aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMichael Brown <mcb30@ipxe.org>2024-11-27 13:25:18 +0000
committerMichael Brown <mcb30@ipxe.org>2024-11-27 13:25:18 +0000
commit4f7dd7fbba205d413cf9b989f7cdc928fa02caf2 (patch)
treeab8254a6e9acf2324523b6ae1f66beb967f92886
parent96f385d7a48ffe259295991043a86b2cefce1891 (diff)
downloadipxe-4f7dd7fbba205d413cf9b989f7cdc928fa02caf2.tar.gz
[crypto] Add bigint_montgomery() to perform Montgomery reduction
Montgomery reduction is substantially faster than direct reduction, and is better suited for modular exponentiation operations. Add bigint_montgomery() to perform the Montgomery reduction operation (often referred to as "REDC"), along with some test vectors. Signed-off-by: Michael Brown <mcb30@ipxe.org>
-rw-r--r--src/crypto/bigint.c77
-rw-r--r--src/include/ipxe/bigint.h21
-rw-r--r--src/tests/bigint_test.c76
3 files changed, 174 insertions, 0 deletions
diff --git a/src/crypto/bigint.c b/src/crypto/bigint.c
index 735fcdf61..6d75fbe9b 100644
--- a/src/crypto/bigint.c
+++ b/src/crypto/bigint.c
@@ -355,6 +355,83 @@ void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
}
/**
+ * Perform Montgomery reduction (REDC) of a big integer product
+ *
+ * @v modulus0 Element 0 of big integer modulus
+ * @v modinv0 Element 0 of the inverse of the modulus modulo 2^k
+ * @v mont0 Element 0 of big integer Montgomery product
+ * @v result0 Element 0 of big integer to hold result
+ * @v size Number of elements in modulus and result
+ *
+ * Note that only the least significant element of the inverse modulo
+ * 2^k is required, and that the Montgomery product will be
+ * overwritten.
+ */
+void bigint_montgomery_raw ( const bigint_element_t *modulus0,
+ const bigint_element_t *modinv0,
+ bigint_element_t *mont0,
+ bigint_element_t *result0, unsigned int size ) {
+ const bigint_t ( size ) __attribute__ (( may_alias ))
+ *modulus = ( ( const void * ) modulus0 );
+ const bigint_t ( 1 ) __attribute__ (( may_alias ))
+ *modinv = ( ( const void * ) modinv0 );
+ union {
+ bigint_t ( size * 2 ) full;
+ struct {
+ bigint_t ( size ) low;
+ bigint_t ( size ) high;
+ } __attribute__ (( packed ));
+ } __attribute__ (( may_alias )) *mont = ( ( void * ) mont0 );
+ bigint_t ( size ) __attribute__ (( may_alias ))
+ *result = ( ( void * ) result0 );
+ bigint_element_t negmodinv = -modinv->element[0];
+ bigint_element_t multiple;
+ bigint_element_t carry;
+ unsigned int i;
+ unsigned int j;
+ int overflow;
+ int underflow;
+
+ /* Sanity checks */
+ assert ( bigint_bit_is_set ( modulus, 0 ) );
+
+ /* Perform multiprecision Montgomery reduction */
+ for ( i = 0 ; i < size ; i++ ) {
+
+ /* Determine scalar multiple for this round */
+ multiple = ( mont->low.element[i] * negmodinv );
+
+ /* Multiply value to make it divisible by 2^(width*i) */
+ carry = 0;
+ for ( j = 0 ; j < size ; j++ ) {
+ bigint_multiply_one ( multiple, modulus->element[j],
+ &mont->full.element[ i + j ],
+ &carry );
+ }
+
+ /* Since value is now divisible by 2^(width*i), we
+ * know that the current low element must have been
+ * zeroed. We can store the multiplication carry out
+ * in this element, avoiding the need to immediately
+ * propagate the carry through the remaining elements.
+ */
+ assert ( mont->low.element[i] == 0 );
+ mont->low.element[i] = carry;
+ }
+
+ /* Add the accumulated carries */
+ overflow = bigint_add ( &mont->low, &mont->high );
+
+ /* Conditionally subtract the modulus once */
+ memcpy ( result, &mont->high, sizeof ( *result ) );
+ underflow = bigint_subtract ( modulus, result );
+ bigint_swap ( result, &mont->high, ( underflow & ~overflow ) );
+
+ /* Sanity check */
+ assert ( ! bigint_is_geq ( result, modulus ) );
+}
+
+/**
* Perform modular multiplication of big integers
*
* @v multiplicand0 Element 0 of big integer to be multiplied
diff --git a/src/include/ipxe/bigint.h b/src/include/ipxe/bigint.h
index 14f3c5f28..6c9730252 100644
--- a/src/include/ipxe/bigint.h
+++ b/src/include/ipxe/bigint.h
@@ -254,6 +254,23 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
} while ( 0 )
/**
+ * Perform Montgomery reduction (REDC) of a big integer product
+ *
+ * @v modulus Big integer modulus
+ * @v modinv Big integer inverse of the modulus modulo 2^k
+ * @v mont Big integer Montgomery product
+ * @v result Big integer to hold result
+ *
+ * Note that the Montgomery product will be overwritten.
+ */
+#define bigint_montgomery( modulus, modinv, mont, result ) do { \
+ unsigned int size = bigint_size (modulus); \
+ bigint_montgomery_raw ( (modulus)->element, (modinv)->element, \
+ (mont)->element, (result)->element, \
+ size ); \
+ } while ( 0 )
+
+/**
* Perform modular multiplication of big integers
*
* @v multiplicand Big integer to be multiplied
@@ -396,6 +413,10 @@ void bigint_reduce_raw ( bigint_element_t *modulus0, bigint_element_t *value0,
unsigned int size );
void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
bigint_element_t *inverse0, unsigned int size );
+void bigint_montgomery_raw ( const bigint_element_t *modulus0,
+ const bigint_element_t *modinv0,
+ bigint_element_t *mont0,
+ bigint_element_t *result0, unsigned int size );
void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
const bigint_element_t *multiplier0,
const bigint_element_t *modulus0,
diff --git a/src/tests/bigint_test.c b/src/tests/bigint_test.c
index bee36de25..1f2f5f244 100644
--- a/src/tests/bigint_test.c
+++ b/src/tests/bigint_test.c
@@ -206,6 +206,23 @@ void bigint_mod_invert_sample ( const bigint_element_t *invertend0,
bigint_mod_invert ( invertend, inverse );
}
+void bigint_montgomery_sample ( const bigint_element_t *modulus0,
+ const bigint_element_t *modinv0,
+ bigint_element_t *mont0,
+ bigint_element_t *result0,
+ unsigned int size ) {
+ const bigint_t ( size ) __attribute__ (( may_alias ))
+ *modulus = ( ( const void * ) modulus0 );
+ const bigint_t ( 1 ) __attribute__ (( may_alias ))
+ *modinv = ( ( const void * ) modinv0 );
+ bigint_t ( 2 * size ) __attribute__ (( may_alias ))
+ *mont = ( ( void * ) mont0 );
+ bigint_t ( size ) __attribute__ (( may_alias ))
+ *result = ( ( void * ) result0 );
+
+ bigint_montgomery ( modulus, modinv, mont, result );
+}
+
void bigint_mod_multiply_sample ( const bigint_element_t *multiplicand0,
const bigint_element_t *multiplier0,
const bigint_element_t *modulus0,
@@ -618,6 +635,46 @@ void bigint_mod_exp_sample ( const bigint_element_t *base0,
} while ( 0 )
/**
+ * Report result of Montgomery reduction (REDC) test
+ *
+ * @v modulus Big integer modulus
+ * @v mont Big integer Montgomery product
+ * @v expected Big integer expected result
+ */
+#define bigint_montgomery_ok( modulus, mont, expected ) do { \
+ static const uint8_t modulus_raw[] = modulus; \
+ static const uint8_t mont_raw[] = mont; \
+ static const uint8_t expected_raw[] = expected; \
+ uint8_t result_raw[ sizeof ( expected_raw ) ]; \
+ unsigned int size = \
+ bigint_required_size ( sizeof ( modulus_raw ) ); \
+ bigint_t ( size ) modulus_temp; \
+ bigint_t ( 1 ) modinv_temp; \
+ bigint_t ( 2 * size ) mont_temp; \
+ bigint_t ( size ) result_temp; \
+ {} /* Fix emacs alignment */ \
+ \
+ assert ( ( sizeof ( modulus_raw ) % \
+ sizeof ( bigint_element_t ) ) == 0 ); \
+ bigint_init ( &modulus_temp, modulus_raw, \
+ sizeof ( modulus_raw ) ); \
+ bigint_init ( &mont_temp, mont_raw, sizeof ( mont_raw ) ); \
+ bigint_mod_invert ( &modulus_temp, &modinv_temp ); \
+ DBG ( "Montgomery:\n" ); \
+ DBG_HDA ( 0, &modulus_temp, sizeof ( modulus_temp ) ); \
+ DBG_HDA ( 0, &modinv_temp, sizeof ( modinv_temp ) ); \
+ DBG_HDA ( 0, &mont_temp, sizeof ( mont_temp ) ); \
+ bigint_montgomery ( &modulus_temp, &modinv_temp, &mont_temp, \
+ &result_temp ); \
+ DBG_HDA ( 0, &result_temp, sizeof ( result_temp ) ); \
+ bigint_done ( &result_temp, result_raw, \
+ sizeof ( result_raw ) ); \
+ \
+ ok ( memcmp ( result_raw, expected_raw, \
+ sizeof ( result_raw ) ) == 0 ); \
+ } while ( 0 )
+
+/**
* Report result of big integer modular multiplication test
*
* @v multiplicand Big integer to be multiplied
@@ -1858,6 +1915,25 @@ static void bigint_test_exec ( void ) {
0x2e, 0xe6, 0x22, 0x07 ),
BIGINT ( 0x7b, 0xd1, 0x0f, 0x78, 0x0c, 0x65,
0xab, 0xb7 ) );
+ bigint_montgomery_ok ( BIGINT ( 0x74, 0xdf, 0xd1, 0xb8, 0x14, 0xf7,
+ 0x05, 0x83 ),
+ BIGINT ( 0x50, 0x6a, 0x38, 0x55, 0x9f, 0xb9,
+ 0x9d, 0xba, 0xff, 0x23, 0x86, 0x65,
+ 0xe3, 0x2c, 0x3f, 0x17 ),
+ BIGINT ( 0x45, 0x1f, 0x51, 0x44, 0x6f, 0x3c,
+ 0x09, 0x6b ) );
+ bigint_montgomery_ok ( BIGINT ( 0x2e, 0x32, 0x90, 0x69, 0x6e, 0xa8,
+ 0x47, 0x4c, 0xad, 0xe4, 0xe7, 0x4c,
+ 0x03, 0xcb, 0xe6, 0x55 ),
+ BIGINT ( 0x1e, 0x43, 0xf9, 0xc2, 0x61, 0xdd,
+ 0xe8, 0xbf, 0xb8, 0xea, 0xe0, 0xdb,
+ 0xed, 0x66, 0x80, 0x1e, 0xe8, 0xf8,
+ 0xd1, 0x1d, 0xca, 0x8d, 0x45, 0xe9,
+ 0xc5, 0xeb, 0x77, 0x21, 0x34, 0xe0,
+ 0xf5, 0x5a ),
+ BIGINT ( 0x03, 0x38, 0xfb, 0xb6, 0xf3, 0x80,
+ 0x91, 0xb2, 0x68, 0x2f, 0x81, 0x44,
+ 0xbf, 0x43, 0x0a, 0x4e ) );
bigint_mod_multiply_ok ( BIGINT ( 0x37 ),
BIGINT ( 0x67 ),
BIGINT ( 0x3f ),