aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMichael Brown <mcb30@ipxe.org>2024-11-27 12:51:04 +0000
committerMichael Brown <mcb30@ipxe.org>2024-11-27 13:05:18 +0000
commit7c2e68cc87a552c153e13517b0d0d6827f48e95b (patch)
tree234e3fee7656c0659207d84bb3eefc269551ddc6
parent9cbf5c4f86b45773badec2498fac22e8bc6d7dd1 (diff)
downloadipxe-7c2e68cc87a552c153e13517b0d0d6827f48e95b.tar.gz
[crypto] Eliminate temporary working space for bigint_mod_invert()
With a slight modification to the algorithm to ignore bits of the residue that can never contribute to the result, it is possible to reuse the as-yet uncalculated portions of the inverse to hold the residue. This removes the requirement for additional temporary working space. Signed-off-by: Michael Brown <mcb30@ipxe.org>
-rw-r--r--src/crypto/bigint.c63
-rw-r--r--src/include/ipxe/bigint.h24
-rw-r--r--src/tests/bigint_test.c24
3 files changed, 65 insertions, 46 deletions
diff --git a/src/crypto/bigint.c b/src/crypto/bigint.c
index 4b37c062b..735fcdf61 100644
--- a/src/crypto/bigint.c
+++ b/src/crypto/bigint.c
@@ -287,27 +287,22 @@ void bigint_reduce_raw ( bigint_element_t *modulus0, bigint_element_t *value0,
* @v invertend0 Element 0 of odd big integer to be inverted
* @v inverse0 Element 0 of big integer to hold result
* @v size Number of elements in invertend and result
- * @v tmp Temporary working space
*/
void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
- bigint_element_t *inverse0,
- unsigned int size, void *tmp ) {
+ bigint_element_t *inverse0, unsigned int size ) {
const bigint_t ( size ) __attribute__ (( may_alias ))
*invertend = ( ( const void * ) invertend0 );
bigint_t ( size ) __attribute__ (( may_alias ))
*inverse = ( ( void * ) inverse0 );
- struct {
- bigint_t ( size ) residue;
- } *temp = tmp;
- const unsigned int width = ( 8 * sizeof ( bigint_element_t ) );
+ bigint_element_t accum;
+ bigint_element_t bit;
unsigned int i;
/* Sanity check */
- assert ( invertend->element[0] & 1 );
+ assert ( bigint_bit_is_set ( invertend, 0 ) );
- /* Initialise temporary working space and output value */
- memset ( &temp->residue, 0xff, sizeof ( temp->residue ) );
- memset ( inverse, 0, sizeof ( *inverse ) );
+ /* Initialise output */
+ memset ( inverse, 0xff, sizeof ( *inverse ) );
/* Compute inverse modulo 2^(width)
*
@@ -315,23 +310,47 @@ void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
* presented in "A New Algorithm for Inversion mod p^k (Koç,
* 2017)".
*
- * Each loop iteration calculates one bit of the inverse. The
- * residue value is the two's complement negation of the value
- * "b" as used by Koç, to allow for division by two using a
- * logical right shift (since we have no arithmetic right
- * shift operation for big integers).
+ * Each inner loop iteration calculates one bit of the
+ * inverse. The residue value is the two's complement
+ * negation of the value "b" as used by Koç, to allow for
+ * division by two using a logical right shift (since we have
+ * no arithmetic right shift operation for big integers).
+ *
+ * The residue is stored in the as-yet uncalculated portion of
+ * the inverse. The size of the residue therefore decreases
+ * by one element for each outer loop iteration. Trivial
+ * inspection of the algorithm shows that any higher bits
+ * could not contribute to the eventual output value, and so
+ * we may safely reuse storage this way.
*
* Due to the suffix property of inverses mod 2^k, the result
* represents the least significant bits of the inverse modulo
* an arbitrarily large 2^k.
*/
- for ( i = 0 ; i < ( 8 * sizeof ( *inverse ) ) ; i++ ) {
- if ( temp->residue.element[0] & 1 ) {
- inverse->element[ i / width ] |=
- ( 1UL << ( i % width ) );
- bigint_add ( invertend, &temp->residue );
+ for ( i = size ; i > 0 ; i-- ) {
+ const bigint_t ( i ) __attribute__ (( may_alias ))
+ *addend = ( ( const void * ) invertend );
+ bigint_t ( i ) __attribute__ (( may_alias ))
+ *residue = ( ( void * ) inverse );
+
+ /* Calculate one element's worth of inverse bits */
+ for ( accum = 0, bit = 1 ; bit ; bit <<= 1 ) {
+ if ( bigint_bit_is_set ( residue, 0 ) ) {
+ accum |= bit;
+ bigint_add ( addend, residue );
+ }
+ bigint_shr ( residue );
}
- bigint_shr ( &temp->residue );
+
+ /* Store in the element no longer required to hold residue */
+ inverse->element[ i - 1 ] = accum;
+ }
+
+ /* Correct order of inverse elements */
+ for ( i = 0 ; i < ( size / 2 ) ; i++ ) {
+ accum = inverse->element[i];
+ inverse->element[i] = inverse->element[ size - 1 - i ];
+ inverse->element[ size - 1 - i ] = accum;
}
}
diff --git a/src/include/ipxe/bigint.h b/src/include/ipxe/bigint.h
index 330d7deec..e55c536c7 100644
--- a/src/include/ipxe/bigint.h
+++ b/src/include/ipxe/bigint.h
@@ -242,31 +242,18 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
} while ( 0 )
/**
- * Compute inverse of odd big integer modulo its own size
+ * Compute inverse of odd big integer modulo any power of two
*
* @v invertend Odd big integer to be inverted
* @v inverse Big integer to hold result
- * @v tmp Temporary working space
*/
-#define bigint_mod_invert( invertend, inverse, tmp ) do { \
- unsigned int size = bigint_size (invertend); \
+#define bigint_mod_invert( invertend, inverse ) do { \
+ unsigned int size = bigint_size ( invertend ); \
bigint_mod_invert_raw ( (invertend)->element, \
- (inverse)->element, size, tmp ); \
+ (inverse)->element, size ); \
} while ( 0 )
/**
- * Calculate temporary working space required for modular inversion
- *
- * @v invertend Odd big integer to be inverted
- * @ret len Length of temporary working space
- */
-#define bigint_mod_invert_tmp_len( invertend ) ( { \
- unsigned int size = bigint_size (invertend); \
- sizeof ( struct { \
- bigint_t ( size ) temp_residue; \
- } ); } )
-
-/**
* Perform modular multiplication of big integers
*
* @v multiplicand Big integer to be multiplied
@@ -408,8 +395,7 @@ void bigint_multiply_raw ( const bigint_element_t *multiplicand0,
void bigint_reduce_raw ( bigint_element_t *modulus0, bigint_element_t *value0,
unsigned int size );
void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
- bigint_element_t *inverse0,
- unsigned int size, void *tmp );
+ bigint_element_t *inverse0, unsigned int size );
void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
const bigint_element_t *multiplier0,
const bigint_element_t *modulus0,
diff --git a/src/tests/bigint_test.c b/src/tests/bigint_test.c
index 61f78fff9..608d8e874 100644
--- a/src/tests/bigint_test.c
+++ b/src/tests/bigint_test.c
@@ -197,13 +197,13 @@ void bigint_reduce_sample ( bigint_element_t *modulus0,
void bigint_mod_invert_sample ( const bigint_element_t *invertend0,
bigint_element_t *inverse0,
- unsigned int size, void *tmp ) {
+ unsigned int size ) {
const bigint_t ( size ) __attribute__ (( may_alias ))
*invertend = ( ( const void * ) invertend0 );
bigint_t ( size ) __attribute__ (( may_alias ))
*inverse = ( ( void * ) inverse0 );
- bigint_mod_invert ( invertend, inverse, tmp );
+ bigint_mod_invert ( invertend, inverse );
}
void bigint_mod_multiply_sample ( const bigint_element_t *multiplicand0,
@@ -600,8 +600,6 @@ void bigint_mod_exp_sample ( const bigint_element_t *base0,
bigint_required_size ( sizeof ( invertend_raw ) ); \
bigint_t ( size ) invertend_temp; \
bigint_t ( size ) inverse_temp; \
- size_t tmp_len = bigint_mod_invert_tmp_len ( &invertend_temp ); \
- uint8_t tmp[tmp_len]; \
{} /* Fix emacs alignment */ \
\
assert ( bigint_size ( &invertend_temp ) == \
@@ -610,7 +608,7 @@ void bigint_mod_exp_sample ( const bigint_element_t *base0,
sizeof ( invertend_raw ) ); \
DBG ( "Modular invert:\n" ); \
DBG_HDA ( 0, &invertend_temp, sizeof ( invertend_temp ) ); \
- bigint_mod_invert ( &invertend_temp, &inverse_temp, tmp ); \
+ bigint_mod_invert ( &invertend_temp, &inverse_temp ); \
DBG_HDA ( 0, &inverse_temp, sizeof ( inverse_temp ) ); \
bigint_done ( &inverse_temp, inverse_raw, \
sizeof ( inverse_raw ) ); \
@@ -1827,6 +1825,10 @@ static void bigint_test_exec ( void ) {
0xff, 0xff ),
BIGINT ( 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff ) );
+ bigint_mod_invert_ok ( BIGINT ( 0xa4, 0xcb, 0xbc, 0xc9, 0x9f, 0x7a,
+ 0x65, 0xbf ),
+ BIGINT ( 0xb9, 0xd5, 0xf4, 0x88, 0x0b, 0xf8,
+ 0x8a, 0x3f ) );
bigint_mod_invert_ok ( BIGINT ( 0x95, 0x6a, 0xc5, 0xe7, 0x2e, 0x5b,
0x44, 0xed, 0xbf, 0x7e, 0xfe, 0x8d,
0xf4, 0x5a, 0x48, 0xc1 ),
@@ -1839,6 +1841,18 @@ static void bigint_test_exec ( void ) {
BIGINT ( 0xf2, 0x9c, 0x63, 0x29, 0xfa, 0xe4,
0xbf, 0x90, 0xa6, 0x9a, 0xec, 0xcf,
0x5f, 0xe2, 0x21, 0xcd ) );
+ bigint_mod_invert_ok ( BIGINT ( 0xb9, 0xbb, 0x7f, 0x9c, 0x7a, 0x32,
+ 0x43, 0xed, 0x9d, 0xd4, 0x0d, 0x6f,
+ 0x32, 0xfa, 0x4b, 0x62, 0x38, 0x3a,
+ 0xbf, 0x4c, 0xbd, 0xa8, 0x47, 0xce,
+ 0xa2, 0x30, 0x34, 0xe0, 0x2c, 0x09,
+ 0x14, 0x89 ),
+ BIGINT ( 0xfc, 0x05, 0xc4, 0x2a, 0x90, 0x99,
+ 0x82, 0xf8, 0x81, 0x1d, 0x87, 0xb8,
+ 0xca, 0xe4, 0x95, 0xe2, 0xac, 0x18,
+ 0xb3, 0xe1, 0x3e, 0xc6, 0x5a, 0x03,
+ 0x51, 0x6f, 0xb7, 0xe3, 0xa5, 0xd6,
+ 0xa1, 0xb9 ) );
bigint_mod_multiply_ok ( BIGINT ( 0x37 ),
BIGINT ( 0x67 ),
BIGINT ( 0x3f ),