ( result_temp ) ); \
+ bigint_done ( &result_temp, result_raw, \
+ sizeof ( result_raw ) ); \
+ \
+ ok ( memcmp ( result_raw, expected_raw, \
+ sizeof ( result_raw ) ) == 0 ); \
+ } while ( 0 )
+
+/**
* Report result of big integer modular multiplication test
*
* @v multiplicand Big integer to be multiplied
@@ -1674,6 +1731,35 @@ static void bigint_test_exec ( void ) {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01 ) );
+ bigint_reduce_ok ( BIGINT ( 0x00 ),
+ BIGINT ( 0xaf ),
+ BIGINT ( 0x00 ) );
+ bigint_reduce_ok ( BIGINT ( 0xab ),
+ BIGINT ( 0xab ),
+ BIGINT ( 0x00 ) );
+ bigint_reduce_ok ( BIGINT ( 0x1d, 0x97, 0x63, 0xc9, 0x97, 0xcd, 0x43,
+ 0xcb, 0x8e, 0x71, 0xac, 0x41, 0xdd ),
+ BIGINT ( 0xcc, 0x9d, 0xa0, 0x79, 0x96, 0x6a, 0x46,
+ 0xd5, 0xb4, 0x30, 0xd2, 0x2b, 0xbf ),
+ BIGINT ( 0x1d, 0x97, 0x63, 0xc9, 0x97, 0xcd, 0x43,
+ 0xcb, 0x8e, 0x71, 0xac, 0x41, 0xdd ) );
+ bigint_reduce_ok ( BIGINT ( 0x21, 0xfa, 0x4f, 0xce, 0x0f, 0x0f, 0x4d,
+ 0x43, 0xaa, 0xad, 0x21, 0x30, 0xe5 ),
+ BIGINT ( 0x21, 0xfa, 0x4f, 0xce, 0x0f, 0x0f, 0x4d,
+ 0x43, 0xaa, 0xad, 0x21, 0x30, 0xe5 ),
+ BIGINT ( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ) );
+ bigint_reduce_ok ( BIGINT ( 0xf9, 0x78, 0x96, 0x39, 0xee, 0x98, 0x42,
+ 0x6a, 0xb8, 0x74, 0x0b, 0xe8, 0x5c, 0x76,
+ 0x34, 0xaf ),
+ BIGINT ( 0xf3, 0x65, 0x35, 0x41, 0x66, 0x65 ),
+ BIGINT ( 0xb3, 0x07, 0xe8, 0xb7, 0x01, 0xf6 ) );
+ bigint_reduce_ok ( BIGINT ( 0xfe, 0x30, 0xe1, 0xc6, 0x65, 0x97, 0x48,
+ 0x2e, 0x94, 0xd4 ),
+ BIGINT ( 0x47, 0xaa, 0x88, 0x00, 0xd0, 0x30, 0x62,
+ 0xfb, 0x5d, 0x55 ),
+ BIGINT ( 0x27, 0x31, 0x49, 0xc3, 0xf5, 0x06, 0x1f,
+ 0x3c, 0x7c, 0xd5 ) );
bigint_mod_multiply_ok ( BIGINT ( 0x37 ),
BIGINT ( 0x67 ),
BIGINT ( 0x3f ),