diff options
author | Marty Connor <mdc@etherboot.org> | 2010-03-17 03:02:32 -0400 |
---|---|---|
committer | Marty Connor <mdc@etherboot.org> | 2010-03-17 03:02:32 -0400 |
commit | 930a2ffac879fe893d22f3076243be7b07cedd45 (patch) | |
tree | 7fb9b194e0aae592a94bcf012dac50ad8903f132 | |
parent | 73c71f64928ff9ff3187c4dabad53032462fed22 (diff) | |
download | ipxe-930a2ffac879fe893d22f3076243be7b07cedd45.tar.gz |
[e1000] Update e1000 driver
This commit replaces the current gPXE e1000 driver with one ported
from Intel source code available at
http://sourceforge.net/projects/e1000/
which is upstream source for the Linux kernel e1000 drivers, and
should support most if not all PCI e1000 variants.
Signed-off-by: Marty Connor <mdc@etherboot.org>
25 files changed, 15348 insertions, 13859 deletions
diff --git a/src/drivers/net/e1000/e1000.c b/src/drivers/net/e1000/e1000.c index 8e8c697fc..a32a4d7c4 100644 --- a/src/drivers/net/e1000/e1000.c +++ b/src/drivers/net/e1000/e1000.c @@ -1,22 +1,7 @@ -/* - * gPXE driver for Intel eepro1000 ethernet cards - * - * Written by Marty Connor - * - * Copyright Entity Cyber, Inc. 2007 - * - * This software may be used and distributed according to the terms of - * the GNU General Public License (GPL), incorporated herein by - * reference. Drivers based on or derived from this code fall under - * the GPL and must retain the authorship, copyright and license - * notice. - * - */ - /******************************************************************************* Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2006 Intel Corporation. + Copyright(c) 1999 - 2008 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -43,1147 +28,8 @@ FILE_LICENCE ( GPL2_ONLY ); -#include "e1000.h" - -/** - * e1000_get_hw_control - get control of the h/w from f/w - * - * @v adapter e1000 private structure - * - * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. - * For ASF and Pass Through versions of f/w this means that - * the driver is loaded. For AMT version (only with 82573) - * of the f/w this means that the network i/f is open. - * - **/ -static void -e1000_get_hw_control ( struct e1000_adapter *adapter ) -{ - uint32_t ctrl_ext; - uint32_t swsm; - - DBG ( "e1000_get_hw_control\n" ); - - /* Let firmware know the driver has taken over */ - switch (adapter->hw.mac_type) { - case e1000_82573: - swsm = E1000_READ_REG(&adapter->hw, SWSM); - E1000_WRITE_REG(&adapter->hw, SWSM, - swsm | E1000_SWSM_DRV_LOAD); - break; - case e1000_82571: - case e1000_82572: - case e1000_82576: - case e1000_80003es2lan: - case e1000_ich8lan: - ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); - E1000_WRITE_REG(&adapter->hw, CTRL_EXT, - ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); - break; - default: - break; - } -} - -/** - * e1000_irq_enable - Enable default interrupt generation settings - * - * @v adapter e1000 private structure - **/ -static void -e1000_irq_enable ( struct e1000_adapter *adapter ) -{ - E1000_WRITE_REG ( &adapter->hw, IMS, IMS_ENABLE_MASK ); - E1000_WRITE_FLUSH ( &adapter->hw ); -} - -/** - * e1000_irq_disable - Mask off interrupt generation on the NIC - * - * @v adapter e1000 private structure - **/ -static void -e1000_irq_disable ( struct e1000_adapter *adapter ) -{ - E1000_WRITE_REG ( &adapter->hw, IMC, ~0 ); - E1000_WRITE_FLUSH ( &adapter->hw ); -} - -/** - * e1000_sw_init - Initialize general software structures (struct e1000_adapter) - * - * @v adapter e1000 private structure - * - * e1000_sw_init initializes the Adapter private data structure. - * Fields are initialized based on PCI device information and - * OS network device settings (MTU size). - **/ -static int -e1000_sw_init ( struct e1000_adapter *adapter ) -{ - struct e1000_hw *hw = &adapter->hw; - struct pci_device *pdev = adapter->pdev; - - /* PCI config space info */ - - hw->vendor_id = pdev->vendor; - hw->device_id = pdev->device; - - pci_read_config_word ( pdev, PCI_COMMAND, &hw->pci_cmd_word ); - - /* Disable Flow Control */ - hw->fc = E1000_FC_NONE; - - adapter->eeprom_wol = 0; - adapter->wol = adapter->eeprom_wol; - adapter->en_mng_pt = 0; - adapter->rx_int_delay = 0; - adapter->rx_abs_int_delay = 0; - - adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; - adapter->rx_ps_bsize0 = E1000_RXBUFFER_128; - hw->max_frame_size = MAXIMUM_ETHERNET_VLAN_SIZE + - ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; - hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; - - /* identify the MAC */ - - if ( e1000_set_mac_type ( hw ) ) { - DBG ( "Unknown MAC Type\n" ); - return -EIO; - } - - switch ( hw->mac_type ) { - default: - break; - case e1000_82541: - case e1000_82547: - case e1000_82541_rev_2: - case e1000_82547_rev_2: - hw->phy_init_script = 1; - break; - } - - e1000_set_media_type ( hw ); - - hw->autoneg = TRUE; - hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; - hw->wait_autoneg_complete = TRUE; - - hw->tbi_compatibility_en = TRUE; - hw->adaptive_ifs = TRUE; - - /* Copper options */ - - if ( hw->media_type == e1000_media_type_copper ) { - hw->mdix = AUTO_ALL_MODES; - hw->disable_polarity_correction = FALSE; - hw->master_slave = E1000_MASTER_SLAVE; - } - - e1000_irq_disable ( adapter ); - - return 0; -} - -/** - * e1000_setup_tx_resources - allocate Tx resources (Descriptors) - * - * @v adapter e1000 private structure - * - * @ret rc Returns 0 on success, negative on failure - **/ -static int -e1000_setup_tx_resources ( struct e1000_adapter *adapter ) -{ - DBG ( "e1000_setup_tx_resources\n" ); - - /* Allocate transmit descriptor ring memory. - It must not cross a 64K boundary because of hardware errata #23 - so we use malloc_dma() requesting a 128 byte block that is - 128 byte aligned. This should guarantee that the memory - allocated will not cross a 64K boundary, because 128 is an - even multiple of 65536 ( 65536 / 128 == 512 ), so all possible - allocations of 128 bytes on a 128 byte boundary will not - cross 64K bytes. - */ - - adapter->tx_base = - malloc_dma ( adapter->tx_ring_size, adapter->tx_ring_size ); - - if ( ! adapter->tx_base ) { - return -ENOMEM; - } - - memset ( adapter->tx_base, 0, adapter->tx_ring_size ); - - DBG ( "adapter->tx_base = %#08lx\n", virt_to_bus ( adapter->tx_base ) ); - - return 0; -} - -static void -e1000_free_tx_resources ( struct e1000_adapter *adapter ) -{ - DBG ( "e1000_free_tx_resources\n" ); - - free_dma ( adapter->tx_base, adapter->tx_ring_size ); -} - -/** - * e1000_configure_tx - Configure 8254x Transmit Unit after Reset - * @adapter: board private structure - * - * Configure the Tx unit of the MAC after a reset. - **/ -static void -e1000_configure_tx ( struct e1000_adapter *adapter ) -{ - struct e1000_hw *hw = &adapter->hw; - uint32_t tctl; - uint32_t txdctl; - - DBG ( "e1000_configure_tx\n" ); - - E1000_WRITE_REG ( hw, TDBAH, 0 ); - E1000_WRITE_REG ( hw, TDBAL, virt_to_bus ( adapter->tx_base ) ); - E1000_WRITE_REG ( hw, TDLEN, adapter->tx_ring_size ); - - DBG ( "TDBAL: %#08x\n", E1000_READ_REG ( hw, TDBAL ) ); - DBG ( "TDLEN: %d\n", E1000_READ_REG ( hw, TDLEN ) ); - - /* Setup the HW Tx Head and Tail descriptor pointers */ - E1000_WRITE_REG ( hw, TDH, 0 ); - E1000_WRITE_REG ( hw, TDT, 0 ); - - adapter->tx_head = 0; - adapter->tx_tail = 0; - adapter->tx_fill_ctr = 0; - - if (hw->mac_type == e1000_82576) { - txdctl = E1000_READ_REG ( hw, TXDCTL ); - txdctl |= E1000_TXDCTL_QUEUE_ENABLE; - E1000_WRITE_REG ( hw, TXDCTL, txdctl ); - } - - /* Setup Transmit Descriptor Settings for eop descriptor */ - tctl = E1000_TCTL_PSP | E1000_TCTL_EN | - (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) | - (E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); - - e1000_config_collision_dist ( hw ); - - E1000_WRITE_REG ( hw, TCTL, tctl ); - E1000_WRITE_FLUSH ( hw ); -} - -static void -e1000_free_rx_resources ( struct e1000_adapter *adapter ) -{ - int i; - - DBG ( "e1000_free_rx_resources\n" ); - - free_dma ( adapter->rx_base, adapter->rx_ring_size ); - - for ( i = 0; i < NUM_RX_DESC; i++ ) { - free_iob ( adapter->rx_iobuf[i] ); - } -} - -/** - * e1000_refill_rx_ring - allocate Rx io_buffers - * - * @v adapter e1000 private structure - * - * @ret rc Returns 0 on success, negative on failure - **/ -int e1000_refill_rx_ring ( struct e1000_adapter *adapter ) -{ - int i, rx_curr; - int rc = 0; - struct e1000_rx_desc *rx_curr_desc; - struct e1000_hw *hw = &adapter->hw; - struct io_buffer *iob; - - DBG ("e1000_refill_rx_ring\n"); - - for ( i = 0; i < NUM_RX_DESC; i++ ) { - rx_curr = ( ( adapter->rx_curr + i ) % NUM_RX_DESC ); - rx_curr_desc = adapter->rx_base + rx_curr; - - if ( rx_curr_desc->status & E1000_RXD_STAT_DD ) - continue; - - if ( adapter->rx_iobuf[rx_curr] != NULL ) - continue; - - DBG2 ( "Refilling rx desc %d\n", rx_curr ); - - iob = alloc_iob ( MAXIMUM_ETHERNET_VLAN_SIZE ); - adapter->rx_iobuf[rx_curr] = iob; - - if ( ! iob ) { - DBG ( "alloc_iob failed\n" ); - rc = -ENOMEM; - break; - } else { - rx_curr_desc->buffer_addr = virt_to_bus ( iob->data ); - - E1000_WRITE_REG ( hw, RDT, rx_curr ); - } - } - return rc; -} - -/** - * e1000_setup_rx_resources - allocate Rx resources (Descriptors) - * - * @v adapter e1000 private structure - * - * @ret rc Returns 0 on success, negative on failure - **/ -static int -e1000_setup_rx_resources ( struct e1000_adapter *adapter ) -{ - int i, rc = 0; - - DBG ( "e1000_setup_rx_resources\n" ); - - /* Allocate receive descriptor ring memory. - It must not cross a 64K boundary because of hardware errata - */ - - adapter->rx_base = - malloc_dma ( adapter->rx_ring_size, adapter->rx_ring_size ); - - if ( ! adapter->rx_base ) { - return -ENOMEM; - } - memset ( adapter->rx_base, 0, adapter->rx_ring_size ); - - for ( i = 0; i < NUM_RX_DESC; i++ ) { - /* let e1000_refill_rx_ring() io_buffer allocations */ - adapter->rx_iobuf[i] = NULL; - } - - /* allocate io_buffers */ - rc = e1000_refill_rx_ring ( adapter ); - if ( rc < 0 ) - e1000_free_rx_resources ( adapter ); - - return rc; -} - -/** - * e1000_configure_rx - Configure 8254x Receive Unit after Reset - * @adapter: board private structure - * - * Configure the Rx unit of the MAC after a reset. - **/ -static void -e1000_configure_rx ( struct e1000_adapter *adapter ) -{ - struct e1000_hw *hw = &adapter->hw; - uint32_t rctl, rxdctl, mrqc, rxcsum; - - DBG ( "e1000_configure_rx\n" ); - - /* disable receives while setting up the descriptors */ - rctl = E1000_READ_REG ( hw, RCTL ); - E1000_WRITE_REG ( hw, RCTL, rctl & ~E1000_RCTL_EN ); - E1000_WRITE_FLUSH ( hw ); - mdelay(10); - - adapter->rx_curr = 0; - - /* Setup the HW Rx Head and Tail Descriptor Pointers and - * the Base and Length of the Rx Descriptor Ring */ - - E1000_WRITE_REG ( hw, RDBAL, virt_to_bus ( adapter->rx_base ) ); - E1000_WRITE_REG ( hw, RDBAH, 0 ); - E1000_WRITE_REG ( hw, RDLEN, adapter->rx_ring_size ); - - E1000_WRITE_REG ( hw, RDH, 0 ); - if (hw->mac_type == e1000_82576) - E1000_WRITE_REG ( hw, RDT, 0 ); - else - E1000_WRITE_REG ( hw, RDT, NUM_RX_DESC - 1 ); - - /* This doesn't seem to be necessary for correct operation, - * but it seems as well to be implicit - */ - if (hw->mac_type == e1000_82576) { - rxdctl = E1000_READ_REG ( hw, RXDCTL ); - rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; - rxdctl &= 0xFFF00000; - rxdctl |= IGB_RX_PTHRESH; - rxdctl |= IGB_RX_HTHRESH << 8; - rxdctl |= IGB_RX_WTHRESH << 16; - E1000_WRITE_REG ( hw, RXDCTL, rxdctl ); - E1000_WRITE_FLUSH ( hw ); - - rxcsum = E1000_READ_REG(hw, RXCSUM); - rxcsum &= ~( E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE ); - E1000_WRITE_REG ( hw, RXCSUM, 0 ); - - /* The initial value for MRQC disables multiple receive - * queues, however this setting is not recommended. - * - IntelĀ® 82576 Gigabit Ethernet Controller Datasheet r2.41 - * Section 8.10.9 Multiple Queues Command Register - MRQC - */ - mrqc = E1000_MRQC_ENABLE_VMDQ; - E1000_WRITE_REG ( hw, MRQC, mrqc ); - } - - /* Enable Receives */ - rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | - E1000_RCTL_MPE; - E1000_WRITE_REG ( hw, RCTL, rctl ); - E1000_WRITE_FLUSH ( hw ); - - /* On the 82576, RDT([0]) must not be "bumped" before - * the enable bit of RXDCTL([0]) is set. - * - IntelĀ® 82576 Gigabit Ethernet Controller Datasheet r2.41 - * Section 4.5.9 receive Initialization - * - * By observation I have found to occur when the enable bit of - * RCTL is set. The datasheet recommends polling for this bit, - * however as I see no evidence of this in the Linux igb driver - * I have omitted that step. - * - Simon Horman, May 2009 - */ - if (hw->mac_type == e1000_82576) - E1000_WRITE_REG ( hw, RDT, NUM_RX_DESC - 1 ); - - DBG ( "RDBAL: %#08x\n", E1000_READ_REG ( hw, RDBAL ) ); - DBG ( "RDLEN: %d\n", E1000_READ_REG ( hw, RDLEN ) ); - DBG ( "RCTL: %#08x\n", E1000_READ_REG ( hw, RCTL ) ); -} - -/** - * e1000_reset - Put e1000 NIC in known initial state - * - * @v adapter e1000 private structure - **/ -static void -e1000_reset ( struct e1000_adapter *adapter ) -{ - uint32_t pba = 0; - uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF; - - DBG ( "e1000_reset\n" ); - - switch (adapter->hw.mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - case e1000_82540: - case e1000_82541: - case e1000_82541_rev_2: - pba = E1000_PBA_48K; - break; - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - pba = E1000_PBA_48K; - break; - case e1000_82547: - case e1000_82547_rev_2: - pba = E1000_PBA_30K; - break; - case e1000_82571: - case e1000_82572: - case e1000_80003es2lan: - pba = E1000_PBA_38K; - break; - case e1000_82573: - pba = E1000_PBA_20K; - break; - case e1000_82576: - pba = E1000_PBA_64K; - break; - case e1000_ich8lan: - pba = E1000_PBA_8K; - case e1000_undefined: - case e1000_num_macs: - break; - } - - E1000_WRITE_REG ( &adapter->hw, PBA, pba ); - - /* flow control settings */ - /* Set the FC high water mark to 90% of the FIFO size. - * Required to clear last 3 LSB */ - fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; - - /* We can't use 90% on small FIFOs because the remainder - * would be less than 1 full frame. In this case, we size - * it to allow at least a full frame above the high water - * mark. */ - if (pba < E1000_PBA_16K) - fc_high_water_mark = (pba * 1024) - 1600; - - /* This actually applies to < e1000_82575, one revision less than - * e1000_82576, but e1000_82575 isn't currently defined in the code */ - if (adapter->hw.mac_type < e1000_82576) { - /* 8-byte granularity */ - adapter->hw.fc_high_water = fc_high_water_mark & 0xFFF8; - adapter->hw.fc_low_water = adapter->hw.fc_high_water - 8; - } else { - /* 16-byte granularity */ - adapter->hw.fc_high_water = fc_high_water_mark & 0xFFF0; - adapter->hw.fc_low_water = adapter->hw.fc_high_water - 16; - } - - if (adapter->hw.mac_type == e1000_80003es2lan || - adapter->hw.mac_type == e1000_82576) - adapter->hw.fc_pause_time = 0xFFFF; - else - adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME; - adapter->hw.fc_send_xon = 1; - adapter->hw.fc = adapter->hw.original_fc; - /* Allow time for pending master requests to run */ - - e1000_reset_hw ( &adapter->hw ); - - if ( adapter->hw.mac_type >= e1000_82544 ) - E1000_WRITE_REG ( &adapter->hw, WUC, 0 ); - - if ( e1000_init_hw ( &adapter->hw ) ) - DBG ( "Hardware Error\n" ); - - /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ - if (adapter->hw.mac_type >= e1000_82544 && - adapter->hw.mac_type <= e1000_82547_rev_2 && - adapter->hw.autoneg == 1 && - adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) { - uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL); - /* clear phy power management bit if we are in gig only mode, - * which if enabled will attempt negotiation to 100Mb, which - * can cause a loss of link at power off or driver unload */ - ctrl &= ~E1000_CTRL_SWDPIN3; - E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); - } - - e1000_phy_get_info ( &adapter->hw, &adapter->phy_info ); - - if (!adapter->smart_power_down && - (adapter->hw.mac_type == e1000_82571 || - adapter->hw.mac_type == e1000_82572)) { - uint16_t phy_data = 0; - /* speed up time to link by disabling smart power down, ignore - * the return value of this function because there is nothing - * different we would do if it failed */ - e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, - &phy_data); - phy_data &= ~IGP02E1000_PM_SPD; - e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, - phy_data); - } -} - -/** Functions that implement the gPXE driver API **/ - -/** - * e1000_close - Disables a network interface - * - * @v netdev network interface device structure - * - **/ -static void -e1000_close ( struct net_device *netdev ) -{ - struct e1000_adapter *adapter = netdev_priv ( netdev ); - struct e1000_hw *hw = &adapter->hw; - uint32_t rctl; - uint32_t icr; - - DBG ( "e1000_close\n" ); - - /* Acknowledge interrupts */ - icr = E1000_READ_REG ( hw, ICR ); - - e1000_irq_disable ( adapter ); - - /* disable receives */ - rctl = E1000_READ_REG ( hw, RCTL ); - E1000_WRITE_REG ( hw, RCTL, rctl & ~E1000_RCTL_EN ); - E1000_WRITE_FLUSH ( hw ); - - e1000_reset_hw ( hw ); - - e1000_free_tx_resources ( adapter ); - e1000_free_rx_resources ( adapter ); -} - -/** - * e1000_transmit - Transmit a packet - * - * @v netdev Network device - * @v iobuf I/O buffer - * - * @ret rc Returns 0 on success, negative on failure - */ -static int -e1000_transmit ( struct net_device *netdev, struct io_buffer *iobuf ) -{ - struct e1000_adapter *adapter = netdev_priv( netdev ); - struct e1000_hw *hw = &adapter->hw; - uint32_t tx_curr = adapter->tx_tail; - struct e1000_tx_desc *tx_curr_desc; - - DBG ("e1000_transmit\n"); - - if ( adapter->tx_fill_ctr == NUM_TX_DESC ) { - DBG ("TX overflow\n"); - return -ENOBUFS; - } - - /* Save pointer to iobuf we have been given to transmit, - netdev_tx_complete() will need it later - */ - adapter->tx_iobuf[tx_curr] = iobuf; - - tx_curr_desc = ( void * ) ( adapter->tx_base ) + - ( tx_curr * sizeof ( *adapter->tx_base ) ); - - DBG ( "tx_curr_desc = %#08lx\n", virt_to_bus ( tx_curr_desc ) ); - DBG ( "tx_curr_desc + 16 = %#08lx\n", virt_to_bus ( tx_curr_desc ) + 16 ); - DBG ( "iobuf->data = %#08lx\n", virt_to_bus ( iobuf->data ) ); - - /* Add the packet to TX ring - */ - tx_curr_desc->buffer_addr = - virt_to_bus ( iobuf->data ); - tx_curr_desc->lower.data = - E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP | - E1000_TXD_CMD_IFCS | iob_len ( iobuf ); - tx_curr_desc->upper.data = 0; - - DBG ( "TX fill: %d tx_curr: %d addr: %#08lx len: %zd\n", adapter->tx_fill_ctr, - tx_curr, virt_to_bus ( iobuf->data ), iob_len ( iobuf ) ); - - /* Point to next free descriptor */ - adapter->tx_tail = ( adapter->tx_tail + 1 ) % NUM_TX_DESC; - adapter->tx_fill_ctr++; - - /* Write new tail to NIC, making packet available for transmit - */ - wmb(); - E1000_WRITE_REG ( hw, TDT, adapter->tx_tail ); - - return 0; -} - -/** - * e1000_poll - Poll for received packets - * - * @v netdev Network device - */ -static void -e1000_poll ( struct net_device *netdev ) -{ - struct e1000_adapter *adapter = netdev_priv( netdev ); - struct e1000_hw *hw = &adapter->hw; - - uint32_t icr; - uint32_t tx_status; - uint32_t rx_status; - uint32_t rx_len; - uint32_t rx_err; - struct e1000_tx_desc *tx_curr_desc; - struct e1000_rx_desc *rx_curr_desc; - uint32_t i; - - DBGP ( "e1000_poll\n" ); - - /* Acknowledge interrupts */ - icr = E1000_READ_REG ( hw, ICR ); - if ( ! icr ) - return; - - DBG ( "e1000_poll: intr_status = %#08x\n", icr ); - - /* Check status of transmitted packets - */ - while ( ( i = adapter->tx_head ) != adapter->tx_tail ) { - - tx_curr_desc = ( void * ) ( adapter->tx_base ) + - ( i * sizeof ( *adapter->tx_base ) ); - - tx_status = tx_curr_desc->upper.data; - - /* if the packet at tx_head is not owned by hardware it is for us */ - if ( ! ( tx_status & E1000_TXD_STAT_DD ) ) - break; - - DBG ( "Sent packet. tx_head: %d tx_tail: %d tx_status: %#08x\n", - adapter->tx_head, adapter->tx_tail, tx_status ); - - if ( tx_status & ( E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | - E1000_TXD_STAT_TU ) ) { - netdev_tx_complete_err ( netdev, adapter->tx_iobuf[i], -EINVAL ); - DBG ( "Error transmitting packet, tx_status: %#08x\n", - tx_status ); - } else { - netdev_tx_complete ( netdev, adapter->tx_iobuf[i] ); - DBG ( "Success transmitting packet, tx_status: %#08x\n", - tx_status ); - } - - /* Decrement count of used descriptors, clear this descriptor - */ - adapter->tx_fill_ctr--; - memset ( tx_curr_desc, 0, sizeof ( *tx_curr_desc ) ); - - adapter->tx_head = ( adapter->tx_head + 1 ) % NUM_TX_DESC; - } - - /* Process received packets - */ - while ( 1 ) { - - i = adapter->rx_curr; - - rx_curr_desc = ( void * ) ( adapter->rx_base ) + - ( i * sizeof ( *adapter->rx_base ) ); - rx_status = rx_curr_desc->status; - - DBG2 ( "Before DD Check RX_status: %#08x\n", rx_status ); - - if ( ! ( rx_status & E1000_RXD_STAT_DD ) ) - break; - - if ( adapter->rx_iobuf[i] == NULL ) - break; - - DBG ( "RCTL = %#08x\n", E1000_READ_REG ( &adapter->hw, RCTL ) ); - - rx_len = rx_curr_desc->length; - - DBG ( "Received packet, rx_curr: %d rx_status: %#08x rx_len: %d\n", - i, rx_status, rx_len ); - - rx_err = rx_curr_desc->errors; - - iob_put ( adapter->rx_iobuf[i], rx_len ); - - if ( rx_err & E1000_RXD_ERR_FRAME_ERR_MASK ) { - - netdev_rx_err ( netdev, adapter->rx_iobuf[i], -EINVAL ); - DBG ( "e1000_poll: Corrupted packet received!" - " rx_err: %#08x\n", rx_err ); - } else { - /* Add this packet to the receive queue. */ - netdev_rx ( netdev, adapter->rx_iobuf[i] ); - } - adapter->rx_iobuf[i] = NULL; - - memset ( rx_curr_desc, 0, sizeof ( *rx_curr_desc ) ); - - adapter->rx_curr = ( adapter->rx_curr + 1 ) % NUM_RX_DESC; - } - e1000_refill_rx_ring(adapter); -} - -/** - * e1000_irq - enable or Disable interrupts - * - * @v adapter e1000 adapter - * @v action requested interrupt action - **/ -static void -e1000_irq ( struct net_device *netdev, int enable ) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - DBG ( "e1000_irq\n" ); - - if ( enable ) - e1000_irq_enable ( adapter ); - else - e1000_irq_disable ( adapter ); -} - -static struct net_device_operations e1000_operations; - -/** - * e1000_probe - Initial configuration of e1000 NIC - * - * @v pci PCI device - * @v id PCI IDs - * - * @ret rc Return status code - **/ -static int -e1000_probe ( struct pci_device *pdev, - const struct pci_device_id *id __unused ) -{ - int i, err; - struct net_device *netdev; - struct e1000_adapter *adapter; - unsigned long mmio_start, mmio_len; - unsigned long flash_start, flash_len; - - DBG ( "e1000_probe\n" ); - - err = -ENOMEM; - - /* Allocate net device ( also allocates memory for netdev->priv - and makes netdev-priv point to it ) */ - netdev = alloc_etherdev ( sizeof ( struct e1000_adapter ) ); - if ( ! netdev ) - goto err_alloc_etherdev; - - /* Associate e1000-specific network operations operations with - * generic network device layer */ - netdev_init ( netdev, &e1000_operations ); - - /* Associate this network device with given PCI device */ - pci_set_drvdata ( pdev, netdev ); - netdev->dev = &pdev->dev; - - /* Initialize driver private storage */ - adapter = netdev_priv ( netdev ); - memset ( adapter, 0, ( sizeof ( *adapter ) ) ); - - adapter->hw.io_base = pdev->ioaddr; - adapter->ioaddr = pdev->ioaddr; - adapter->irqno = pdev->irq; - adapter->netdev = netdev; - adapter->pdev = pdev; - adapter->hw.back = adapter; - - adapter->tx_ring_size = sizeof ( *adapter->tx_base ) * NUM_TX_DESC; - adapter->rx_ring_size = sizeof ( *adapter->rx_base ) * NUM_RX_DESC; - - mmio_start = pci_bar_start ( pdev, PCI_BASE_ADDRESS_0 ); - mmio_len = pci_bar_size ( pdev, PCI_BASE_ADDRESS_0 ); - - DBG ( "mmio_start: %#08lx\n", mmio_start ); - DBG ( "mmio_len: %#08lx\n", mmio_len ); - - /* Fix up PCI device */ - adjust_pci_device ( pdev ); - - err = -EIO; - - adapter->hw.hw_addr = ioremap ( mmio_start, mmio_len ); - DBG ( "adapter->hw.hw_addr: %p\n", adapter->hw.hw_addr ); - - if ( ! adapter->hw.hw_addr ) - goto err_ioremap; - - /* setup the private structure */ - if ( ( err = e1000_sw_init ( adapter ) ) ) - goto err_sw_init; - - DBG ( "adapter->hw.mac_type: %#08x\n", adapter->hw.mac_type ); - - /* Flash BAR mapping must happen after e1000_sw_init - * because it depends on mac_type - */ - if ( ( adapter->hw.mac_type == e1000_ich8lan ) && ( pdev->ioaddr ) ) { - flash_start = pci_bar_start ( pdev, PCI_BASE_ADDRESS_1 ); - flash_len = pci_bar_size ( pdev, PCI_BASE_ADDRESS_1 ); - adapter->hw.flash_address = ioremap ( flash_start, flash_len ); - if ( ! adapter->hw.flash_address ) - goto err_flashmap; - } - - /* initialize eeprom parameters */ - if ( e1000_init_eeprom_params ( &adapter->hw ) ) { - DBG ( "EEPROM initialization failed\n" ); - goto err_eeprom; - } - - /* before reading the EEPROM, reset the controller to - * put the device in a known good starting state - */ - err = e1000_reset_hw ( &adapter->hw ); - if ( err < 0 ) { - DBG ( "Hardware Initialization Failed\n" ); - goto err_reset; - } - - /* make sure the EEPROM is good */ - if ( e1000_validate_eeprom_checksum( &adapter->hw ) < 0 ) { - DBG ( "The EEPROM Checksum Is Not Valid\n" ); - goto err_eeprom; - } - - /* copy the MAC address out of the EEPROM */ - if ( e1000_read_mac_addr ( &adapter->hw ) ) - DBG ( "EEPROM Read Error\n" ); - - memcpy ( netdev->hw_addr, adapter->hw.mac_addr, ETH_ALEN ); - - /* print bus type/speed/width info */ - { - struct e1000_hw *hw = &adapter->hw; - DBG ( "(PCI%s:%s:%s) ", - ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : - (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")), - ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" : - (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" : - (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" : - (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" : - (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"), - ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : - (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" : - (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" : - "32-bit")); - } - for (i = 0; i < 6; i++) - DBG ("%02x%s", netdev->ll_addr[i], i == 5 ? "\n" : ":"); - - /* reset the hardware with the new settings */ - e1000_reset ( adapter ); - - e1000_get_hw_control ( adapter ); - - /* Mark as link up; we don't yet handle link state */ - netdev_link_up ( netdev ); - - if ( ( err = register_netdev ( netdev ) ) != 0) - goto err_register; - - DBG ( "e1000_probe succeeded!\n" ); - - /* No errors, return success */ - return 0; - -/* Error return paths */ -err_reset: -err_register: -err_eeprom: - if ( ! e1000_check_phy_reset_block ( &adapter->hw ) ) - e1000_phy_hw_reset ( &adapter->hw ); - if ( adapter->hw.flash_address ) - iounmap ( adapter->hw.flash_address ); -err_flashmap: -err_sw_init: - iounmap ( adapter->hw.hw_addr ); -err_ioremap: - netdev_put ( netdev ); -err_alloc_etherdev: - return err; -} - -/** - * e1000_remove - Device Removal Routine - * - * @v pdev PCI device information struct - * - **/ -static void -e1000_remove ( struct pci_device *pdev ) -{ - struct net_device *netdev = pci_get_drvdata ( pdev ); - struct e1000_adapter *adapter = netdev_priv ( netdev ); - - DBG ( "e1000_remove\n" ); - - if ( adapter->hw.flash_address ) - iounmap ( adapter->hw.flash_address ); - if ( adapter->hw.hw_addr ) - iounmap ( adapter->hw.hw_addr ); - - unregister_netdev ( netdev ); - e1000_reset_hw ( &adapter->hw ); - netdev_nullify ( netdev ); - netdev_put ( netdev ); -} - -/** - * e1000_open - Called when a network interface is made active - * - * @v netdev network interface device structure - * @ret rc Return status code, 0 on success, negative value on failure - * - **/ -static int -e1000_open ( struct net_device *netdev ) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - int err; - - DBG ( "e1000_open\n" ); - - /* allocate transmit descriptors */ - err = e1000_setup_tx_resources ( adapter ); - if ( err ) { - DBG ( "Error setting up TX resources!\n" ); - goto err_setup_tx; - } - - /* allocate receive descriptors */ - err = e1000_setup_rx_resources ( adapter ); - if ( err ) { - DBG ( "Error setting up RX resources!\n" ); - goto err_setup_rx; - } - - e1000_configure_tx ( adapter ); - - e1000_configure_rx ( adapter ); - - DBG ( "RXDCTL: %#08x\n", E1000_READ_REG ( &adapter->hw, RXDCTL ) ); - - return 0; - -err_setup_rx: - e1000_free_tx_resources ( adapter ); -err_setup_tx: - e1000_reset ( adapter ); - - return err; -} - -/** e1000 net device operations */ -static struct net_device_operations e1000_operations = { - .open = e1000_open, - .close = e1000_close, - .transmit = e1000_transmit, - .poll = e1000_poll, - .irq = e1000_irq, -}; - -int32_t -e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) -{ - struct e1000_adapter *adapter = hw->back; - uint16_t cap_offset; - -#define PCI_CAP_ID_EXP 0x10 /* PCI Express */ - cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); - if (!cap_offset) - return -E1000_ERR_CONFIG; - - pci_read_config_word(adapter->pdev, cap_offset + reg, value); - - return 0; -} - -void -e1000_pci_clear_mwi ( struct e1000_hw *hw ) -{ - struct e1000_adapter *adapter = hw->back; - - pci_write_config_word ( adapter->pdev, PCI_COMMAND, - hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE ); -} - -void -e1000_pci_set_mwi ( struct e1000_hw *hw ) -{ - struct e1000_adapter *adapter = hw->back; - - pci_write_config_word ( adapter->pdev, PCI_COMMAND, hw->pci_cmd_word ); -} - -void -e1000_read_pci_cfg ( struct e1000_hw *hw, uint32_t reg, uint16_t *value ) -{ - struct e1000_adapter *adapter = hw->back; - - pci_read_config_word ( adapter->pdev, reg, value ); -} - -void -e1000_write_pci_cfg ( struct e1000_hw *hw, uint32_t reg, uint16_t *value ) -{ - struct e1000_adapter *adapter = hw->back; - - pci_write_config_word ( adapter->pdev, reg, *value ); -} - -void -e1000_io_write ( struct e1000_hw *hw __unused, unsigned long port, uint32_t value ) -{ - outl ( value, port ); -} - -static struct pci_device_id e1000_nics[] = { - PCI_ROM(0x8086, 0x1000, "e1000-0x1000", "e1000-0x1000", 0), - PCI_ROM(0x8086, 0x1001, "e1000-0x1001", "e1000-0x1001", 0), - PCI_ROM(0x8086, 0x1004, "e1000-0x1004", "e1000-0x1004", 0), - PCI_ROM(0x8086, 0x1008, "e1000-0x1008", "e1000-0x1008", 0), - PCI_ROM(0x8086, 0x1009, "e1000-0x1009", "e1000-0x1009", 0), - PCI_ROM(0x8086, 0x100c, "e1000-0x100c", "e1000-0x100c", 0), - PCI_ROM(0x8086, 0x100d, "e1000-0x100d", "e1000-0x100d", 0), - PCI_ROM(0x8086, 0x100e, "e1000-0x100e", "e1000-0x100e", 0), - PCI_ROM(0x8086, 0x100f, "e1000-0x100f", "e1000-0x100f", 0), - PCI_ROM(0x8086, 0x1010, "e1000-0x1010", "e1000-0x1010", 0), - PCI_ROM(0x8086, 0x1011, "e1000-0x1011", "e1000-0x1011", 0), - PCI_ROM(0x8086, 0x1012, "e1000-0x1012", "e1000-0x1012", 0), - PCI_ROM(0x8086, 0x1013, "e1000-0x1013", "e1000-0x1013", 0), - PCI_ROM(0x8086, 0x1014, "e1000-0x1014", "e1000-0x1014", 0), - PCI_ROM(0x8086, 0x1015, "e1000-0x1015", "e1000-0x1015", 0), - PCI_ROM(0x8086, 0x1016, "e1000-0x1016", "e1000-0x1016", 0), - PCI_ROM(0x8086, 0x1017, "e1000-0x1017", "e1000-0x1017", 0), - PCI_ROM(0x8086, 0x1018, "e1000-0x1018", "e1000-0x1018", 0), - PCI_ROM(0x8086, 0x1019, "e1000-0x1019", "e1000-0x1019", 0), - PCI_ROM(0x8086, 0x101a, "e1000-0x101a", "e1000-0x101a", 0), - PCI_ROM(0x8086, 0x101d, "e1000-0x101d", "e1000-0x101d", 0), - PCI_ROM(0x8086, 0x101e, "e1000-0x101e", "e1000-0x101e", 0), - PCI_ROM(0x8086, 0x1026, "e1000-0x1026", "e1000-0x1026", 0), - PCI_ROM(0x8086, 0x1027, "e1000-0x1027", "e1000-0x1027", 0), - PCI_ROM(0x8086, 0x1028, "e1000-0x1028", "e1000-0x1028", 0), - PCI_ROM(0x8086, 0x1049, "e1000-0x1049", "e1000-0x1049", 0), - PCI_ROM(0x8086, 0x104a, "e1000-0x104a", "e1000-0x104a", 0), - PCI_ROM(0x8086, 0x104b, "e1000-0x104b", "e1000-0x104b", 0), - PCI_ROM(0x8086, 0x104c, "e1000-0x104c", "e1000-0x104c", 0), - PCI_ROM(0x8086, 0x104d, "e1000-0x104d", "e1000-0x104d", 0), - PCI_ROM(0x8086, 0x105e, "e1000-0x105e", "e1000-0x105e", 0), - PCI_ROM(0x8086, 0x105f, "e1000-0x105f", "e1000-0x105f", 0), - PCI_ROM(0x8086, 0x1060, "e1000-0x1060", "e1000-0x1060", 0), - PCI_ROM(0x8086, 0x1075, "e1000-0x1075", "e1000-0x1075", 0), - PCI_ROM(0x8086, 0x1076, "e1000-0x1076", "e1000-0x1076", 0), - PCI_ROM(0x8086, 0x1077, "e1000-0x1077", "e1000-0x1077", 0), - PCI_ROM(0x8086, 0x1078, "e1000-0x1078", "e1000-0x1078", 0), - PCI_ROM(0x8086, 0x1079, "e1000-0x1079", "e1000-0x1079", 0), - PCI_ROM(0x8086, 0x107a, "e1000-0x107a", "e1000-0x107a", 0), - PCI_ROM(0x8086, 0x107b, "e1000-0x107b", "e1000-0x107b", 0), - PCI_ROM(0x8086, 0x107c, "e1000-0x107c", "e1000-0x107c", 0), - PCI_ROM(0x8086, 0x107d, "e1000-0x107d", "e1000-0x107d", 0), - PCI_ROM(0x8086, 0x107e, "e1000-0x107e", "e1000-0x107e", 0), - PCI_ROM(0x8086, 0x107f, "e1000-0x107f", "e1000-0x107f", 0), - PCI_ROM(0x8086, 0x108a, "e1000-0x108a", "e1000-0x108a", 0), - PCI_ROM(0x8086, 0x108b, "e1000-0x108b", "e1000-0x108b", 0), - PCI_ROM(0x8086, 0x108c, "e1000-0x108c", "e1000-0x108c", 0), - PCI_ROM(0x8086, 0x1096, "e1000-0x1096", "e1000-0x1096", 0), - PCI_ROM(0x8086, 0x1098, "e1000-0x1098", "e1000-0x1098", 0), - PCI_ROM(0x8086, 0x1099, "e1000-0x1099", "e1000-0x1099", 0), - PCI_ROM(0x8086, 0x109a, "e1000-0x109a", "e1000-0x109a", 0), - PCI_ROM(0x8086, 0x10a4, "e1000-0x10a4", "e1000-0x10a4", 0), - PCI_ROM(0x8086, 0x10a5, "e1000-0x10a5", "e1000-0x10a5", 0), - PCI_ROM(0x8086, 0x10b5, "e1000-0x10b5", "e1000-0x10b5", 0), - PCI_ROM(0x8086, 0x10b9, "e1000-0x10b9", "e1000-0x10b9", 0), - PCI_ROM(0x8086, 0x10ba, "e1000-0x10ba", "e1000-0x10ba", 0), - PCI_ROM(0x8086, 0x10bb, "e1000-0x10bb", "e1000-0x10bb", 0), - PCI_ROM(0x8086, 0x10bc, "e1000-0x10bc", "e1000-0x10bc", 0), - PCI_ROM(0x8086, 0x10c4, "e1000-0x10c4", "e1000-0x10c4", 0), - PCI_ROM(0x8086, 0x10c5, "e1000-0x10c5", "e1000-0x10c5", 0), - PCI_ROM(0x8086, 0x10c9, "e1000-0x10c9", "e1000-0x10c9", 0), - PCI_ROM(0x8086, 0x10d9, "e1000-0x10d9", "e1000-0x10d9", 0), - PCI_ROM(0x8086, 0x10da, "e1000-0x10da", "e1000-0x10da", 0), -}; - -struct pci_driver e1000_driver __pci_driver = { - .ids = e1000_nics, - .id_count = (sizeof (e1000_nics) / sizeof (e1000_nics[0])), - .probe = e1000_probe, - .remove = e1000_remove, -}; - -/* - * Local variables: - * c-basic-offset: 8 - * c-indent-level: 8 - * tab-width: 8 - * End: - */ +REQUIRE_OBJECT(e1000_main); +REQUIRE_OBJECT(e1000_82540); +REQUIRE_OBJECT(e1000_82541); +REQUIRE_OBJECT(e1000_82542); +REQUIRE_OBJECT(e1000_82543); diff --git a/src/drivers/net/e1000/e1000.h b/src/drivers/net/e1000/e1000.h index ea51db6e4..31dbb859a 100644 --- a/src/drivers/net/e1000/e1000.h +++ b/src/drivers/net/e1000/e1000.h @@ -1,7 +1,7 @@ /******************************************************************************* Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2006 Intel Corporation. + Copyright(c) 1999 - 2008 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -33,19 +33,7 @@ FILE_LICENCE ( GPL2_ONLY ); #ifndef _E1000_H_ #define _E1000_H_ -#include <stdint.h> -#include <stdlib.h> -#include <stdio.h> -#include <string.h> -#include <gpxe/io.h> -#include <errno.h> -#include <byteswap.h> -#include <gpxe/pci.h> -#include <gpxe/malloc.h> -#include <gpxe/if_ether.h> -#include <gpxe/ethernet.h> -#include <gpxe/iobuf.h> -#include <gpxe/netdevice.h> +#include "e1000_api.h" #define BAR_0 0 #define BAR_1 1 @@ -53,11 +41,32 @@ FILE_LICENCE ( GPL2_ONLY ); struct e1000_adapter; -#include "e1000_hw.h" +/* TX/RX descriptor defines */ +#define E1000_DEFAULT_TXD 256 +#define E1000_MAX_TXD 256 +#define E1000_MIN_TXD 80 +#define E1000_MAX_82544_TXD 4096 + +#define E1000_DEFAULT_TXD_PWR 12 +#define E1000_MAX_TXD_PWR 12 +#define E1000_MIN_TXD_PWR 7 + +#define E1000_DEFAULT_RXD 256 +#define E1000_MAX_RXD 256 + +#define E1000_MIN_RXD 80 +#define E1000_MAX_82544_RXD 4096 + +#define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */ +#define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */ + + +/* this is the size past which hardware will drop packets when setting LPE=0 */ +#define MAXIMUM_ETHERNET_VLAN_SIZE 1522 /* Supported Rx Buffer Sizes */ -#define E1000_RXBUFFER_128 128 /* Used for packet split */ -#define E1000_RXBUFFER_256 256 /* Used for packet split */ +#define E1000_RXBUFFER_128 128 +#define E1000_RXBUFFER_256 256 #define E1000_RXBUFFER_512 512 #define E1000_RXBUFFER_1024 1024 #define E1000_RXBUFFER_2048 2048 @@ -74,15 +83,11 @@ struct e1000_adapter; #define E1000_TX_HEAD_ADDR_SHIFT 7 #define E1000_PBA_TX_MASK 0xFFFF0000 -/* Flow Control Watermarks */ -#define E1000_FC_HIGH_DIFF 0x1638 /* High: 5688 bytes below Rx FIFO size */ -#define E1000_FC_LOW_DIFF 0x1640 /* Low: 5696 bytes below Rx FIFO size */ +/* Early Receive defines */ +#define E1000_ERT_2048 0x100 #define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */ -/* this is the size past which hardware will drop packets when setting LPE=0 */ -#define MAXIMUM_ETHERNET_VLAN_SIZE 1522 - /* How many Tx Descriptors do we need to call netif_wake_queue ? */ #define E1000_TX_QUEUE_WAKE 16 /* How many Rx Buffers do we bundle into one write to the hardware ? */ @@ -90,26 +95,31 @@ struct e1000_adapter; #define AUTO_ALL_MODES 0 #define E1000_EEPROM_82544_APM 0x0004 -#define E1000_EEPROM_ICH8_APME 0x0004 #define E1000_EEPROM_APME 0x0400 -#ifndef E1000_MASTER_SLAVE -/* Switch to override PHY master/slave setting */ -#define E1000_MASTER_SLAVE e1000_ms_hw_default -#endif - /* wrapper around a pointer to a socket buffer, * so a DMA handle can be stored along with the buffer */ struct e1000_buffer { struct sk_buff *skb; + dma_addr_t dma; unsigned long time_stamp; - uint16_t length; - uint16_t next_to_watch; + u16 length; + u16 next_to_watch; +}; + +struct e1000_rx_buffer { + struct sk_buff *skb; + dma_addr_t dma; + struct page *page; }; + + struct e1000_tx_ring { /* pointer to the descriptor ring memory */ void *desc; + /* physical address of the descriptor ring */ + dma_addr_t dma; /* length of descriptor ring in bytes */ unsigned int size; /* number of descriptors in the ring */ @@ -121,14 +131,27 @@ struct e1000_tx_ring { /* array of buffer information structs */ struct e1000_buffer *buffer_info; - uint16_t tdh; - uint16_t tdt; - boolean_t last_tx_tso; + spinlock_t tx_lock; + u16 tdh; + u16 tdt; + + /* TXDdescriptor index increment to be used when advancing + * to the next descriptor. This is normally one, but on some + * architectures, but on some architectures there are cache + * coherency issues that require only the first descriptor in + * cache line can be used. + */ + unsigned int step; + + bool last_tx_tso; }; struct e1000_rx_ring { + struct e1000_adapter *adapter; /* back link */ /* pointer to the descriptor ring memory */ void *desc; + /* physical address of the descriptor ring */ + dma_addr_t dma; /* length of descriptor ring in bytes */ unsigned int size; /* number of descriptors in the ring */ @@ -138,24 +161,28 @@ struct e1000_rx_ring { /* next descriptor to check for DD status bit */ unsigned int next_to_clean; /* array of buffer information structs */ - struct e1000_buffer *buffer_info; - /* arrays of page information for packet split */ - struct e1000_ps_page *ps_page; - struct e1000_ps_page_dma *ps_page_dma; + struct e1000_rx_buffer *buffer_info; + struct sk_buff *rx_skb_top; /* cpu for rx queue */ int cpu; - uint16_t rdh; - uint16_t rdt; + u16 rdh; + u16 rdt; }; + +#define E1000_TX_DESC_INC(R,index) \ + {index += (R)->step; if (index == (R)->count) index = 0; } + +#define E1000_TX_DESC_DEC(R,index) \ + { if (index == 0) index = (R)->count - (R)->step; \ + else index -= (R)->step; } + #define E1000_DESC_UNUSED(R) \ ((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ (R)->next_to_clean - (R)->next_to_use - 1) -#define E1000_RX_DESC_PS(R, i) \ - (&(((union e1000_rx_desc_packet_split *)((R).desc))[i])) #define E1000_RX_DESC_EXT(R, i) \ (&(((union e1000_rx_desc_extended *)((R).desc))[i])) #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) @@ -166,70 +193,63 @@ struct e1000_rx_ring { /* board specific private data structure */ struct e1000_adapter { - struct vlan_group *vlgrp; - uint16_t mng_vlan_id; - uint32_t bd_number; - uint32_t rx_buffer_len; - uint32_t wol; - uint32_t smartspeed; - uint32_t en_mng_pt; - uint16_t link_speed; - uint16_t link_duplex; - + u32 bd_number; + u32 rx_buffer_len; + u32 wol; + u32 smartspeed; + u32 en_mng_pt; + u16 link_speed; + u16 link_duplex; + spinlock_t stats_lock; unsigned int total_tx_bytes; unsigned int total_tx_packets; unsigned int total_rx_bytes; unsigned int total_rx_packets; /* Interrupt Throttle Rate */ - uint32_t itr; - uint32_t itr_setting; - uint16_t tx_itr; - uint16_t rx_itr; + u32 itr; + u32 itr_setting; + u16 tx_itr; + u16 rx_itr; - uint8_t fc_autoneg; - - unsigned long led_status; + bool fc_autoneg; /* TX */ - struct e1000_tx_ring *tx_ring; /* One per active queue */ + struct e1000_tx_ring *tx_ring; unsigned int restart_queue; unsigned long tx_queue_len; - uint32_t txd_cmd; - uint32_t tx_int_delay; - uint32_t tx_abs_int_delay; - uint32_t gotcl; - uint64_t gotcl_old; - uint64_t tpt_old; - uint64_t colc_old; - uint32_t tx_timeout_count; - uint32_t tx_fifo_head; - uint32_t tx_head_addr; - uint32_t tx_fifo_size; - uint8_t tx_timeout_factor; - boolean_t pcix_82544; - boolean_t detect_tx_hung; + u32 txd_cmd; + u32 tx_int_delay; + u32 tx_abs_int_delay; + u32 gotc; + u64 gotc_old; + u64 tpt_old; + u64 colc_old; + u32 tx_timeout_count; + u32 tx_fifo_head; + u32 tx_head_addr; + u32 tx_fifo_size; + u8 tx_timeout_factor; + bool pcix_82544; + bool detect_tx_hung; /* RX */ - boolean_t (*clean_rx) (struct e1000_adapter *adapter, + bool (*clean_rx) (struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring); void (*alloc_rx_buf) (struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int cleaned_count); - struct e1000_rx_ring *rx_ring; /* One per active queue */ - int num_tx_queues; - int num_rx_queues; - - uint64_t hw_csum_err; - uint64_t hw_csum_good; - uint64_t rx_hdr_split; - uint32_t alloc_rx_buff_failed; - uint32_t rx_int_delay; - uint32_t rx_abs_int_delay; - boolean_t rx_csum; - unsigned int rx_ps_pages; - uint32_t gorcl; - uint64_t gorcl_old; - uint16_t rx_ps_bsize0; + struct e1000_rx_ring *rx_ring; + + u64 hw_csum_err; + u64 hw_csum_good; + u32 alloc_rx_buff_failed; + u32 rx_int_delay; + u32 rx_abs_int_delay; + bool rx_csum; + u32 gorc; + u64 gorc_old; + u32 max_frame_size; + u32 min_frame_size; /* OS defined structs */ @@ -243,20 +263,19 @@ struct e1000_adapter { struct e1000_phy_info phy_info; struct e1000_phy_stats phy_stats; - uint32_t test_icr; - struct e1000_tx_ring test_tx_ring; - struct e1000_rx_ring test_rx_ring; - int msg_enable; - boolean_t have_msi; - /* to not mess up cache alignment, always add to the bottom */ - boolean_t tso_force; - boolean_t smart_power_down; /* phy smart power down */ - boolean_t quad_port_a; - unsigned long flags; - uint32_t eeprom_wol; - + unsigned long state; + u32 eeprom_wol; + + u32 *config_space; + + /* hardware capability, feature, and workaround flags */ + unsigned int flags; + + /* upper limit parameter for tx desc size */ + u32 tx_desc_pwr; + #define NUM_TX_DESC 8 #define NUM_RX_DESC 8 @@ -265,42 +284,43 @@ struct e1000_adapter { struct e1000_tx_desc *tx_base; struct e1000_rx_desc *rx_base; - + uint32_t tx_ring_size; uint32_t rx_ring_size; uint32_t tx_head; uint32_t tx_tail; uint32_t tx_fill_ctr; - + uint32_t rx_curr; uint32_t ioaddr; uint32_t irqno; - }; -enum e1000_state_t { - __E1000_TESTING, - __E1000_RESETTING, - __E1000_DOWN -}; +#define E1000_FLAG_HAS_SMBUS (1 << 0) +#define E1000_FLAG_HAS_INTR_MODERATION (1 << 4) +#define E1000_FLAG_BAD_TX_CARRIER_STATS_FD (1 << 6) +#define E1000_FLAG_QUAD_PORT_A (1 << 8) +#define E1000_FLAG_SMART_POWER_DOWN (1 << 9) -#define E1000_MNG2HOST_PORT_623 (1 << 5) -#define E1000_MNG2HOST_PORT_664 (1 << 6) +extern char e1000_driver_name[]; +extern const char e1000_driver_version[]; -#define E1000_ERT_2048 0x100 +extern void e1000_power_up_phy(struct e1000_hw *hw); -#define IORESOURCE_IO 0x00000100 -#define IORESOURCE_MEM 0x00000200 -#define IORESOURCE_PREFETCH 0x00001000 +extern void e1000_set_ethtool_ops(struct net_device *netdev); +extern void e1000_check_options(struct e1000_adapter *adapter); -#endif /* _E1000_H_ */ +extern int e1000_up(struct e1000_adapter *adapter); +extern void e1000_down(struct e1000_adapter *adapter); +extern void e1000_reinit_locked(struct e1000_adapter *adapter); +extern void e1000_reset(struct e1000_adapter *adapter); +extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx); +extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); +extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); +extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter); +extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter); +extern void e1000_update_stats(struct e1000_adapter *adapter); -/* - * Local variables: - * c-basic-offset: 8 - * c-indent-level: 8 - * tab-width: 8 - * End: - */ +#endif /* _E1000_H_ */ diff --git a/src/drivers/net/e1000/e1000_82540.c b/src/drivers/net/e1000/e1000_82540.c new file mode 100644 index 000000000..935f0a336 --- /dev/null +++ b/src/drivers/net/e1000/e1000_82540.c @@ -0,0 +1,754 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +/* + * 82540EM Gigabit Ethernet Controller + * 82540EP Gigabit Ethernet Controller + * 82545EM Gigabit Ethernet Controller (Copper) + * 82545EM Gigabit Ethernet Controller (Fiber) + * 82545GM Gigabit Ethernet Controller + * 82546EB Gigabit Ethernet Controller (Copper) + * 82546EB Gigabit Ethernet Controller (Fiber) + * 82546GB Gigabit Ethernet Controller + */ + +#include "e1000_api.h" + +static s32 e1000_init_phy_params_82540(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_82540(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82540(struct e1000_hw *hw); +static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw); +static void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw); +static s32 e1000_init_hw_82540(struct e1000_hw *hw); +static s32 e1000_reset_hw_82540(struct e1000_hw *hw); +static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw); +static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_82540(struct e1000_hw *hw); +static s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw); +static void e1000_power_down_phy_copper_82540(struct e1000_hw *hw); +static s32 e1000_read_mac_addr_82540(struct e1000_hw *hw); + +/** + * e1000_init_phy_params_82540 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_phy_params_82540(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 10000; + phy->type = e1000_phy_m88; + + /* Function Pointers */ + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.commit = e1000_phy_sw_reset_generic; +#if 0 + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; +#endif +#if 0 + phy->ops.get_cable_length = e1000_get_cable_length_m88; +#endif + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.read_reg = e1000_read_phy_reg_m88; + phy->ops.reset = e1000_phy_hw_reset_generic; + phy->ops.write_reg = e1000_write_phy_reg_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82540; + + ret_val = e1000_get_phy_id(hw); + if (ret_val) + goto out; + + /* Verify phy id */ + switch (hw->mac.type) { + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + if (phy->id == M88E1011_I_PHY_ID) + break; + /* Fall Through */ + default: + ret_val = -E1000_ERR_PHY; + goto out; + break; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_82540 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_nvm_params_82540(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + + DEBUGFUNC("e1000_init_nvm_params_82540"); + + nvm->type = e1000_nvm_eeprom_microwire; + nvm->delay_usec = 50; + nvm->opcode_bits = 3; + switch (nvm->override) { + case e1000_nvm_override_microwire_large: + nvm->address_bits = 8; + nvm->word_size = 256; + break; + case e1000_nvm_override_microwire_small: + nvm->address_bits = 6; + nvm->word_size = 64; + break; + default: + nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6; + nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64; + break; + } + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_generic; + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.release = e1000_release_nvm_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_microwire; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82540 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_82540(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_mac_params_82540"); + + /* Set media type */ + switch (hw->device_id) { + case E1000_DEV_ID_82545EM_FIBER: + case E1000_DEV_ID_82545GM_FIBER: + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546GB_FIBER: + hw->phy.media_type = e1000_media_type_fiber; + break; + case E1000_DEV_ID_82545GM_SERDES: + case E1000_DEV_ID_82546GB_SERDES: + hw->phy.media_type = e1000_media_type_internal_serdes; + break; + default: + hw->phy.media_type = e1000_media_type_copper; + break; + } + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; + /* function id */ + mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82540; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82540; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_generic; + /* physical interface setup */ + mac->ops.setup_physical_interface = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_82540 + : e1000_setup_fiber_serdes_link_82540; + /* check for link */ + switch (hw->phy.media_type) { + case e1000_media_type_copper: + mac->ops.check_for_link = e1000_check_for_copper_link_generic; + break; + case e1000_media_type_fiber: + mac->ops.check_for_link = e1000_check_for_fiber_link_generic; + break; + case e1000_media_type_internal_serdes: + mac->ops.check_for_link = e1000_check_for_serdes_link_generic; + break; + default: + ret_val = -E1000_ERR_CONFIG; + goto out; + break; + } + /* link info */ + mac->ops.get_link_up_info = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_get_speed_and_duplex_copper_generic + : e1000_get_speed_and_duplex_fiber_serdes_generic; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* setting MTA */ + mac->ops.mta_set = e1000_mta_set_generic; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_82540; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_generic; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_generic; + mac->ops.led_off = e1000_led_off_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82540; + +out: + return ret_val; +} + +/** + * e1000_init_function_pointers_82540 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82540(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82540"); + + hw->mac.ops.init_params = e1000_init_mac_params_82540; + hw->nvm.ops.init_params = e1000_init_nvm_params_82540; + hw->phy.ops.init_params = e1000_init_phy_params_82540; +} + +/** + * e1000_reset_hw_82540 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. + **/ +static s32 e1000_reset_hw_82540(struct e1000_hw *hw) +{ + u32 ctrl, icr, manc; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_reset_hw_82540"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + /* + * Delay to allow any outstanding PCI transactions to complete + * before resetting the device. + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n"); + switch (hw->mac.type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST); + break; + default: + /* + * These controllers can't ack the 64-bit write when + * issuing the reset, so we use IO-mapping as a + * workaround to issue the reset. + */ + E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + break; + } + + /* Wait for EEPROM reload */ + msec_delay(5); + + /* Disable HW ARPs on ASF enabled adapters */ + manc = E1000_READ_REG(hw, E1000_MANC); + manc &= ~E1000_MANC_ARP_EN; + E1000_WRITE_REG(hw, E1000_MANC, manc); + + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + icr = E1000_READ_REG(hw, E1000_ICR); + + return ret_val; +} + +/** + * e1000_init_hw_82540 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82540(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 txdctl, ctrl_ext; + s32 ret_val = E1000_SUCCESS; + u16 i; + + DEBUGFUNC("e1000_init_hw_82540"); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + if (ret_val) { + DEBUGOUT("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + } + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + if (mac->type < e1000_82545_rev_3) + E1000_WRITE_REG(hw, E1000_VET, 0); + + mac->ops.clear_vfta(hw); + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + /* + * Avoid back to back register writes by adding the register + * read (flush). This is to protect against some strange + * bridge configurations that may issue Memory Write Block + * (MWB) to our register space. The *_rev_3 hardware at + * least doesn't respond correctly to every other dword in an + * MWB to our register space. + */ + E1000_WRITE_FLUSH(hw); + } + + if (mac->type < e1000_82545_rev_3) + e1000_pcix_mmrbc_workaround_generic(hw); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); + txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82540(hw); + + if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) || + (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) { + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + /* + * Relaxed ordering must be disabled to avoid a parity + * error crash in a PCI slot. + */ + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + } + + return ret_val; +} + +/** + * e1000_setup_copper_link_82540 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Calls the appropriate function to configure the link for auto-neg or forced + * speed and duplex. Then we check for link, once link is established calls + * to configure collision distance and flow control are called. If link is + * not established, we return -E1000_ERR_PHY (-2). + **/ +static s32 e1000_setup_copper_link_82540(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_setup_copper_link_82540"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + ret_val = e1000_set_phy_mode_82540(hw); + if (ret_val) + goto out; + + if (hw->mac.type == e1000_82545_rev_3 || + hw->mac.type == e1000_82546_rev_3) { + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &data); + if (ret_val) + goto out; + data |= 0x00000008; + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, data); + if (ret_val) + goto out; + } + + ret_val = e1000_copper_link_setup_m88(hw); + if (ret_val) + goto out; + + ret_val = e1000_setup_copper_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Set the output amplitude to the value in the EEPROM and adjust the VCO + * speed to improve Bit Error Rate (BER) performance. Configures collision + * distance and flow control for fiber and serdes links. Upon successful + * setup, poll for link. + **/ +static s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_setup_fiber_serdes_link_82540"); + + switch (mac->type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + if (hw->phy.media_type == e1000_media_type_internal_serdes) { + /* + * If we're on serdes media, adjust the output + * amplitude to value set in the EEPROM. + */ + ret_val = e1000_adjust_serdes_amplitude_82540(hw); + if (ret_val) + goto out; + } + /* Adjust VCO speed to improve BER performance */ + ret_val = e1000_set_vco_speed_82540(hw); + if (ret_val) + goto out; + default: + break; + } + + ret_val = e1000_setup_fiber_serdes_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM + * @hw: pointer to the HW structure + * + * Adjust the SERDES output amplitude based on the EEPROM settings. + **/ +static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 nvm_data; + + DEBUGFUNC("e1000_adjust_serdes_amplitude_82540"); + + ret_val = hw->nvm.ops.read(hw, NVM_SERDES_AMPLITUDE, 1, &nvm_data); + if (ret_val) + goto out; + + if (nvm_data != NVM_RESERVED_WORD) { + /* Adjust serdes output amplitude only. */ + nvm_data &= NVM_SERDES_AMPLITUDE_MASK; + ret_val = hw->phy.ops.write_reg(hw, + M88E1000_PHY_EXT_CTRL, + nvm_data); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_set_vco_speed_82540 - Set VCO speed for better performance + * @hw: pointer to the HW structure + * + * Set the VCO speed to improve Bit Error Rate (BER) performance. + **/ +static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 default_page = 0; + u16 phy_data; + + DEBUGFUNC("e1000_set_vco_speed_82540"); + + /* Set PHY register 30, page 5, bit 8 to 0 */ + + ret_val = hw->phy.ops.read_reg(hw, + M88E1000_PHY_PAGE_SELECT, + &default_page); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if (ret_val) + goto out; + + phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if (ret_val) + goto out; + + /* Set PHY register 30, page 4, bit 11 to 1 */ + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if (ret_val) + goto out; + + phy_data |= M88E1000_PHY_VCO_REG_BIT11; + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, + default_page); + +out: + return ret_val; +} + +/** + * e1000_set_phy_mode_82540 - Set PHY to class A mode + * @hw: pointer to the HW structure + * + * Sets the PHY to class A mode and assumes the following operations will + * follow to enable the new class mode: + * 1. Do a PHY soft reset. + * 2. Restart auto-negotiation or force link. + **/ +static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 nvm_data; + + DEBUGFUNC("e1000_set_phy_mode_82540"); + + if (hw->mac.type != e1000_82545_rev_3) + goto out; + + ret_val = hw->nvm.ops.read(hw, NVM_PHY_CLASS_WORD, 1, &nvm_data); + if (ret_val) { + ret_val = -E1000_ERR_PHY; + goto out; + } + + if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) { + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, + 0x000B); + if (ret_val) { + ret_val = -E1000_ERR_PHY; + goto out; + } + ret_val = hw->phy.ops.write_reg(hw, + M88E1000_PHY_GEN_CONTROL, + 0x8104); + if (ret_val) { + ret_val = -E1000_ERR_PHY; + goto out; + } + + phy->reset_disable = false; + } + +out: + return ret_val; +} + +/** + * e1000_power_down_phy_copper_82540 - Remove link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_82540(struct e1000_hw *hw) +{ + /* If the management interface is not enabled, then power down */ + if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN)) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_82540"); + + e1000_clear_hw_cntrs_base_generic(hw); + +#if 0 + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); +#endif +} + +/** + * e1000_read_mac_addr_82540 - Read device MAC address + * @hw: pointer to the HW structure + * + * Reads the device MAC address from the EEPROM and stores the value. + * Since devices with two ports use the same EEPROM, we increment the + * last bit in the MAC address for the second port. + * + * This version is being used over generic because of customer issues + * with VmWare and Virtual Box when using generic. It seems in + * the emulated 82545, RAR[0] does NOT have a valid address after a + * reset, this older method works and using this breaks nothing for + * these legacy adapters. + **/ +s32 e1000_read_mac_addr_82540(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 offset, nvm_data, i; + + DEBUGFUNC("e1000_read_mac_addr"); + + for (i = 0; i < ETH_ADDR_LEN; i += 2) { + offset = i >> 1; + ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); + hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); + } + + /* Flip last bit of mac address if we're on second port */ + if (hw->bus.func == E1000_FUNC_1) + hw->mac.perm_addr[5] ^= 1; + + for (i = 0; i < ETH_ADDR_LEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i]; + +out: + return ret_val; +} + +static struct pci_device_id e1000_82540_nics[] = { + PCI_ROM(0x8086, 0x100E, "E1000_DEV_ID_82540EM", "E1000_DEV_ID_82540EM", e1000_82540), + PCI_ROM(0x8086, 0x1015, "E1000_DEV_ID_82540EM_LOM", "E1000_DEV_ID_82540EM_LOM", e1000_82540), + PCI_ROM(0x8086, 0x1016, "E1000_DEV_ID_82540EP_LOM", "E1000_DEV_ID_82540EP_LOM", e1000_82540), + PCI_ROM(0x8086, 0x1017, "E1000_DEV_ID_82540EP", "E1000_DEV_ID_82540EP", e1000_82540), + PCI_ROM(0x8086, 0x101E, "E1000_DEV_ID_82540EP_LP", "E1000_DEV_ID_82540EP_LP", e1000_82540), + PCI_ROM(0x8086, 0x100F, "E1000_DEV_ID_82545EM_COPPER", "E1000_DEV_ID_82545EM_COPPER", e1000_82545), + PCI_ROM(0x8086, 0x1011, "E1000_DEV_ID_82545EM_FIBER", "E1000_DEV_ID_82545EM_FIBER", e1000_82545), + PCI_ROM(0x8086, 0x1026, "E1000_DEV_ID_82545GM_COPPER", "E1000_DEV_ID_82545GM_COPPER", e1000_82545_rev_3), + PCI_ROM(0x8086, 0x1027, "E1000_DEV_ID_82545GM_FIBER", "E1000_DEV_ID_82545GM_FIBER", e1000_82545_rev_3), + PCI_ROM(0x8086, 0x1028, "E1000_DEV_ID_82545GM_SERDES", "E1000_DEV_ID_82545GM_SERDES", e1000_82545_rev_3), + PCI_ROM(0x8086, 0x1010, "E1000_DEV_ID_82546EB_COPPER", "E1000_DEV_ID_82546EB_COPPER", e1000_82546), + PCI_ROM(0x8086, 0x1012, "E1000_DEV_ID_82546EB_FIBER", "E1000_DEV_ID_82546EB_FIBER", e1000_82546), + PCI_ROM(0x8086, 0x101D, "E1000_DEV_ID_82546EB_QUAD_COPPER", "E1000_DEV_ID_82546EB_QUAD_COPPER", e1000_82546), + PCI_ROM(0x8086, 0x1079, "E1000_DEV_ID_82546GB_COPPER", "E1000_DEV_ID_82546GB_COPPER", e1000_82546_rev_3), + PCI_ROM(0x8086, 0x107A, "E1000_DEV_ID_82546GB_FIBER", "E1000_DEV_ID_82546GB_FIBER", e1000_82546_rev_3), + PCI_ROM(0x8086, 0x107B, "E1000_DEV_ID_82546GB_SERDES", "E1000_DEV_ID_82546GB_SERDES", e1000_82546_rev_3), + PCI_ROM(0x8086, 0x108A, "E1000_DEV_ID_82546GB_PCIE", "E1000_DEV_ID_82546GB_PCIE", e1000_82546_rev_3), + PCI_ROM(0x8086, 0x1099, "E1000_DEV_ID_82546GB_QUAD_COPPER", "E1000_DEV_ID_82546GB_QUAD_COPPER", e1000_82546_rev_3), + PCI_ROM(0x8086, 0x10B5, "E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3", "E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3", e1000_82546_rev_3), +}; + +struct pci_driver e1000_82540_driver __pci_driver = { + .ids = e1000_82540_nics, + .id_count = (sizeof (e1000_82540_nics) / sizeof (e1000_82540_nics[0])), + .probe = e1000_probe, + .remove = e1000_remove, +}; diff --git a/src/drivers/net/e1000/e1000_82541.c b/src/drivers/net/e1000/e1000_82541.c new file mode 100644 index 000000000..f1080f686 --- /dev/null +++ b/src/drivers/net/e1000/e1000_82541.c @@ -0,0 +1,1314 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +/* + * 82541EI Gigabit Ethernet Controller + * 82541ER Gigabit Ethernet Controller + * 82541GI Gigabit Ethernet Controller + * 82541PI Gigabit Ethernet Controller + * 82547EI Gigabit Ethernet Controller + * 82547GI Gigabit Ethernet Controller + */ + +#include "e1000_api.h" + +static s32 e1000_init_phy_params_82541(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82541(struct e1000_hw *hw); +static s32 e1000_reset_hw_82541(struct e1000_hw *hw); +static s32 e1000_init_hw_82541(struct e1000_hw *hw); +static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw); +static s32 e1000_check_for_link_82541(struct e1000_hw *hw); +#if 0 +static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw); +#endif +static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, + bool active); +static s32 e1000_setup_led_82541(struct e1000_hw *hw); +static s32 e1000_cleanup_led_82541(struct e1000_hw *hw); +static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw); +#if 0 +static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, + bool link_up); +#endif +static s32 e1000_phy_init_script_82541(struct e1000_hw *hw); +static void e1000_power_down_phy_copper_82541(struct e1000_hw *hw); + +#if 0 +static const u16 e1000_igp_cable_length_table[] = + { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, + 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, + 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, + 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, + 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, + 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; +#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \ + (sizeof(e1000_igp_cable_length_table) / \ + sizeof(e1000_igp_cable_length_table[0])) +#endif +/** + * e1000_init_phy_params_82541 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_phy_params_82541(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_phy_params_82541"); + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 10000; + phy->type = e1000_phy_igp; + + /* Function Pointers */ + phy->ops.check_polarity = e1000_check_polarity_igp; +#if 0 + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; +#endif +#if 0 + phy->ops.get_cable_length = e1000_get_cable_length_igp_82541; +#endif + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.get_info = e1000_get_phy_info_igp; + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.reset = e1000_phy_hw_reset_82541; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82541; + phy->ops.write_reg = e1000_write_phy_reg_igp; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82541; + + ret_val = e1000_get_phy_id(hw); + if (ret_val) + goto out; + + /* Verify phy id */ + if (phy->id != IGP01E1000_I_PHY_ID) { + ret_val = -E1000_ERR_PHY; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_82541 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val = E1000_SUCCESS; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u16 size; + + DEBUGFUNC("e1000_init_nvm_params_82541"); + + switch (nvm->override) { + case e1000_nvm_override_spi_large: + nvm->type = e1000_nvm_eeprom_spi; + eecd |= E1000_EECD_ADDR_BITS; + break; + case e1000_nvm_override_spi_small: + nvm->type = e1000_nvm_eeprom_spi; + eecd &= ~E1000_EECD_ADDR_BITS; + break; + case e1000_nvm_override_microwire_large: + nvm->type = e1000_nvm_eeprom_microwire; + eecd |= E1000_EECD_SIZE; + break; + case e1000_nvm_override_microwire_small: + nvm->type = e1000_nvm_eeprom_microwire; + eecd &= ~E1000_EECD_SIZE; + break; + default: + nvm->type = eecd & E1000_EECD_TYPE + ? e1000_nvm_eeprom_spi + : e1000_nvm_eeprom_microwire; + break; + } + + if (nvm->type == e1000_nvm_eeprom_spi) { + nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) + ? 16 : 8; + nvm->delay_usec = 1; + nvm->opcode_bits = 8; + nvm->page_size = (eecd & E1000_EECD_ADDR_BITS) + ? 32 : 8; + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_generic; + nvm->ops.read = e1000_read_nvm_spi; + nvm->ops.release = e1000_release_nvm_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_spi; + + /* + * nvm->word_size must be discovered after the pointers + * are set so we can verify the size from the nvm image + * itself. Temporarily set it to a dummy value so the + * read will work. + */ + nvm->word_size = 64; + ret_val = nvm->ops.read(hw, NVM_CFG, 1, &size); + if (ret_val) + goto out; + size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT; + /* + * if size != 0, it can be added to a constant and become + * the left-shift value to set the word_size. Otherwise, + * word_size stays at 64. + */ + if (size) { + size += NVM_WORD_SIZE_BASE_SHIFT_82541; + nvm->word_size = 1 << size; + } + } else { + nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) + ? 8 : 6; + nvm->delay_usec = 50; + nvm->opcode_bits = 3; + nvm->word_size = (eecd & E1000_EECD_ADDR_BITS) + ? 256 : 64; + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_generic; + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.release = e1000_release_nvm_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_microwire; + } + +out: + return ret_val; +} + +/** + * e1000_init_mac_params_82541 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_82541(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_init_mac_params_82541"); + + /* Set media type */ + hw->phy.media_type = e1000_media_type_copper; + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = true; + + /* Function Pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; + /* function id */ + mac->ops.set_lan_id = e1000_set_lan_id_single_port; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82541; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82541; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_generic; + /* physical interface link setup */ + mac->ops.setup_physical_interface = e1000_setup_copper_link_82541; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_link_82541; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_82541; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* setting MTA */ + mac->ops.mta_set = e1000_mta_set_generic; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_82541; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_82541; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_generic; + mac->ops.led_off = e1000_led_off_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82541; + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_82541 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82541(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82541"); + + hw->mac.ops.init_params = e1000_init_mac_params_82541; + hw->nvm.ops.init_params = e1000_init_nvm_params_82541; + hw->phy.ops.init_params = e1000_init_phy_params_82541; +} + +/** + * e1000_reset_hw_82541 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. + **/ +static s32 e1000_reset_hw_82541(struct e1000_hw *hw) +{ + u32 ledctl, ctrl, icr, manc; + + DEBUGFUNC("e1000_reset_hw_82541"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + /* + * Delay to allow any outstanding PCI transactions to complete + * before resetting the device. + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Must reset the Phy before resetting the MAC */ + if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST)); + msec_delay(5); + } + + DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n"); + switch (hw->mac.type) { + case e1000_82541: + case e1000_82541_rev_2: + /* + * These controllers can't ack the 64-bit write when + * issuing the reset, so we use IO-mapping as a + * workaround to issue the reset. + */ + E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + break; + default: + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + break; + } + + /* Wait for NVM reload */ + msec_delay(20); + + /* Disable HW ARPs on ASF enabled adapters */ + manc = E1000_READ_REG(hw, E1000_MANC); + manc &= ~E1000_MANC_ARP_EN; + E1000_WRITE_REG(hw, E1000_MANC, manc); + + if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { + e1000_phy_init_script_82541(hw); + + /* Configure activity LED after Phy reset */ + ledctl = E1000_READ_REG(hw, E1000_LEDCTL); + ledctl &= IGP_ACTIVITY_LED_MASK; + ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); + } + + /* Once again, mask the interrupts */ + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); + + /* Clear any pending interrupt events. */ + icr = E1000_READ_REG(hw, E1000_ICR); + + return E1000_SUCCESS; +} + +/** + * e1000_init_hw_82541 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82541(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + u32 i, txdctl; + s32 ret_val; + + DEBUGFUNC("e1000_init_hw_82541"); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + if (ret_val) { + DEBUGOUT("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + } + + /* Storing the Speed Power Down value for later use */ + ret_val = hw->phy.ops.read_reg(hw, + IGP01E1000_GMII_FIFO, + &dev_spec->spd_default); + if (ret_val) + goto out; + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + /* + * Avoid back to back register writes by adding the register + * read (flush). This is to protect against some strange + * bridge configurations that may issue Memory Write Block + * (MWB) to our register space. + */ + E1000_WRITE_FLUSH(hw); + } + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); + txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82541(hw); + +out: + return ret_val; +} + +/** + * e1000_get_link_up_info_82541 - Report speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to speed buffer + * @duplex: pointer to duplex buffer + * + * Retrieve the current speed and duplex configuration. + **/ +static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_get_link_up_info_82541"); + + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); + if (ret_val) + goto out; + + if (!phy->speed_downgraded) + goto out; + + /* + * IGP01 PHY may advertise full duplex operation after speed + * downgrade even if it is operating at half duplex. + * Here we set the duplex settings to match the duplex in the + * link partner's capabilities. + */ + ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_EXP, &data); + if (ret_val) + goto out; + + if (!(data & NWAY_ER_LP_NWAY_CAPS)) { + *duplex = HALF_DUPLEX; + } else { + ret_val = phy->ops.read_reg(hw, PHY_LP_ABILITY, &data); + if (ret_val) + goto out; + + if (*speed == SPEED_100) { + if (!(data & NWAY_LPAR_100TX_FD_CAPS)) + *duplex = HALF_DUPLEX; + } else if (*speed == SPEED_10) { + if (!(data & NWAY_LPAR_10T_FD_CAPS)) + *duplex = HALF_DUPLEX; + } + } + +out: + return ret_val; +} + +/** + * e1000_phy_hw_reset_82541 - PHY hardware reset + * @hw: pointer to the HW structure + * + * Verify the reset block is not blocking us from resetting. Acquire + * semaphore (if necessary) and read/set/write the device control reset + * bit in the PHY. Wait the appropriate delay time for the device to + * reset and release the semaphore (if necessary). + **/ +static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw) +{ + s32 ret_val; + u32 ledctl; + + DEBUGFUNC("e1000_phy_hw_reset_82541"); + + ret_val = e1000_phy_hw_reset_generic(hw); + if (ret_val) + goto out; + + e1000_phy_init_script_82541(hw); + + if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { + /* Configure activity LED after PHY reset */ + ledctl = E1000_READ_REG(hw, E1000_LEDCTL); + ledctl &= IGP_ACTIVITY_LED_MASK; + ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); + } + +out: + return ret_val; +} + +/** + * e1000_setup_copper_link_82541 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Calls the appropriate function to configure the link for auto-neg or forced + * speed and duplex. Then we check for link, once link is established calls + * to configure collision distance and flow control are called. If link is + * not established, we return -E1000_ERR_PHY (-2). + **/ +static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + s32 ret_val; + u32 ctrl, ledctl; + + DEBUGFUNC("e1000_setup_copper_link_82541"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + hw->phy.reset_disable = false; + + /* Earlier revs of the IGP phy require us to force MDI. */ + if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) { + dev_spec->dsp_config = e1000_dsp_config_disabled; + phy->mdix = 1; + } else { + dev_spec->dsp_config = e1000_dsp_config_enabled; + } + + ret_val = e1000_copper_link_setup_igp(hw); + if (ret_val) + goto out; + + if (hw->mac.autoneg) { + if (dev_spec->ffe_config == e1000_ffe_config_active) + dev_spec->ffe_config = e1000_ffe_config_enabled; + } + + /* Configure activity LED after Phy reset */ + ledctl = E1000_READ_REG(hw, E1000_LEDCTL); + ledctl &= IGP_ACTIVITY_LED_MASK; + ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); + + ret_val = e1000_setup_copper_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_check_for_link_82541 - Check/Store link connection + * @hw: pointer to the HW structure + * + * This checks the link condition of the adapter and stores the + * results in the hw->mac structure. + **/ +static s32 e1000_check_for_link_82541(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_check_for_link_82541"); + + /* + * We only want to go out to the PHY registers to see if Auto-Neg + * has completed and/or if our link status has changed. The + * get_link_status flag is set upon receiving a Link Status + * Change or Rx Sequence Error interrupt. + */ + if (!mac->get_link_status) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* + * First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + */ + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (!link) { + ret_val = -E1000_ERR_CONFIG; +#if 0 + ret_val = e1000_config_dsp_after_link_change_82541(hw, false); +#endif + goto out; /* No link detected */ + } + + mac->get_link_status = false; + + /* + * Check if there was DownShift, must be checked + * immediately after link-up + */ + e1000_check_downshift_generic(hw); + + /* + * If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) { + ret_val = -E1000_ERR_CONFIG; + goto out; + } + +#if 0 + ret_val = e1000_config_dsp_after_link_change_82541(hw, true); +#endif + + /* + * Auto-Neg is enabled. Auto Speed Detection takes care + * of MAC speed/duplex configuration. So we only need to + * configure Collision Distance in the MAC. + */ + e1000_config_collision_dist_generic(hw); + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + } + +out: + return ret_val; +} + +#if 0 +/** + * e1000_config_dsp_after_link_change_82541 - Config DSP after link + * @hw: pointer to the HW structure + * @link_up: boolean flag for link up status + * + * Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS + * at any other case. + * + * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a + * gigabit link is achieved to improve link quality. + **/ +static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, + bool link_up) +{ + struct e1000_phy_info *phy = &hw->phy; + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + s32 ret_val; + u32 idle_errs = 0; + u16 phy_data, phy_saved_data, speed, duplex, i; + u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; + u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = + {IGP01E1000_PHY_AGC_PARAM_A, + IGP01E1000_PHY_AGC_PARAM_B, + IGP01E1000_PHY_AGC_PARAM_C, + IGP01E1000_PHY_AGC_PARAM_D}; + + DEBUGFUNC("e1000_config_dsp_after_link_change_82541"); + + if (link_up) { + ret_val = hw->mac.ops.get_link_up_info(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + goto out; + } + + if (speed != SPEED_1000) { + ret_val = E1000_SUCCESS; + goto out; + } + +#if 0 + ret_val = phy->ops.get_cable_length(hw); +#endif + ret_val = -E1000_ERR_CONFIG; + if (ret_val) + goto out; + + if ((dev_spec->dsp_config == e1000_dsp_config_enabled) && + phy->min_cable_length >= 50) { + + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = phy->ops.read_reg(hw, + dsp_reg_array[i], + &phy_data); + if (ret_val) + goto out; + + phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; + + ret_val = phy->ops.write_reg(hw, + dsp_reg_array[i], + phy_data); + if (ret_val) + goto out; + } + dev_spec->dsp_config = e1000_dsp_config_activated; + } + + if ((dev_spec->ffe_config != e1000_ffe_config_enabled) || + (phy->min_cable_length >= 50)) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* clear previous idle error counts */ + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + goto out; + + for (i = 0; i < ffe_idle_err_timeout; i++) { + usec_delay(1000); + ret_val = phy->ops.read_reg(hw, + PHY_1000T_STATUS, + &phy_data); + if (ret_val) + goto out; + + idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); + if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { + dev_spec->ffe_config = e1000_ffe_config_active; + + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_CM_CP); + if (ret_val) + goto out; + break; + } + + if (idle_errs) + ffe_idle_err_timeout = + FFE_IDLE_ERR_COUNT_TIMEOUT_100; + } + } else { + if (dev_spec->dsp_config == e1000_dsp_config_activated) { + /* + * Save off the current value of register 0x2F5B + * to be restored at the end of the routines. + */ + ret_val = phy->ops.read_reg(hw, + 0x2F5B, + &phy_saved_data); + if (ret_val) + goto out; + + /* Disable the PHY transmitter */ + ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003); + if (ret_val) + goto out; + + msec_delay_irq(20); + + ret_val = phy->ops.write_reg(hw, + 0x0000, + IGP01E1000_IEEE_FORCE_GIG); + if (ret_val) + goto out; + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = phy->ops.read_reg(hw, + dsp_reg_array[i], + &phy_data); + if (ret_val) + goto out; + + phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; + phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; + + ret_val = phy->ops.write_reg(hw, + dsp_reg_array[i], + phy_data); + if (ret_val) + goto out; + } + + ret_val = phy->ops.write_reg(hw, + 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if (ret_val) + goto out; + + msec_delay_irq(20); + + /* Now enable the transmitter */ + ret_val = phy->ops.write_reg(hw, + 0x2F5B, + phy_saved_data); + if (ret_val) + goto out; + + dev_spec->dsp_config = e1000_dsp_config_enabled; + } + + if (dev_spec->ffe_config != e1000_ffe_config_active) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* + * Save off the current value of register 0x2F5B + * to be restored at the end of the routines. + */ + ret_val = phy->ops.read_reg(hw, 0x2F5B, &phy_saved_data); + if (ret_val) + goto out; + + /* Disable the PHY transmitter */ + ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003); + if (ret_val) + goto out; + + msec_delay_irq(20); + + ret_val = phy->ops.write_reg(hw, + 0x0000, + IGP01E1000_IEEE_FORCE_GIG); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_DEFAULT); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, + 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if (ret_val) + goto out; + + msec_delay_irq(20); + + /* Now enable the transmitter */ + ret_val = phy->ops.write_reg(hw, 0x2F5B, phy_saved_data); + + if (ret_val) + goto out; + + dev_spec->ffe_config = e1000_ffe_config_enabled; + } + +out: + return ret_val; +} +#endif + +#if 0 +/** + * e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY + * @hw: pointer to the HW structure + * + * The automatic gain control (agc) normalizes the amplitude of the + * received signal, adjusting for the attenuation produced by the + * cable. By reading the AGC registers, which represent the + * combination of coarse and fine gain value, the value can be put + * into a lookup table to obtain the approximate cable length + * for each channel. + **/ +static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 i, data; + u16 cur_agc_value, agc_value = 0; + u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; + u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = + {IGP01E1000_PHY_AGC_A, + IGP01E1000_PHY_AGC_B, + IGP01E1000_PHY_AGC_C, + IGP01E1000_PHY_AGC_D}; + + DEBUGFUNC("e1000_get_cable_length_igp_82541"); + + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &data); + if (ret_val) + goto out; + + cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT; + + /* Bounds checking */ + if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || + (cur_agc_value == 0)) { + ret_val = -E1000_ERR_PHY; + goto out; + } + + agc_value += cur_agc_value; + + if (min_agc_value > cur_agc_value) + min_agc_value = cur_agc_value; + } + + /* Remove the minimal AGC result for length < 50m */ + if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) { + agc_value -= min_agc_value; + /* Average the three remaining channels for the length. */ + agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); + } else { + /* Average the channels for the length. */ + agc_value /= IGP01E1000_PHY_CHANNEL_NUM; + } + + phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] > + IGP01E1000_AGC_RANGE) + ? (e1000_igp_cable_length_table[agc_value] - + IGP01E1000_AGC_RANGE) + : 0; + phy->max_cable_length = e1000_igp_cable_length_table[agc_value] + + IGP01E1000_AGC_RANGE; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + +out: + return ret_val; +} +#endif + +/** + * e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is true, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_82541"); + + switch (hw->mac.type) { + case e1000_82541_rev_2: + case e1000_82547_rev_2: + break; + default: + ret_val = e1000_set_d3_lplu_state_generic(hw, active); + goto out; + break; + } + + ret_val = phy->ops.read_reg(hw, IGP01E1000_GMII_FIFO, &data); + if (ret_val) + goto out; + + if (!active) { + data &= ~IGP01E1000_GMII_FLEX_SPD; + ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data); + if (ret_val) + goto out; + + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= IGP01E1000_GMII_FLEX_SPD; + ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data); + if (ret_val) + goto out; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + } + +out: + return ret_val; +} + +/** + * e1000_setup_led_82541 - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. + **/ +static s32 e1000_setup_led_82541(struct e1000_hw *hw __unused) +{ +#if 0 + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + s32 ret_val; + + DEBUGFUNC("e1000_setup_led_82541"); + + ret_val = hw->phy.ops.read_reg(hw, + IGP01E1000_GMII_FIFO, + &dev_spec->spd_default); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, + IGP01E1000_GMII_FIFO, + (u16)(dev_spec->spd_default & + ~IGP01E1000_GMII_SPD)); + if (ret_val) + goto out; + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + +out: + return ret_val; +#endif + return 0; +} + +/** + * e1000_cleanup_led_82541 - Set LED config to default operation + * @hw: pointer to the HW structure + * + * Remove the current LED configuration and set the LED configuration + * to the default value, saved from the EEPROM. + **/ +static s32 e1000_cleanup_led_82541(struct e1000_hw *hw __unused) +{ +#if 0 + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + s32 ret_val; + + DEBUGFUNC("e1000_cleanup_led_82541"); + + ret_val = hw->phy.ops.write_reg(hw, + IGP01E1000_GMII_FIFO, + dev_spec->spd_default); + if (ret_val) + goto out; + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); + +out: + return ret_val; +#endif + return 0; +} + +/** + * e1000_phy_init_script_82541 - Initialize GbE PHY + * @hw: pointer to the HW structure + * + * Initializes the IGP PHY. + **/ +static s32 e1000_phy_init_script_82541(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + u32 ret_val; + u16 phy_saved_data; + + DEBUGFUNC("e1000_phy_init_script_82541"); + + if (!dev_spec->phy_init_script) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* Delay after phy reset to enable NVM configuration to load */ + msec_delay(20); + + /* + * Save off the current value of register 0x2F5B to be restored at + * the end of this routine. + */ + ret_val = hw->phy.ops.read_reg(hw, 0x2F5B, &phy_saved_data); + + /* Disabled the PHY transmitter */ + hw->phy.ops.write_reg(hw, 0x2F5B, 0x0003); + + msec_delay(20); + + hw->phy.ops.write_reg(hw, 0x0000, 0x0140); + + msec_delay(5); + + switch (hw->mac.type) { + case e1000_82541: + case e1000_82547: + hw->phy.ops.write_reg(hw, 0x1F95, 0x0001); + + hw->phy.ops.write_reg(hw, 0x1F71, 0xBD21); + + hw->phy.ops.write_reg(hw, 0x1F79, 0x0018); + + hw->phy.ops.write_reg(hw, 0x1F30, 0x1600); + + hw->phy.ops.write_reg(hw, 0x1F31, 0x0014); + + hw->phy.ops.write_reg(hw, 0x1F32, 0x161C); + + hw->phy.ops.write_reg(hw, 0x1F94, 0x0003); + + hw->phy.ops.write_reg(hw, 0x1F96, 0x003F); + + hw->phy.ops.write_reg(hw, 0x2010, 0x0008); + break; + case e1000_82541_rev_2: + case e1000_82547_rev_2: + hw->phy.ops.write_reg(hw, 0x1F73, 0x0099); + break; + default: + break; + } + + hw->phy.ops.write_reg(hw, 0x0000, 0x3300); + + msec_delay(20); + + /* Now enable the transmitter */ + hw->phy.ops.write_reg(hw, 0x2F5B, phy_saved_data); + + if (hw->mac.type == e1000_82547) { + u16 fused, fine, coarse; + + /* Move to analog registers page */ + hw->phy.ops.read_reg(hw, + IGP01E1000_ANALOG_SPARE_FUSE_STATUS, + &fused); + + if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { + hw->phy.ops.read_reg(hw, + IGP01E1000_ANALOG_FUSE_STATUS, + &fused); + + fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; + coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; + + if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { + coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; + fine -= IGP01E1000_ANALOG_FUSE_FINE_1; + } else if (coarse == + IGP01E1000_ANALOG_FUSE_COARSE_THRESH) + fine -= IGP01E1000_ANALOG_FUSE_FINE_10; + + fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | + (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | + (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); + + hw->phy.ops.write_reg(hw, + IGP01E1000_ANALOG_FUSE_CONTROL, + fused); + hw->phy.ops.write_reg(hw, + IGP01E1000_ANALOG_FUSE_BYPASS, + IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); + } + } + +out: + return ret_val; +} + +/** + * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_82541(struct e1000_hw *hw) +{ + /* If the management interface is not enabled, then power down */ + if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN)) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_82541"); + + e1000_clear_hw_cntrs_base_generic(hw); + +#if 0 + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); +#endif +} + +static struct pci_device_id e1000_82541_nics[] = { + PCI_ROM(0x8086, 0x1013, "E1000_DEV_ID_82541EI", "E1000_DEV_ID_82541EI", e1000_82541), + PCI_ROM(0x8086, 0x1014, "E1000_DEV_ID_82541ER_LOM", "E1000_DEV_ID_82541ER_LOM", e1000_82541), + PCI_ROM(0x8086, 0x1018, "E1000_DEV_ID_82541EI_MOBILE", "E1000_DEV_ID_82541EI_MOBILE", e1000_82541), + PCI_ROM(0x8086, 0x1019, "E1000_DEV_ID_82547EI", "E1000_DEV_ID_82547EI", e1000_82547), + PCI_ROM(0x8086, 0x101A, "E1000_DEV_ID_82547EI_MOBILE", "E1000_DEV_ID_82547EI_MOBILE", e1000_82547), + PCI_ROM(0x8086, 0x1075, "E1000_DEV_ID_82547GI", "E1000_DEV_ID_82547GI", e1000_82547_rev_2), + PCI_ROM(0x8086, 0x1076, "E1000_DEV_ID_82541GI", "E1000_DEV_ID_82541GI", e1000_82541_rev_2), + PCI_ROM(0x8086, 0x1077, "E1000_DEV_ID_82541GI_MOBILE", "E1000_DEV_ID_82541GI_MOBILE", e1000_82541_rev_2), + PCI_ROM(0x8086, 0x1078, "E1000_DEV_ID_82541ER", "E1000_DEV_ID_82541ER", e1000_82541_rev_2), + PCI_ROM(0x8086, 0x107C, "E1000_DEV_ID_82541GI_LF", "E1000_DEV_ID_82541GI_LF", e1000_82541_rev_2), +}; + +struct pci_driver e1000_82541_driver __pci_driver = { + .ids = e1000_82541_nics, + .id_count = (sizeof (e1000_82541_nics) / sizeof (e1000_82541_nics[0])), + .probe = e1000_probe, + .remove = e1000_remove, +}; diff --git a/src/drivers/net/e1000/e1000_82541.h b/src/drivers/net/e1000/e1000_82541.h new file mode 100644 index 000000000..f86a1482e --- /dev/null +++ b/src/drivers/net/e1000/e1000_82541.h @@ -0,0 +1,86 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +#ifndef _E1000_82541_H_ +#define _E1000_82541_H_ + +#define NVM_WORD_SIZE_BASE_SHIFT_82541 (NVM_WORD_SIZE_BASE_SHIFT + 1) + +#define IGP01E1000_PHY_CHANNEL_NUM 4 + +#define IGP01E1000_PHY_AGC_A 0x1172 +#define IGP01E1000_PHY_AGC_B 0x1272 +#define IGP01E1000_PHY_AGC_C 0x1472 +#define IGP01E1000_PHY_AGC_D 0x1872 + +#define IGP01E1000_PHY_AGC_PARAM_A 0x1171 +#define IGP01E1000_PHY_AGC_PARAM_B 0x1271 +#define IGP01E1000_PHY_AGC_PARAM_C 0x1471 +#define IGP01E1000_PHY_AGC_PARAM_D 0x1871 + +#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000 +#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000 + +#define IGP01E1000_PHY_DSP_RESET 0x1F33 + +#define IGP01E1000_PHY_DSP_FFE 0x1F35 +#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069 +#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A + +#define IGP01E1000_IEEE_FORCE_GIG 0x0140 +#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 + +#define IGP01E1000_AGC_LENGTH_SHIFT 7 +#define IGP01E1000_AGC_RANGE 10 + +#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20 +#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100 + +#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0 +#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 +#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC +#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE + +#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100 +#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80 +#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070 +#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040 +#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010 +#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080 +#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500 +#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000 +#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002 + +#define IGP01E1000_MSE_CHANNEL_D 0x000F +#define IGP01E1000_MSE_CHANNEL_C 0x00F0 +#define IGP01E1000_MSE_CHANNEL_B 0x0F00 +#define IGP01E1000_MSE_CHANNEL_A 0xF000 + +#endif diff --git a/src/drivers/net/e1000/e1000_82542.c b/src/drivers/net/e1000/e1000_82542.c new file mode 100644 index 000000000..45f2429d3 --- /dev/null +++ b/src/drivers/net/e1000/e1000_82542.c @@ -0,0 +1,571 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +/* + * 82542 Gigabit Ethernet Controller + */ + +#include "e1000_api.h" + +static s32 e1000_init_phy_params_82542(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_82542(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82542(struct e1000_hw *hw); +static s32 e1000_get_bus_info_82542(struct e1000_hw *hw); +static s32 e1000_reset_hw_82542(struct e1000_hw *hw); +static s32 e1000_init_hw_82542(struct e1000_hw *hw); +static s32 e1000_setup_link_82542(struct e1000_hw *hw); +static s32 e1000_led_on_82542(struct e1000_hw *hw); +static s32 e1000_led_off_82542(struct e1000_hw *hw); +static void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index); +static void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw); + +/** + * e1000_init_phy_params_82542 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_phy_params_82542(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_phy_params_82542"); + + phy->type = e1000_phy_none; + + return ret_val; +} + +/** + * e1000_init_nvm_params_82542 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_nvm_params_82542(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + + DEBUGFUNC("e1000_init_nvm_params_82542"); + + nvm->address_bits = 6; + nvm->delay_usec = 50; + nvm->opcode_bits = 3; + nvm->type = e1000_nvm_eeprom_microwire; + nvm->word_size = 64; + + /* Function Pointers */ + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.release = e1000_stop_nvm; + nvm->ops.write = e1000_write_nvm_microwire; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82542 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_82542(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_init_mac_params_82542"); + + /* Set media type */ + hw->phy.media_type = e1000_media_type_fiber; + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_82542; + /* function id */ + mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82542; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82542; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_82542; + /* phy/fiber/serdes setup */ + mac->ops.setup_physical_interface = e1000_setup_fiber_serdes_link_generic; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_fiber_link_generic; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* setting MTA */ + mac->ops.mta_set = e1000_mta_set_generic; + /* set RAR */ + mac->ops.rar_set = e1000_rar_set_82542; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_82542; + mac->ops.led_off = e1000_led_off_82542; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82542; + /* link info */ + mac->ops.get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes_generic; + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_82542 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82542(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82542"); + + hw->mac.ops.init_params = e1000_init_mac_params_82542; + hw->nvm.ops.init_params = e1000_init_nvm_params_82542; + hw->phy.ops.init_params = e1000_init_phy_params_82542; +} + +/** + * e1000_get_bus_info_82542 - Obtain bus information for adapter + * @hw: pointer to the HW structure + * + * This will obtain information about the HW bus for which the + * adapter is attached and stores it in the hw structure. + **/ +static s32 e1000_get_bus_info_82542(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_get_bus_info_82542"); + + hw->bus.type = e1000_bus_type_pci; + hw->bus.speed = e1000_bus_speed_unknown; + hw->bus.width = e1000_bus_width_unknown; + + return E1000_SUCCESS; +} + +/** + * e1000_reset_hw_82542 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. + **/ +static s32 e1000_reset_hw_82542(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + s32 ret_val = E1000_SUCCESS; + u32 ctrl, icr; + + DEBUGFUNC("e1000_reset_hw_82542"); + + if (hw->revision_id == E1000_REVISION_2) { + DEBUGOUT("Disabling MWI on 82542 rev 2\n"); + e1000_pci_clear_mwi(hw); + } + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + /* + * Delay to allow any outstanding PCI transactions to complete before + * resetting the device + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n"); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + + hw->nvm.ops.reload(hw); + msec_delay(2); + + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + icr = E1000_READ_REG(hw, E1000_ICR); + + if (hw->revision_id == E1000_REVISION_2) { + if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + e1000_pci_set_mwi(hw); + } + + return ret_val; +} + +/** + * e1000_init_hw_82542 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82542(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_dev_spec_82542 *dev_spec = &hw->dev_spec._82542; + s32 ret_val = E1000_SUCCESS; + u32 ctrl; + u16 i; + + DEBUGFUNC("e1000_init_hw_82542"); + + /* Disabling VLAN filtering */ + E1000_WRITE_REG(hw, E1000_VET, 0); + mac->ops.clear_vfta(hw); + + /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ + if (hw->revision_id == E1000_REVISION_2) { + DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); + e1000_pci_clear_mwi(hw); + E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST); + E1000_WRITE_FLUSH(hw); + msec_delay(5); + } + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ + if (hw->revision_id == E1000_REVISION_2) { + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + e1000_pci_set_mwi(hw); + } + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* + * Set the PCI priority bit correctly in the CTRL register. This + * determines if the adapter gives priority to receives, or if it + * gives equal priority to transmits and receives. + */ + if (dev_spec->dma_fairness) { + ctrl = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR); + } + + /* Setup link and flow control */ + ret_val = e1000_setup_link_82542(hw); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82542(hw); + + return ret_val; +} + +/** + * e1000_setup_link_82542 - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +static s32 e1000_setup_link_82542(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_setup_link_82542"); + + ret_val = e1000_set_default_fc_generic(hw); + if (ret_val) + goto out; + + hw->fc.requested_mode &= ~e1000_fc_tx_pause; + + if (mac->report_tx_early == 1) + hw->fc.requested_mode &= ~e1000_fc_rx_pause; + + /* + * Save off the requested flow control mode for use later. Depending + * on the link partner's capabilities, we may or may not use this mode. + */ + hw->fc.current_mode = hw->fc.requested_mode; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", + hw->fc.current_mode); + + /* Call the necessary subroutine to configure the link. */ + ret_val = mac->ops.setup_physical_interface(hw); + if (ret_val) + goto out; + + /* + * Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + DEBUGOUT("Initializing Flow Control address, type and timer regs\n"); + + E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); + E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); + + E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); + + ret_val = e1000_set_fc_watermarks_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_led_on_82542 - Turn on SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED on. + **/ +static s32 e1000_led_on_82542(struct e1000_hw *hw __unused) +{ +#if 0 + u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGFUNC("e1000_led_on_82542"); + + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + return E1000_SUCCESS; +#endif + return 0; +} + +/** + * e1000_led_off_82542 - Turn off SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED off. + **/ +static s32 e1000_led_off_82542(struct e1000_hw *hw __unused) +{ +#if 0 + u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGFUNC("e1000_led_off_82542"); + + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + return E1000_SUCCESS; +#endif + return 0; +} + +/** + * e1000_rar_set_82542 - Set receive address register + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address array register at index to the address passed + * in by addr. + **/ +static void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + + DEBUGFUNC("e1000_rar_set_82542"); + + /* + * HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | + ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + /* If MAC address zero, no need to set the AV bit */ + if (rar_low || rar_high) + rar_high |= E1000_RAH_AV; + + E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low); + E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high); +} + +/** + * e1000_translate_register_82542 - Translate the proper register offset + * @reg: e1000 register to be read + * + * Registers in 82542 are located in different offsets than other adapters + * even though they function in the same manner. This function takes in + * the name of the register to read and returns the correct offset for + * 82542 silicon. + **/ +u32 e1000_translate_register_82542(u32 reg) +{ + /* + * Some of the 82542 registers are located at different + * offsets than they are in newer adapters. + * Despite the difference in location, the registers + * function in the same manner. + */ + switch (reg) { + case E1000_RA: + reg = 0x00040; + break; + case E1000_RDTR: + reg = 0x00108; + break; + case E1000_RDBAL(0): + reg = 0x00110; + break; + case E1000_RDBAH(0): + reg = 0x00114; + break; + case E1000_RDLEN(0): + reg = 0x00118; + break; + case E1000_RDH(0): + reg = 0x00120; + break; + case E1000_RDT(0): + reg = 0x00128; + break; + case E1000_RDBAL(1): + reg = 0x00138; + break; + case E1000_RDBAH(1): + reg = 0x0013C; + break; + case E1000_RDLEN(1): + reg = 0x00140; + break; + case E1000_RDH(1): + reg = 0x00148; + break; + case E1000_RDT(1): + reg = 0x00150; + break; + case E1000_FCRTH: + reg = 0x00160; + break; + case E1000_FCRTL: + reg = 0x00168; + break; + case E1000_MTA: + reg = 0x00200; + break; + case E1000_TDBAL(0): + reg = 0x00420; + break; + case E1000_TDBAH(0): + reg = 0x00424; + break; + case E1000_TDLEN(0): + reg = 0x00428; + break; + case E1000_TDH(0): + reg = 0x00430; + break; + case E1000_TDT(0): + reg = 0x00438; + break; + case E1000_TIDV: + reg = 0x00440; + break; + case E1000_VFTA: + reg = 0x00600; + break; + case E1000_TDFH: + reg = 0x08010; + break; + case E1000_TDFT: + reg = 0x08018; + break; + default: + break; + } + + return reg; +} + +/** + * e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_82542"); + + e1000_clear_hw_cntrs_base_generic(hw); + +#if 0 + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); +#endif +} + +static struct pci_device_id e1000_82542_nics[] = { + PCI_ROM(0x8086, 0x1000, "E1000_DEV_ID_82542", "E1000_DEV_ID_82542", e1000_82542), +}; + +struct pci_driver e1000_82542_driver __pci_driver = { + .ids = e1000_82542_nics, + .id_count = (sizeof (e1000_82542_nics) / sizeof (e1000_82542_nics[0])), + .probe = e1000_probe, + .remove = e1000_remove, +}; diff --git a/src/drivers/net/e1000/e1000_82543.c b/src/drivers/net/e1000/e1000_82543.c new file mode 100644 index 000000000..56360944e --- /dev/null +++ b/src/drivers/net/e1000/e1000_82543.c @@ -0,0 +1,1635 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +/* + * 82543GC Gigabit Ethernet Controller (Fiber) + * 82543GC Gigabit Ethernet Controller (Copper) + * 82544EI Gigabit Ethernet Controller (Copper) + * 82544EI Gigabit Ethernet Controller (Fiber) + * 82544GC Gigabit Ethernet Controller (Copper) + * 82544GC Gigabit Ethernet Controller (LOM) + */ + +#include "e1000_api.h" + +static s32 e1000_init_phy_params_82543(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82543(struct e1000_hw *hw); +static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, + u16 *data); +static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, + u16 data); +#if 0 +static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw); +#endif +static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw); +static s32 e1000_reset_hw_82543(struct e1000_hw *hw); +static s32 e1000_init_hw_82543(struct e1000_hw *hw); +static s32 e1000_setup_link_82543(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw); +static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw); +static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw); +static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw); +static s32 e1000_led_on_82543(struct e1000_hw *hw); +static s32 e1000_led_off_82543(struct e1000_hw *hw); +static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, + u32 value); +static void e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value); +static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw); +static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw); +static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw); +static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl); +static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw); +static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl); +static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw); +static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, + u16 count); +static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw); +static void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state); +static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state); + +/** + * e1000_init_phy_params_82543 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_phy_params_82543(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_phy_params_82543"); + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + goto out; + } else { + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper; + } + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 10000; + phy->type = e1000_phy_m88; + + /* Function Pointers */ + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.commit = e1000_phy_sw_reset_generic; +#if 0 + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543; +#endif +#if 0 + phy->ops.get_cable_length = e1000_get_cable_length_m88; +#endif + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.read_reg = (hw->mac.type == e1000_82543) + ? e1000_read_phy_reg_82543 + : e1000_read_phy_reg_m88; + phy->ops.reset = (hw->mac.type == e1000_82543) + ? e1000_phy_hw_reset_82543 + : e1000_phy_hw_reset_generic; + phy->ops.write_reg = (hw->mac.type == e1000_82543) + ? e1000_write_phy_reg_82543 + : e1000_write_phy_reg_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + + /* + * The external PHY of the 82543 can be in a funky state. + * Resetting helps us read the PHY registers for acquiring + * the PHY ID. + */ + if (!e1000_init_phy_disabled_82543(hw)) { + ret_val = phy->ops.reset(hw); + if (ret_val) { + DEBUGOUT("Resetting PHY during init failed.\n"); + goto out; + } + msec_delay(20); + } + + ret_val = e1000_get_phy_id(hw); + if (ret_val) + goto out; + + /* Verify phy id */ + switch (hw->mac.type) { + case e1000_82543: + if (phy->id != M88E1000_E_PHY_ID) { + ret_val = -E1000_ERR_PHY; + goto out; + } + break; + case e1000_82544: + if (phy->id != M88E1000_I_PHY_ID) { + ret_val = -E1000_ERR_PHY; + goto out; + } + break; + default: + ret_val = -E1000_ERR_PHY; + goto out; + break; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_82543 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + + DEBUGFUNC("e1000_init_nvm_params_82543"); + + nvm->type = e1000_nvm_eeprom_microwire; + nvm->word_size = 64; + nvm->delay_usec = 50; + nvm->address_bits = 6; + nvm->opcode_bits = 3; + + /* Function Pointers */ + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_microwire; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82543 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_82543(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_init_mac_params_82543"); + + /* Set media type */ + switch (hw->device_id) { + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82544EI_FIBER: + hw->phy.media_type = e1000_media_type_fiber; + break; + default: + hw->phy.media_type = e1000_media_type_copper; + break; + } + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; + /* function id */ + mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82543; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82543; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_82543; + /* physical interface setup */ + mac->ops.setup_physical_interface = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_82543 + : e1000_setup_fiber_link_82543; + /* check for link */ + mac->ops.check_for_link = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_check_for_copper_link_82543 + : e1000_check_for_fiber_link_82543; + /* link info */ + mac->ops.get_link_up_info = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_get_speed_and_duplex_copper_generic + : e1000_get_speed_and_duplex_fiber_serdes_generic; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_82543; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* setting MTA */ + mac->ops.mta_set = e1000_mta_set_82543; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_82543; + mac->ops.led_off = e1000_led_off_82543; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543; + + /* Set tbi compatibility */ + if ((hw->mac.type != e1000_82543) || + (hw->phy.media_type == e1000_media_type_fiber)) + e1000_set_tbi_compatibility_82543(hw, false); + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_82543 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82543(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82543"); + + hw->mac.ops.init_params = e1000_init_mac_params_82543; + hw->nvm.ops.init_params = e1000_init_nvm_params_82543; + hw->phy.ops.init_params = e1000_init_phy_params_82543; +} + +/** + * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status + * @hw: pointer to the HW structure + * + * Returns the current status of 10-bit Interface (TBI) compatibility + * (enabled/disabled). + **/ +static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; + bool state = false; + + DEBUGFUNC("e1000_tbi_compatibility_enabled_82543"); + + if (hw->mac.type != e1000_82543) { + DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); + goto out; + } + + state = (dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED) + ? true : false; + +out: + return state; +} + +/** + * e1000_set_tbi_compatibility_82543 - Set TBI compatibility + * @hw: pointer to the HW structure + * @state: enable/disable TBI compatibility + * + * Enables or disabled 10-bit Interface (TBI) compatibility. + **/ +static void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state) +{ + struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; + + DEBUGFUNC("e1000_set_tbi_compatibility_82543"); + + if (hw->mac.type != e1000_82543) { + DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); + goto out; + } + + if (state) + dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED; + else + dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED; + +out: + return; +} + +/** + * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status + * @hw: pointer to the HW structure + * + * Returns the current status of 10-bit Interface (TBI) store bad packet (SBP) + * (enabled/disabled). + **/ +bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; + bool state = false; + + DEBUGFUNC("e1000_tbi_sbp_enabled_82543"); + + if (hw->mac.type != e1000_82543) { + DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); + goto out; + } + + state = (dev_spec->tbi_compatibility & TBI_SBP_ENABLED) + ? true : false; + +out: + return state; +} + +/** + * e1000_set_tbi_sbp_82543 - Set TBI SBP + * @hw: pointer to the HW structure + * @state: enable/disable TBI store bad packet + * + * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP). + **/ +static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state) +{ + struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; + + DEBUGFUNC("e1000_set_tbi_sbp_82543"); + + if (state && e1000_tbi_compatibility_enabled_82543(hw)) + dev_spec->tbi_compatibility |= TBI_SBP_ENABLED; + else + dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED; + + return; +} + +/** + * e1000_init_phy_disabled_82543 - Returns init PHY status + * @hw: pointer to the HW structure + * + * Returns the current status of whether PHY initialization is disabled. + * True if PHY initialization is disabled else false. + **/ +static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; + bool ret_val; + + DEBUGFUNC("e1000_init_phy_disabled_82543"); + + if (hw->mac.type != e1000_82543) { + ret_val = false; + goto out; + } + + ret_val = dev_spec->init_phy_disabled; + +out: + return ret_val; +} + +#if 0 +/** + * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled + * @hw: pointer to the HW structure + * @stats: Struct containing statistic register values + * @frame_len: The length of the frame in question + * @mac_addr: The Ethernet destination address of the frame in question + * @max_frame_size: The maximum frame size + * + * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT + **/ +void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw, + struct e1000_hw_stats *stats, u32 frame_len, + u8 *mac_addr, u32 max_frame_size) +{ + if (!(e1000_tbi_sbp_enabled_82543(hw))) + goto out; + + /* First adjust the frame length. */ + frame_len--; + /* + * We need to adjust the statistics counters, since the hardware + * counters overcount this packet as a CRC error and undercount + * the packet as a good packet + */ + /* This packet should not be counted as a CRC error. */ + stats->crcerrs--; + /* This packet does count as a Good Packet Received. */ + stats->gprc++; + + /* Adjust the Good Octets received counters */ + stats->gorc += frame_len; + + /* + * Is this a broadcast or multicast? Check broadcast first, + * since the test for a multicast frame will test positive on + * a broadcast frame. + */ + if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff)) + /* Broadcast packet */ + stats->bprc++; + else if (*mac_addr & 0x01) + /* Multicast packet */ + stats->mprc++; + + /* + * In this case, the hardware has overcounted the number of + * oversize frames. + */ + if ((frame_len == max_frame_size) && (stats->roc > 0)) + stats->roc--; + + /* + * Adjust the bin counters when the extra byte put the frame in the + * wrong bin. Remember that the frame_len was adjusted above. + */ + if (frame_len == 64) { + stats->prc64++; + stats->prc127--; + } else if (frame_len == 127) { + stats->prc127++; + stats->prc255--; + } else if (frame_len == 255) { + stats->prc255++; + stats->prc511--; + } else if (frame_len == 511) { + stats->prc511++; + stats->prc1023--; + } else if (frame_len == 1023) { + stats->prc1023++; + stats->prc1522--; + } else if (frame_len == 1522) { + stats->prc1522++; + } + +out: + return; +} +#endif + +/** + * e1000_read_phy_reg_82543 - Read PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY at offset and stores the information read to data. + **/ +static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data) +{ + u32 mdic; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_phy_reg_82543"); + + if (offset > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + ret_val = -E1000_ERR_PARAM; + goto out; + } + + /* + * We must first send a preamble through the MDIO pin to signal the + * beginning of an MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* + * Now combine the next few fields that are required for a read + * operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine five different times. The format + * of an MII read instruction consists of a shift out of 14 bits and + * is defined as follows: + * <Preamble><SOF><Op Code><Phy Addr><Offset> + * followed by a shift in of 18 bits. This first two bits shifted in + * are TurnAround bits used to avoid contention on the MDIO pin when a + * READ operation is performed. These two bits are thrown away + * followed by a shift in of 16 bits which contains the desired data. + */ + mdic = (offset | (hw->phy.addr << 5) | + (PHY_OP_READ << 10) | (PHY_SOF << 12)); + + e1000_shift_out_mdi_bits_82543(hw, mdic, 14); + + /* + * Now that we've shifted out the read command to the MII, we need to + * "shift in" the 16-bit value (18 total bits) of the requested PHY + * register address. + */ + *data = e1000_shift_in_mdi_bits_82543(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_82543 - Write PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be written + * @data: pointer to the data to be written at offset + * + * Writes data to the PHY at offset. + **/ +static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data) +{ + u32 mdic; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_phy_reg_82543"); + + if (offset > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + ret_val = -E1000_ERR_PARAM; + goto out; + } + + /* + * We'll need to use the SW defined pins to shift the write command + * out to the PHY. We first send a preamble to the PHY to signal the + * beginning of the MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* + * Now combine the remaining required fields that will indicate a + * write operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine for each field in the command. The + * format of a MII write instruction is as follows: + * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. + */ + mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) | + (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); + mdic <<= 16; + mdic |= (u32) data; + + e1000_shift_out_mdi_bits_82543(hw, mdic, 32); + +out: + return ret_val; +} + +/** + * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock + * @hw: pointer to the HW structure + * @ctrl: pointer to the control register + * + * Raise the management data input clock by setting the MDC bit in the control + * register. + **/ +static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl) +{ + /* + * Raise the clock input to the Management Data Clock (by setting the + * MDC bit), and then delay a sufficient amount of time. + */ + E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(hw); + usec_delay(10); +} + +/** + * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock + * @hw: pointer to the HW structure + * @ctrl: pointer to the control register + * + * Lower the management data input clock by clearing the MDC bit in the + * control register. + **/ +static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl) +{ + /* + * Lower the clock input to the Management Data Clock (by clearing the + * MDC bit), and then delay a sufficient amount of time. + */ + E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(hw); + usec_delay(10); +} + +/** + * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY + * @hw: pointer to the HW structure + * @data: data to send to the PHY + * @count: number of bits to shift out + * + * We need to shift 'count' bits out to the PHY. So, the value in the + * "data" parameter will be shifted out to the PHY one bit at a time. + * In order to do this, "data" must be broken down into bits. + **/ +static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, + u16 count) +{ + u32 ctrl, mask; + + /* + * We need to shift "count" number of bits out to the PHY. So, the + * value in the "data" parameter will be shifted out to the PHY one + * bit at a time. In order to do this, "data" must be broken down + * into bits. + */ + mask = 0x01; + mask <<= (count -1); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ + ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); + + while (mask) { + /* + * A "1" is shifted out to the PHY by setting the MDIO bit to + * "1" and then raising and lowering the Management Data Clock. + * A "0" is shifted out to the PHY by setting the MDIO bit to + * "0" and then raising and lowering the clock. + */ + if (data & mask) ctrl |= E1000_CTRL_MDIO; + else ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + usec_delay(10); + + e1000_raise_mdi_clk_82543(hw, &ctrl); + e1000_lower_mdi_clk_82543(hw, &ctrl); + + mask >>= 1; + } +} + +/** + * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY + * @hw: pointer to the HW structure + * + * In order to read a register from the PHY, we need to shift 18 bits + * in from the PHY. Bits are "shifted in" by raising the clock input to + * the PHY (setting the MDC bit), and then reading the value of the data out + * MDIO bit. + **/ +static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw) +{ + u32 ctrl; + u16 data = 0; + u8 i; + + /* + * In order to read a register from the PHY, we need to shift in a + * total of 18 bits from the PHY. The first two bit (turnaround) + * times are used to avoid contention on the MDIO pin when a read + * operation is performed. These two bits are ignored by us and + * thrown away. Bits are "shifted in" by raising the input to the + * Management Data Clock (setting the MDC bit) and then reading the + * value of the MDIO bit. + */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* + * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as + * input. + */ + ctrl &= ~E1000_CTRL_MDIO_DIR; + ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + /* + * Raise and lower the clock before reading in the data. This accounts + * for the turnaround bits. The first clock occurred when we clocked + * out the last bit of the Register Address. + */ + e1000_raise_mdi_clk_82543(hw, &ctrl); + e1000_lower_mdi_clk_82543(hw, &ctrl); + + for (data = 0, i = 0; i < 16; i++) { + data <<= 1; + e1000_raise_mdi_clk_82543(hw, &ctrl); + ctrl = E1000_READ_REG(hw, E1000_CTRL); + /* Check to see if we shifted in a "1". */ + if (ctrl & E1000_CTRL_MDIO) + data |= 1; + e1000_lower_mdi_clk_82543(hw, &ctrl); + } + + e1000_raise_mdi_clk_82543(hw, &ctrl); + e1000_lower_mdi_clk_82543(hw, &ctrl); + + return data; +} + +#if 0 +/** + * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY + * @hw: pointer to the HW structure + * + * Calls the function to force speed and duplex for the m88 PHY, and + * if the PHY is not auto-negotiating and the speed is forced to 10Mbit, + * then call the function for polarity reversal workaround. + **/ +static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_phy_force_speed_duplex_82543"); + + ret_val = e1000_phy_force_speed_duplex_m88(hw); + if (ret_val) + goto out; + + if (!hw->mac.autoneg && + (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)) + ret_val = e1000_polarity_reversal_workaround_82543(hw); + +out: + return ret_val; +} +#endif + +/** + * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal + * @hw: pointer to the HW structure + * + * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity + * inadvertently. To workaround the issue, we disable the transmitter on + * the PHY until we have established the link partner's link parameters. + **/ +static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 mii_status_reg; + u16 i; + bool link; + + if (!(hw->phy.ops.write_reg)) + goto out; + + /* Polarity reversal workaround for forced 10F/10H links. */ + + /* Disable the transmitter on the PHY */ + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if (ret_val) + goto out; + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if (ret_val) + goto out; + + /* + * This loop will early-out if the NO link condition has been met. + * In other words, DO NOT use e1000_phy_has_link_generic() here. + */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* + * Read the MII Status Register and wait for Link Status bit + * to be clear. + */ + + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + goto out; + + if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) + break; + msec_delay_irq(100); + } + + /* Recommended delay time after link has been lost */ + msec_delay_irq(1000); + + /* Now we will re-enable the transmitter on the PHY */ + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if (ret_val) + goto out; + msec_delay_irq(50); + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); + if (ret_val) + goto out; + msec_delay_irq(50); + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); + if (ret_val) + goto out; + msec_delay_irq(50); + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if (ret_val) + goto out; + + /* + * Read the MII Status Register and wait for Link Status bit + * to be set. + */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link); + if (ret_val) + goto out; + +out: + return ret_val; +} + +/** + * e1000_phy_hw_reset_82543 - PHY hardware reset + * @hw: pointer to the HW structure + * + * Sets the PHY_RESET_DIR bit in the extended device control register + * to put the PHY into a reset and waits for completion. Once the reset + * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out + * of reset. + **/ +static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw) +{ + u32 ctrl_ext; + s32 ret_val; + + DEBUGFUNC("e1000_phy_hw_reset_82543"); + + /* + * Read the Extended Device Control Register, assert the PHY_RESET_DIR + * bit to put the PHY into reset... + */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; + ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + /* ...then take it out of reset. */ + ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + + usec_delay(150); + + if (!(hw->phy.ops.get_cfg_done)) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.get_cfg_done(hw); + + return ret_val; +} + +/** + * e1000_reset_hw_82543 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. + **/ +static s32 e1000_reset_hw_82543(struct e1000_hw *hw) +{ + u32 ctrl, icr; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_reset_hw_82543"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + e1000_set_tbi_sbp_82543(hw, false); + + /* + * Delay to allow any outstanding PCI transactions to complete before + * resetting the device + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n"); + if (hw->mac.type == e1000_82543) { + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + } else { + /* + * The 82544 can't ACK the 64-bit write when issuing the + * reset, so use IO-mapping as a workaround. + */ + E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + } + + /* + * After MAC reset, force reload of NVM to restore power-on + * settings to device. + */ + hw->nvm.ops.reload(hw); + msec_delay(2); + + /* Masking off and clearing any pending interrupts */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + icr = E1000_READ_REG(hw, E1000_ICR); + + return ret_val; +} + +/** + * e1000_init_hw_82543 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82543(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; + u32 ctrl; + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_init_hw_82543"); + + /* Disabling VLAN filtering */ + E1000_WRITE_REG(hw, E1000_VET, 0); + mac->ops.clear_vfta(hw); + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + E1000_WRITE_FLUSH(hw); + } + + /* + * Set the PCI priority bit correctly in the CTRL register. This + * determines if the adapter gives priority to receives, or if it + * gives equal priority to transmits and receives. + */ + if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) { + ctrl = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR); + } + + e1000_pcix_mmrbc_workaround_generic(hw); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82543(hw); + + return ret_val; +} + +/** + * e1000_setup_link_82543 - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Read the EEPROM to determine the initial polarity value and write the + * extended device control register with the information before calling + * the generic setup link function, which does the following: + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +static s32 e1000_setup_link_82543(struct e1000_hw *hw) +{ + u32 ctrl_ext; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_setup_link_82543"); + + /* + * Take the 4 bits from NVM word 0xF that determine the initial + * polarity value for the SW controlled pins, and setup the + * Extended Device Control reg with that info. + * This is needed because one of the SW controlled pins is used for + * signal detection. So this should be done before phy setup. + */ + if (hw->mac.type == e1000_82543) { + ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) << + NVM_SWDPIO_EXT_SHIFT); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + } + + ret_val = e1000_setup_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_setup_copper_link_82543 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Configures the link for auto-neg or forced speed and duplex. Then we check + * for link, once link is established calls to configure collision distance + * and flow control are called. + **/ +static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_setup_copper_link_82543"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU; + /* + * With 82543, we need to force speed and duplex on the MAC + * equal to what the PHY speed and duplex configuration is. + * In addition, we need to perform a hardware reset on the + * PHY to take it out of reset. + */ + if (hw->mac.type == e1000_82543) { + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + ret_val = hw->phy.ops.reset(hw); + if (ret_val) + goto out; + hw->phy.reset_disable = false; + } else { + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + } + + /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */ + ret_val = e1000_copper_link_setup_m88(hw); + if (ret_val) + goto out; + + if (hw->mac.autoneg) { + /* + * Setup autoneg and flow control advertisement and perform + * autonegotiation. + */ + ret_val = e1000_copper_link_autoneg(hw); + if (ret_val) + goto out; + } else { + /* + * PHY will be set to 10H, 10F, 100H or 100F + * depending on user settings. + */ +#if 0 + DEBUGOUT("Forcing Speed and Duplex\n"); + ret_val = e1000_phy_force_speed_duplex_82543(hw); + if (ret_val) { + DEBUGOUT("Error Forcing Speed and Duplex\n"); + goto out; + } +#endif + } + + /* + * Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + ret_val = e1000_phy_has_link_generic(hw, + COPPER_LINK_UP_LIMIT, + 10, + &link); + if (ret_val) + goto out; + + + if (link) { + DEBUGOUT("Valid link established!!!\n"); + /* Config the MAC and PHY after link is up */ + if (hw->mac.type == e1000_82544) { + e1000_config_collision_dist_generic(hw); + } else { + ret_val = e1000_config_mac_to_phy_82543(hw); + if (ret_val) + goto out; + } + ret_val = e1000_config_fc_after_link_up_generic(hw); + } else { + DEBUGOUT("Unable to establish link!!!\n"); + } + +out: + return ret_val; +} + +/** + * e1000_setup_fiber_link_82543 - Setup link for fiber + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber links. Upon + * successful setup, poll for link. + **/ +static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_setup_fiber_link_82543"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Take the link out of reset */ + ctrl &= ~E1000_CTRL_LRST; + + e1000_config_collision_dist_generic(hw); + + ret_val = e1000_commit_fc_settings_generic(hw); + if (ret_val) + goto out; + + DEBUGOUT("Auto-negotiation enabled\n"); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + + /* + * For these adapters, the SW definable pin 1 is cleared when the + * optics detect a signal. If we have a signal, then poll for a + * "Link-Up" indication. + */ + if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { + ret_val = e1000_poll_fiber_serdes_link_generic(hw); + } else { + DEBUGOUT("No signal detected\n"); + } + +out: + return ret_val; +} + +/** + * e1000_check_for_copper_link_82543 - Check for link (Copper) + * @hw: pointer to the HW structure + * + * Checks the phy for link, if link exists, do the following: + * - check for downshift + * - do polarity workaround (if necessary) + * - configure collision distance + * - configure flow control after link up + * - configure tbi compatibility + **/ +static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 icr, rctl; + s32 ret_val; + u16 speed, duplex; + bool link; + + DEBUGFUNC("e1000_check_for_copper_link_82543"); + + if (!mac->get_link_status) { + ret_val = E1000_SUCCESS; + goto out; + } + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (!link) + goto out; /* No link detected */ + + mac->get_link_status = false; + + e1000_check_downshift_generic(hw); + + /* + * If we are forcing speed/duplex, then we can return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) { + /* + * If speed and duplex are forced to 10H or 10F, then we will + * implement the polarity reversal workaround. We disable + * interrupts first, and upon returning, place the devices + * interrupt state to its previous value except for the link + * status change interrupt which will happened due to the + * execution of this workaround. + */ + if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) { + E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); + ret_val = e1000_polarity_reversal_workaround_82543(hw); + icr = E1000_READ_REG(hw, E1000_ICR); + E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC)); + E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK); + } + + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + /* + * We have a M88E1000 PHY and Auto-Neg is enabled. If we + * have Si on board that is 82544 or newer, Auto + * Speed Detection takes care of MAC speed/duplex + * configuration. So we only need to configure Collision + * Distance in the MAC. Otherwise, we need to force + * speed/duplex on the MAC to the current PHY speed/duplex + * settings. + */ + if (mac->type == e1000_82544) + e1000_config_collision_dist_generic(hw); + else { + ret_val = e1000_config_mac_to_phy_82543(hw); + if (ret_val) { + DEBUGOUT("Error configuring MAC to PHY settings\n"); + goto out; + } + } + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + } + + /* + * At this point we know that we are on copper and we have + * auto-negotiated link. These are conditions for checking the link + * partner capability register. We use the link speed to determine if + * TBI compatibility needs to be turned on or off. If the link is not + * at gigabit speed, then TBI compatibility is not needed. If we are + * at gigabit speed, we turn on TBI compatibility. + */ + if (e1000_tbi_compatibility_enabled_82543(hw)) { + ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; + } + if (speed != SPEED_1000) { + /* + * If link speed is not set to gigabit speed, + * we do not need to enable TBI compatibility. + */ + if (e1000_tbi_sbp_enabled_82543(hw)) { + /* + * If we previously were in the mode, + * turn it off. + */ + e1000_set_tbi_sbp_82543(hw, false); + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl &= ~E1000_RCTL_SBP; + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + } + } else { + /* + * If TBI compatibility is was previously off, + * turn it on. For compatibility with a TBI link + * partner, we will store bad packets. Some + * frames have an additional byte on the end and + * will look like CRC errors to to the hardware. + */ + if (!e1000_tbi_sbp_enabled_82543(hw)) { + e1000_set_tbi_sbp_82543(hw, true); + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl |= E1000_RCTL_SBP; + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + } + } + } +out: + return ret_val; +} + +/** + * e1000_check_for_fiber_link_82543 - Check for link (Fiber) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw, ctrl, status; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_check_for_fiber_link_82543"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + /* + * If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), the cable is plugged in (we have signal), + * and our link partner is not trying to auto-negotiate with us (we + * are receiving idles or data), we need to force link up. We also + * need to give auto-negotiation time to complete, in case the cable + * was just plugged in. The autoneg_failed flag does this. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */ + if ((!(ctrl & E1000_CTRL_SWDPIN1)) && + (!(status & E1000_STATUS_LU)) && + (!(rxcw & E1000_RXCW_C))) { + if (mac->autoneg_failed == 0) { + mac->autoneg_failed = 1; + ret_val = 0; + goto out; + } + DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + goto out; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* + * If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = true; + } + +out: + return ret_val; +} + +/** + * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings + * @hw: pointer to the HW structure + * + * For the 82543 silicon, we need to set the MAC to match the settings + * of the PHY, even if the PHY is auto-negotiating. + **/ +static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val = E1000_SUCCESS; + u16 phy_data; + + DEBUGFUNC("e1000_config_mac_to_phy_82543"); + + if (!(hw->phy.ops.read_reg)) + goto out; + + /* Set the bits to force speed and duplex */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); + + /* + * Set up duplex in the Device Control and Transmit Control + * registers depending on negotiated values. + */ + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + goto out; + + ctrl &= ~E1000_CTRL_FD; + if (phy_data & M88E1000_PSSR_DPLX) + ctrl |= E1000_CTRL_FD; + + e1000_config_collision_dist_generic(hw); + + /* + * Set up speed in the Device Control register depending on + * negotiated values. + */ + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) + ctrl |= E1000_CTRL_SPD_1000; + else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) + ctrl |= E1000_CTRL_SPD_100; + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + +out: + return ret_val; +} + +/** + * e1000_write_vfta_82543 - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: the 32-bit offset in which to write the value to. + * @value: the 32-bit value to write at location offset. + * + * This writes a 32-bit value to a 32-bit offset in the VLAN filter + * table. + **/ +static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value) +{ + u32 temp; + + DEBUGFUNC("e1000_write_vfta_82543"); + + if ((hw->mac.type == e1000_82544) && (offset & 1)) { + temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1); + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp); + E1000_WRITE_FLUSH(hw); + } else { + e1000_write_vfta_generic(hw, offset, value); + } +} + +/** + * e1000_mta_set_82543 - Set multicast filter table address + * @hw: pointer to the HW structure + * @hash_value: determines the MTA register and bit to set + * + * The multicast table address is a register array of 32-bit registers. + * The hash_value is used to determine what register the bit is in, the + * current value is read, the new bit is OR'd in and the new value is + * written back into the register. + **/ +static void e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value) +{ + u32 hash_bit, hash_reg, mta, temp; + + DEBUGFUNC("e1000_mta_set_82543"); + + hash_reg = (hash_value >> 5); + + /* + * If we are on an 82544 and we are trying to write an odd offset + * in the MTA, save off the previous entry before writing and + * restore the old value after writing. + */ + if ((hw->mac.type == e1000_82544) && (hash_reg & 1)) { + hash_reg &= (hw->mac.mta_reg_count - 1); + hash_bit = hash_value & 0x1F; + mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg); + mta |= (1 << hash_bit); + temp = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg - 1); + + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg - 1, temp); + E1000_WRITE_FLUSH(hw); + } else { + e1000_mta_set_generic(hw, hash_value); + } +} + +/** + * e1000_led_on_82543 - Turn on SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED on. + **/ +static s32 e1000_led_on_82543(struct e1000_hw *hw __unused) +{ +#if 0 + u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGFUNC("e1000_led_on_82543"); + + if (hw->mac.type == e1000_82544 && + hw->phy.media_type == e1000_media_type_copper) { + /* Clear SW-definable Pin 0 to turn on the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else { + /* Fiber 82544 and all 82543 use this method */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + return E1000_SUCCESS; +#endif + return 0; +} + +/** + * e1000_led_off_82543 - Turn off SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED off. + **/ +static s32 e1000_led_off_82543(struct e1000_hw *hw __unused) +{ +#if 0 + u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGFUNC("e1000_led_off_82543"); + + if (hw->mac.type == e1000_82544 && + hw->phy.media_type == e1000_media_type_copper) { + /* Set SW-definable Pin 0 to turn off the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else { + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + return E1000_SUCCESS; +#endif + return 0; +} + +/** + * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_82543"); + + e1000_clear_hw_cntrs_base_generic(hw); + +#if 0 + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); +#endif +} + +static struct pci_device_id e1000_82543_nics[] = { + PCI_ROM(0x8086, 0x1001, "E1000_DEV_ID_82543GC_FIBER", "E1000_DEV_ID_82543GC_FIBER", e1000_82543), + PCI_ROM(0x8086, 0x1004, "E1000_DEV_ID_82543GC_COPPER", "E1000_DEV_ID_82543GC_COPPER", e1000_82543), + PCI_ROM(0x8086, 0x1008, "E1000_DEV_ID_82544EI_COPPER", "E1000_DEV_ID_82544EI_COPPER", e1000_82544), + PCI_ROM(0x8086, 0x1009, "E1000_DEV_ID_82544EI_FIBER", "E1000_DEV_ID_82544EI_FIBER", e1000_82544), + PCI_ROM(0x8086, 0x100C, "E1000_DEV_ID_82544GC_COPPER", "E1000_DEV_ID_82544GC_COPPER", e1000_82544), + PCI_ROM(0x8086, 0x100D, "E1000_DEV_ID_82544GC_LOM", "E1000_DEV_ID_82544GC_LOM", e1000_82544), +}; + +struct pci_driver e1000_82543_driver __pci_driver = { + .ids = e1000_82543_nics, + .id_count = (sizeof (e1000_82543_nics) / sizeof (e1000_82543_nics[0])), + .probe = e1000_probe, + .remove = e1000_remove, +}; diff --git a/src/drivers/net/e1000/e1000_82543.h b/src/drivers/net/e1000/e1000_82543.h new file mode 100644 index 000000000..30073e8bf --- /dev/null +++ b/src/drivers/net/e1000/e1000_82543.h @@ -0,0 +1,45 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +#ifndef _E1000_82543_H_ +#define _E1000_82543_H_ + +#define PHY_PREAMBLE 0xFFFFFFFF +#define PHY_PREAMBLE_SIZE 32 +#define PHY_SOF 0x1 +#define PHY_OP_READ 0x2 +#define PHY_OP_WRITE 0x1 +#define PHY_TURNAROUND 0x2 + +#define TBI_COMPAT_ENABLED 0x1 /* Global "knob" for the workaround */ +/* If TBI_COMPAT_ENABLED, then this is the current state (on/off) */ +#define TBI_SBP_ENABLED 0x2 + +#endif diff --git a/src/drivers/net/e1000/e1000_api.c b/src/drivers/net/e1000/e1000_api.c new file mode 100644 index 000000000..72aac4c48 --- /dev/null +++ b/src/drivers/net/e1000/e1000_api.c @@ -0,0 +1,1108 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +#include "e1000_api.h" + +/** + * e1000_init_mac_params - Initialize MAC function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the MAC + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_mac_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->mac.ops.init_params) { + ret_val = hw->mac.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("MAC Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("mac.init_mac_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params - Initialize NVM function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the NVM + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_nvm_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->nvm.ops.init_params) { + ret_val = hw->nvm.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("NVM Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("nvm.init_nvm_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_init_phy_params - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the PHY + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_phy_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->phy.ops.init_params) { + ret_val = hw->phy.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("PHY Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("phy.init_phy_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_set_mac_type - Sets MAC type + * @hw: pointer to the HW structure + * + * This function sets the mac type of the adapter based on the + * device ID stored in the hw structure. + * MUST BE FIRST FUNCTION CALLED (explicitly or through + * e1000_setup_init_funcs()). + **/ +s32 e1000_set_mac_type(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_set_mac_type"); + + switch (hw->device_id) { + case E1000_DEV_ID_82542: + mac->type = e1000_82542; + break; + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + mac->type = e1000_82543; + break; + case E1000_DEV_ID_82544EI_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + case E1000_DEV_ID_82544GC_COPPER: + case E1000_DEV_ID_82544GC_LOM: + mac->type = e1000_82544; + break; + case E1000_DEV_ID_82540EM: + case E1000_DEV_ID_82540EM_LOM: + case E1000_DEV_ID_82540EP: + case E1000_DEV_ID_82540EP_LOM: + case E1000_DEV_ID_82540EP_LP: + mac->type = e1000_82540; + break; + case E1000_DEV_ID_82545EM_COPPER: + case E1000_DEV_ID_82545EM_FIBER: + mac->type = e1000_82545; + break; + case E1000_DEV_ID_82545GM_COPPER: + case E1000_DEV_ID_82545GM_FIBER: + case E1000_DEV_ID_82545GM_SERDES: + mac->type = e1000_82545_rev_3; + break; + case E1000_DEV_ID_82546EB_COPPER: + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546EB_QUAD_COPPER: + mac->type = e1000_82546; + break; + case E1000_DEV_ID_82546GB_COPPER: + case E1000_DEV_ID_82546GB_FIBER: + case E1000_DEV_ID_82546GB_SERDES: + case E1000_DEV_ID_82546GB_PCIE: + case E1000_DEV_ID_82546GB_QUAD_COPPER: + case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: + mac->type = e1000_82546_rev_3; + break; + case E1000_DEV_ID_82541EI: + case E1000_DEV_ID_82541EI_MOBILE: + case E1000_DEV_ID_82541ER_LOM: + mac->type = e1000_82541; + break; + case E1000_DEV_ID_82541ER: + case E1000_DEV_ID_82541GI: + case E1000_DEV_ID_82541GI_LF: + case E1000_DEV_ID_82541GI_MOBILE: + mac->type = e1000_82541_rev_2; + break; + case E1000_DEV_ID_82547EI: + case E1000_DEV_ID_82547EI_MOBILE: + mac->type = e1000_82547; + break; + case E1000_DEV_ID_82547GI: + mac->type = e1000_82547_rev_2; + break; + default: + /* Should never have loaded on this device */ + ret_val = -E1000_ERR_MAC_INIT; + break; + } + + return ret_val; +} + +/** + * e1000_setup_init_funcs - Initializes function pointers + * @hw: pointer to the HW structure + * @init_device: true will initialize the rest of the function pointers + * getting the device ready for use. false will only set + * MAC type and the function pointers for the other init + * functions. Passing false will not generate any hardware + * reads or writes. + * + * This function must be called by a driver in order to use the rest + * of the 'shared' code files. Called by drivers only. + **/ +s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) +{ + s32 ret_val; + + /* Can't do much good without knowing the MAC type. */ + ret_val = e1000_set_mac_type(hw); + if (ret_val) { + DEBUGOUT("ERROR: MAC type could not be set properly.\n"); + goto out; + } + + if (!hw->hw_addr) { + DEBUGOUT("ERROR: Registers not mapped\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + /* + * Init function pointers to generic implementations. We do this first + * allowing a driver module to override it afterward. + */ + e1000_init_mac_ops_generic(hw); + e1000_init_phy_ops_generic(hw); + e1000_init_nvm_ops_generic(hw); + + /* + * Set up the init function pointers. These are functions within the + * adapter family file that sets up function pointers for the rest of + * the functions in that family. + */ + switch (hw->mac.type) { + case e1000_82542: + e1000_init_function_pointers_82542(hw); + break; + case e1000_82543: + case e1000_82544: + e1000_init_function_pointers_82543(hw); + break; + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + e1000_init_function_pointers_82540(hw); + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + e1000_init_function_pointers_82541(hw); + break; + default: + DEBUGOUT("Hardware not supported\n"); + ret_val = -E1000_ERR_CONFIG; + break; + } + + /* + * Initialize the rest of the function pointers. These require some + * register reads/writes in some cases. + */ + if (!(ret_val) && init_device) { + ret_val = e1000_init_mac_params(hw); + if (ret_val) + goto out; + + ret_val = e1000_init_nvm_params(hw); + if (ret_val) + goto out; + + ret_val = e1000_init_phy_params(hw); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_get_bus_info - Obtain bus information for adapter + * @hw: pointer to the HW structure + * + * This will obtain information about the HW bus for which the + * adapter is attached and stores it in the hw structure. This is a + * function pointer entry point called by drivers. + **/ +s32 e1000_get_bus_info(struct e1000_hw *hw) +{ + if (hw->mac.ops.get_bus_info) + return hw->mac.ops.get_bus_info(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_clear_vfta - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * This clears the VLAN filter table on the adapter. This is a function + * pointer entry point called by drivers. + **/ +void e1000_clear_vfta(struct e1000_hw *hw) +{ + if (hw->mac.ops.clear_vfta) + hw->mac.ops.clear_vfta(hw); +} + +/** + * e1000_write_vfta - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: the 32-bit offset in which to write the value to. + * @value: the 32-bit value to write at location offset. + * + * This writes a 32-bit value to a 32-bit offset in the VLAN filter + * table. This is a function pointer entry point called by drivers. + **/ +void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) +{ + if (hw->mac.ops.write_vfta) + hw->mac.ops.write_vfta(hw, offset, value); +} + +/** + * e1000_update_mc_addr_list - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * + * Updates the Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + **/ +void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, + u32 mc_addr_count) +{ + if (hw->mac.ops.update_mc_addr_list) + hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, + mc_addr_count); +} + +/** + * e1000_force_mac_fc - Force MAC flow control + * @hw: pointer to the HW structure + * + * Force the MAC's flow control settings. Currently no func pointer exists + * and all implementations are handled in the generic version of this + * function. + **/ +s32 e1000_force_mac_fc(struct e1000_hw *hw) +{ + return e1000_force_mac_fc_generic(hw); +} + +/** + * e1000_check_for_link - Check/Store link connection + * @hw: pointer to the HW structure + * + * This checks the link condition of the adapter and stores the + * results in the hw->mac structure. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_check_for_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.check_for_link) + return hw->mac.ops.check_for_link(hw); + + return -E1000_ERR_CONFIG; +} + +#if 0 +/** + * e1000_check_mng_mode - Check management mode + * @hw: pointer to the HW structure + * + * This checks if the adapter has manageability enabled. + * This is a function pointer entry point called by drivers. + **/ +bool e1000_check_mng_mode(struct e1000_hw *hw) +{ + if (hw->mac.ops.check_mng_mode) + return hw->mac.ops.check_mng_mode(hw); + + return false; +} + +/** + * e1000_mng_write_dhcp_info - Writes DHCP info to host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface + * @length: size of the buffer + * + * Writes the DHCP information to the host interface. + **/ +s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) +{ + return e1000_mng_write_dhcp_info_generic(hw, buffer, length); +} +#endif + +/** + * e1000_reset_hw - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_reset_hw(struct e1000_hw *hw) +{ + if (hw->mac.ops.reset_hw) + return hw->mac.ops.reset_hw(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_init_hw - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_init_hw(struct e1000_hw *hw) +{ + if (hw->mac.ops.init_hw) + return hw->mac.ops.init_hw(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_setup_link - Configures link and flow control + * @hw: pointer to the HW structure + * + * This configures link and flow control settings for the adapter. This + * is a function pointer entry point called by drivers. While modules can + * also call this, they probably call their own version of this function. + **/ +s32 e1000_setup_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.setup_link) + return hw->mac.ops.setup_link(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_get_speed_and_duplex - Returns current speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to a 16-bit value to store the speed + * @duplex: pointer to a 16-bit value to store the duplex. + * + * This returns the speed and duplex of the adapter in the two 'out' + * variables passed in. This is a function pointer entry point called + * by drivers. + **/ +s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) +{ + if (hw->mac.ops.get_link_up_info) + return hw->mac.ops.get_link_up_info(hw, speed, duplex); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_setup_led - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_setup_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.setup_led) + return hw->mac.ops.setup_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_cleanup_led - Restores SW controllable LED + * @hw: pointer to the HW structure + * + * This restores the SW controllable LED to the value saved off by + * e1000_setup_led. This is a function pointer entry point called by drivers. + **/ +s32 e1000_cleanup_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.cleanup_led) + return hw->mac.ops.cleanup_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_blink_led - Blink SW controllable LED + * @hw: pointer to the HW structure + * + * This starts the adapter LED blinking. Request the LED to be setup first + * and cleaned up after. This is a function pointer entry point called by + * drivers. + **/ +s32 e1000_blink_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.blink_led) + return hw->mac.ops.blink_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_id_led_init - store LED configurations in SW + * @hw: pointer to the HW structure + * + * Initializes the LED config in SW. This is a function pointer entry point + * called by drivers. + **/ +s32 e1000_id_led_init(struct e1000_hw *hw) +{ + if (hw->mac.ops.id_led_init) + return hw->mac.ops.id_led_init(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_led_on - Turn on SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED on. This is a function pointer entry point + * called by drivers. + **/ +s32 e1000_led_on(struct e1000_hw *hw) +{ + if (hw->mac.ops.led_on) + return hw->mac.ops.led_on(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_led_off - Turn off SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED off. This is a function pointer entry point + * called by drivers. + **/ +s32 e1000_led_off(struct e1000_hw *hw) +{ + if (hw->mac.ops.led_off) + return hw->mac.ops.led_off(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_reset_adaptive - Reset adaptive IFS + * @hw: pointer to the HW structure + * + * Resets the adaptive IFS. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +void e1000_reset_adaptive(struct e1000_hw *hw) +{ + e1000_reset_adaptive_generic(hw); +} + +/** + * e1000_update_adaptive - Update adaptive IFS + * @hw: pointer to the HW structure + * + * Updates adapter IFS. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +void e1000_update_adaptive(struct e1000_hw *hw) +{ + e1000_update_adaptive_generic(hw); +} + +/** + * e1000_disable_pcie_master - Disable PCI-Express master access + * @hw: pointer to the HW structure + * + * Disables PCI-Express master access and verifies there are no pending + * requests. Currently no func pointer exists and all implementations are + * handled in the generic version of this function. + **/ +s32 e1000_disable_pcie_master(struct e1000_hw *hw) +{ + return e1000_disable_pcie_master_generic(hw); +} + +/** + * e1000_config_collision_dist - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. + **/ +void e1000_config_collision_dist(struct e1000_hw *hw) +{ + if (hw->mac.ops.config_collision_dist) + hw->mac.ops.config_collision_dist(hw); +} + +/** + * e1000_rar_set - Sets a receive address register + * @hw: pointer to the HW structure + * @addr: address to set the RAR to + * @index: the RAR to set + * + * Sets a Receive Address Register (RAR) to the specified address. + **/ +void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) +{ + if (hw->mac.ops.rar_set) + hw->mac.ops.rar_set(hw, addr, index); +} + +/** + * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state + * @hw: pointer to the HW structure + * + * Ensures that the MDI/MDIX SW state is valid. + **/ +s32 e1000_validate_mdi_setting(struct e1000_hw *hw) +{ + if (hw->mac.ops.validate_mdi_setting) + return hw->mac.ops.validate_mdi_setting(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_mta_set - Sets multicast table bit + * @hw: pointer to the HW structure + * @hash_value: Multicast hash value. + * + * This sets the bit in the multicast table corresponding to the + * hash value. This is a function pointer entry point called by drivers. + **/ +void e1000_mta_set(struct e1000_hw *hw, u32 hash_value) +{ + if (hw->mac.ops.mta_set) + hw->mac.ops.mta_set(hw, hash_value); +} + +/** + * e1000_hash_mc_addr - Determines address location in multicast table + * @hw: pointer to the HW structure + * @mc_addr: Multicast address to hash. + * + * This hashes an address to determine its location in the multicast + * table. Currently no func pointer exists and all implementations + * are handled in the generic version of this function. + **/ +u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) +{ + return e1000_hash_mc_addr_generic(hw, mc_addr); +} + +#if 0 +/** + * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX + * @hw: pointer to the HW structure + * + * Enables packet filtering on transmit packets if manageability is enabled + * and host interface is enabled. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) +{ + return e1000_enable_tx_pkt_filtering_generic(hw); +} + +/** + * e1000_mng_host_if_write - Writes to the manageability host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface buffer + * @length: size of the buffer + * @offset: location in the buffer to write to + * @sum: sum of the data (not checksum) + * + * This function writes the buffer content at the offset given on the host if. + * It also does alignment considerations to do the writes in most efficient + * way. Also fills up the sum of the buffer in *buffer parameter. + **/ +s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length, + u16 offset, u8 *sum) +{ + if (hw->mac.ops.mng_host_if_write) + return hw->mac.ops.mng_host_if_write(hw, buffer, length, + offset, sum); + + return E1000_NOT_IMPLEMENTED; +} + +/** + * e1000_mng_write_cmd_header - Writes manageability command header + * @hw: pointer to the HW structure + * @hdr: pointer to the host interface command header + * + * Writes the command header after does the checksum calculation. + **/ +s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr) +{ + if (hw->mac.ops.mng_write_cmd_header) + return hw->mac.ops.mng_write_cmd_header(hw, hdr); + + return E1000_NOT_IMPLEMENTED; +} + +/** + * e1000_mng_enable_host_if - Checks host interface is enabled + * @hw: pointer to the HW structure + * + * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND + * + * This function checks whether the HOST IF is enabled for command operation + * and also checks whether the previous command is completed. It busy waits + * in case of previous command is not completed. + **/ +s32 e1000_mng_enable_host_if(struct e1000_hw * hw) +{ + if (hw->mac.ops.mng_enable_host_if) + return hw->mac.ops.mng_enable_host_if(hw); + + return E1000_NOT_IMPLEMENTED; +} +#endif + +/** + * e1000_wait_autoneg - Waits for autonegotiation completion + * @hw: pointer to the HW structure + * + * Waits for autoneg to complete. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +s32 e1000_wait_autoneg(struct e1000_hw *hw) +{ + if (hw->mac.ops.wait_autoneg) + return hw->mac.ops.wait_autoneg(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_check_reset_block - Verifies PHY can be reset + * @hw: pointer to the HW structure + * + * Checks if the PHY is in a state that can be reset or if manageability + * has it tied up. This is a function pointer entry point called by drivers. + **/ +s32 e1000_check_reset_block(struct e1000_hw *hw) +{ + if (hw->phy.ops.check_reset_block) + return hw->phy.ops.check_reset_block(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_read_phy_reg - Reads PHY register + * @hw: pointer to the HW structure + * @offset: the register to read + * @data: the buffer to store the 16-bit read. + * + * Reads the PHY register and returns the value in data. + * This is a function pointer entry point called by drivers. + **/ +s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) +{ + if (hw->phy.ops.read_reg) + return hw->phy.ops.read_reg(hw, offset, data); + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg - Writes PHY register + * @hw: pointer to the HW structure + * @offset: the register to write + * @data: the value to write. + * + * Writes the PHY register at offset with the value in data. + * This is a function pointer entry point called by drivers. + **/ +s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) +{ + if (hw->phy.ops.write_reg) + return hw->phy.ops.write_reg(hw, offset, data); + + return E1000_SUCCESS; +} + +/** + * e1000_release_phy - Generic release PHY + * @hw: pointer to the HW structure + * + * Return if silicon family does not require a semaphore when accessing the + * PHY. + **/ +void e1000_release_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.release) + hw->phy.ops.release(hw); +} + +/** + * e1000_acquire_phy - Generic acquire PHY + * @hw: pointer to the HW structure + * + * Return success if silicon family does not require a semaphore when + * accessing the PHY. + **/ +s32 e1000_acquire_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.acquire) + return hw->phy.ops.acquire(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_read_kmrn_reg - Reads register using Kumeran interface + * @hw: pointer to the HW structure + * @offset: the register to read + * @data: the location to store the 16-bit value read. + * + * Reads a register out of the Kumeran interface. Currently no func pointer + * exists and all implementations are handled in the generic version of + * this function. + **/ +s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return e1000_read_kmrn_reg_generic(hw, offset, data); +} + +/** + * e1000_write_kmrn_reg - Writes register using Kumeran interface + * @hw: pointer to the HW structure + * @offset: the register to write + * @data: the value to write. + * + * Writes a register to the Kumeran interface. Currently no func pointer + * exists and all implementations are handled in the generic version of + * this function. + **/ +s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) +{ + return e1000_write_kmrn_reg_generic(hw, offset, data); +} + +#if 0 +/** + * e1000_get_cable_length - Retrieves cable length estimation + * @hw: pointer to the HW structure + * + * This function estimates the cable length and stores them in + * hw->phy.min_length and hw->phy.max_length. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_get_cable_length(struct e1000_hw *hw) +{ + if (hw->phy.ops.get_cable_length) + return hw->phy.ops.get_cable_length(hw); + + return E1000_SUCCESS; +} +#endif + +/** + * e1000_get_phy_info - Retrieves PHY information from registers + * @hw: pointer to the HW structure + * + * This function gets some information from various PHY registers and + * populates hw->phy values with it. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_get_phy_info(struct e1000_hw *hw) +{ + if (hw->phy.ops.get_info) + return hw->phy.ops.get_info(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_hw_reset - Hard PHY reset + * @hw: pointer to the HW structure + * + * Performs a hard PHY reset. This is a function pointer entry point called + * by drivers. + **/ +s32 e1000_phy_hw_reset(struct e1000_hw *hw) +{ + if (hw->phy.ops.reset) + return hw->phy.ops.reset(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_commit - Soft PHY reset + * @hw: pointer to the HW structure + * + * Performs a soft PHY reset on those that apply. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_phy_commit(struct e1000_hw *hw) +{ + if (hw->phy.ops.commit) + return hw->phy.ops.commit(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_set_d0_lplu_state - Sets low power link up state for D0 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D0 + * and SmartSpeed is disabled when active is true, else clear lplu for D0 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. This is a function pointer entry point called by drivers. + **/ +s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) +{ + if (hw->phy.ops.set_d0_lplu_state) + return hw->phy.ops.set_d0_lplu_state(hw, active); + + return E1000_SUCCESS; +} + +/** + * e1000_set_d3_lplu_state - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is true, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. This is a function pointer entry point called by drivers. + **/ +s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) +{ + if (hw->phy.ops.set_d3_lplu_state) + return hw->phy.ops.set_d3_lplu_state(hw, active); + + return E1000_SUCCESS; +} + +/** + * e1000_read_mac_addr - Reads MAC address + * @hw: pointer to the HW structure + * + * Reads the MAC address out of the adapter and stores it in the HW structure. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_mac_addr(struct e1000_hw *hw) +{ + if (hw->mac.ops.read_mac_addr) + return hw->mac.ops.read_mac_addr(hw); + + return e1000_read_mac_addr_generic(hw); +} + +/** + * e1000_read_pba_num - Read device part number + * @hw: pointer to the HW structure + * @pba_num: pointer to device part number + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in pba_num. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num) +{ + return e1000_read_pba_num_generic(hw, pba_num); +} + +/** + * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum + * @hw: pointer to the HW structure + * + * Validates the NVM checksum is correct. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) +{ + if (hw->nvm.ops.validate) + return hw->nvm.ops.validate(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum + * @hw: pointer to the HW structure + * + * Updates the NVM checksum. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +s32 e1000_update_nvm_checksum(struct e1000_hw *hw) +{ + if (hw->nvm.ops.update) + return hw->nvm.ops.update(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_reload_nvm - Reloads EEPROM + * @hw: pointer to the HW structure + * + * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the + * extended control register. + **/ +void e1000_reload_nvm(struct e1000_hw *hw) +{ + if (hw->nvm.ops.reload) + hw->nvm.ops.reload(hw); +} + +/** + * e1000_read_nvm - Reads NVM (EEPROM) + * @hw: pointer to the HW structure + * @offset: the word offset to read + * @words: number of 16-bit words to read + * @data: pointer to the properly sized buffer for the data. + * + * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + if (hw->nvm.ops.read) + return hw->nvm.ops.read(hw, offset, words, data); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_write_nvm - Writes to NVM (EEPROM) + * @hw: pointer to the HW structure + * @offset: the word offset to read + * @words: number of 16-bit words to write + * @data: pointer to the properly sized buffer for the data. + * + * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + if (hw->nvm.ops.write) + return hw->nvm.ops.write(hw, offset, words, data); + + return E1000_SUCCESS; +} + +/** + * e1000_power_up_phy - Restores link in case of PHY power down + * @hw: pointer to the HW structure + * + * The phy may be powered down to save power, to turn off link when the + * driver is unloaded, or wake on lan is not enabled (among others). + **/ +void e1000_power_up_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.power_up) + hw->phy.ops.power_up(hw); + + e1000_setup_link(hw); +} + +/** + * e1000_power_down_phy - Power down PHY + * @hw: pointer to the HW structure + * + * The phy may be powered down to save power, to turn off link when the + * driver is unloaded, or wake on lan is not enabled (among others). + **/ +void e1000_power_down_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.power_down) + hw->phy.ops.power_down(hw); +} diff --git a/src/drivers/net/e1000/e1000_api.h b/src/drivers/net/e1000/e1000_api.h new file mode 100644 index 000000000..d9f13bf0c --- /dev/null +++ b/src/drivers/net/e1000/e1000_api.h @@ -0,0 +1,128 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +#ifndef _E1000_API_H_ +#define _E1000_API_H_ + +#include <stdint.h> +#include <stdlib.h> +#include <stdio.h> +#include <string.h> +#include <unistd.h> +#include <gpxe/io.h> +#include <errno.h> +#include <byteswap.h> +#include <gpxe/pci.h> +#include <gpxe/malloc.h> +#include <gpxe/if_ether.h> +#include <gpxe/ethernet.h> +#include <gpxe/iobuf.h> +#include <gpxe/netdevice.h> + +#include "e1000_hw.h" + +extern void e1000_init_function_pointers_82542(struct e1000_hw *hw) __attribute__((weak)); +extern void e1000_init_function_pointers_82543(struct e1000_hw *hw) __attribute__((weak)); +extern void e1000_init_function_pointers_82540(struct e1000_hw *hw) __attribute__((weak)); +extern void e1000_init_function_pointers_82541(struct e1000_hw *hw) __attribute__((weak)); + +s32 e1000_set_mac_type(struct e1000_hw *hw); +s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device); +s32 e1000_init_mac_params(struct e1000_hw *hw); +s32 e1000_init_nvm_params(struct e1000_hw *hw); +s32 e1000_init_phy_params(struct e1000_hw *hw); +s32 e1000_get_bus_info(struct e1000_hw *hw); +void e1000_clear_vfta(struct e1000_hw *hw); +void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value); +s32 e1000_force_mac_fc(struct e1000_hw *hw); +s32 e1000_check_for_link(struct e1000_hw *hw); +s32 e1000_reset_hw(struct e1000_hw *hw); +s32 e1000_init_hw(struct e1000_hw *hw); +s32 e1000_setup_link(struct e1000_hw *hw); +s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +s32 e1000_disable_pcie_master(struct e1000_hw *hw); +void e1000_config_collision_dist(struct e1000_hw *hw); +void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); +void e1000_mta_set(struct e1000_hw *hw, u32 hash_value); +u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr); +void e1000_update_mc_addr_list(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count); +s32 e1000_setup_led(struct e1000_hw *hw); +s32 e1000_cleanup_led(struct e1000_hw *hw); +s32 e1000_check_reset_block(struct e1000_hw *hw); +s32 e1000_blink_led(struct e1000_hw *hw); +s32 e1000_led_on(struct e1000_hw *hw); +s32 e1000_led_off(struct e1000_hw *hw); +s32 e1000_id_led_init(struct e1000_hw *hw); +void e1000_reset_adaptive(struct e1000_hw *hw); +void e1000_update_adaptive(struct e1000_hw *hw); +#if 0 +s32 e1000_get_cable_length(struct e1000_hw *hw); +#endif +s32 e1000_validate_mdi_setting(struct e1000_hw *hw); +s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_get_phy_info(struct e1000_hw *hw); +void e1000_release_phy(struct e1000_hw *hw); +s32 e1000_acquire_phy(struct e1000_hw *hw); +s32 e1000_phy_hw_reset(struct e1000_hw *hw); +s32 e1000_phy_commit(struct e1000_hw *hw); +void e1000_power_up_phy(struct e1000_hw *hw); +void e1000_power_down_phy(struct e1000_hw *hw); +s32 e1000_read_mac_addr(struct e1000_hw *hw); +s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num); +void e1000_reload_nvm(struct e1000_hw *hw); +s32 e1000_update_nvm_checksum(struct e1000_hw *hw); +s32 e1000_validate_nvm_checksum(struct e1000_hw *hw); +s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +s32 e1000_wait_autoneg(struct e1000_hw *hw); +s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); +s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); +bool e1000_check_mng_mode(struct e1000_hw *hw); +bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); +s32 e1000_mng_enable_host_if(struct e1000_hw *hw); +s32 e1000_mng_host_if_write(struct e1000_hw *hw, + u8 *buffer, u16 length, u16 offset, u8 *sum); +s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr); +s32 e1000_mng_write_dhcp_info(struct e1000_hw * hw, + u8 *buffer, u16 length); +u32 e1000_translate_register_82542(u32 reg) __attribute__((weak)); + +extern int e1000_probe(struct pci_device *pdev, + const struct pci_device_id *id __unused); +extern void e1000_remove(struct pci_device *pdev); + +#endif diff --git a/src/drivers/net/e1000/e1000_defines.h b/src/drivers/net/e1000/e1000_defines.h new file mode 100644 index 000000000..c585f09bc --- /dev/null +++ b/src/drivers/net/e1000/e1000_defines.h @@ -0,0 +1,1416 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +#ifndef _E1000_DEFINES_H_ +#define _E1000_DEFINES_H_ + +/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ +#define REQ_TX_DESCRIPTOR_MULTIPLE 8 +#define REQ_RX_DESCRIPTOR_MULTIPLE 8 + +/* Definitions for power management and wakeup registers */ +/* Wake Up Control */ +#define E1000_WUC_APME 0x00000001 /* APM Enable */ +#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ +#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ +#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ +#define E1000_WUC_LSCWE 0x00000010 /* Link Status wake up enable */ +#define E1000_WUC_LSCWO 0x00000020 /* Link Status wake up override */ +#define E1000_WUC_SPM 0x80000000 /* Enable SPM */ +#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */ + +/* Wake Up Filter Control */ +#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ +#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ +#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ +#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ +#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ +#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ +#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ +#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ +#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */ +#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ +#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ +#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ +#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ +#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ +#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */ +#define E1000_WUFC_FLX_FILTERS 0x000F0000 /*Mask for the 4 flexible filters */ + +/* Wake Up Status */ +#define E1000_WUS_LNKC E1000_WUFC_LNKC +#define E1000_WUS_MAG E1000_WUFC_MAG +#define E1000_WUS_EX E1000_WUFC_EX +#define E1000_WUS_MC E1000_WUFC_MC +#define E1000_WUS_BC E1000_WUFC_BC +#define E1000_WUS_ARP E1000_WUFC_ARP +#define E1000_WUS_IPV4 E1000_WUFC_IPV4 +#define E1000_WUS_IPV6 E1000_WUFC_IPV6 +#define E1000_WUS_FLX0 E1000_WUFC_FLX0 +#define E1000_WUS_FLX1 E1000_WUFC_FLX1 +#define E1000_WUS_FLX2 E1000_WUFC_FLX2 +#define E1000_WUS_FLX3 E1000_WUFC_FLX3 +#define E1000_WUS_FLX_FILTERS E1000_WUFC_FLX_FILTERS + +/* Wake Up Packet Length */ +#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ + +/* Four Flexible Filters are supported */ +#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4 + +/* Each Flexible Filter is at most 128 (0x80) bytes in length */ +#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128 + +#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX +#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX +#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX + +/* Extended Device Control */ +#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ +#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ +#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN +#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ +#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ +/* Reserved (bits 4,5) in >= 82575 */ +#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Definable Pin 4 */ +#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Definable Pin 5 */ +#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA +#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Definable Pin 6 */ +#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Definable Pin 7 */ +/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */ +#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ +#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ +#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ +#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */ +#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ +#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ +#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ +#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ +#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ +#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clock Gating */ +#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 +#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000 +#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_PCIX_SERDES 0x00800000 +#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 +#define E1000_CTRL_EXT_EIAME 0x01000000 +#define E1000_CTRL_EXT_IRCA 0x00000001 +#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000 +#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000 +#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 +#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 +#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 +#define E1000_CTRL_EXT_CANC 0x04000000 /* Int delay cancellation */ +#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ +/* IAME enable bit (27) was removed in >= 82575 */ +#define E1000_CTRL_EXT_IAME 0x08000000 /* Int acknowledge Auto-mask */ +#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error + * detection enabled */ +#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity + * error detection enable */ +#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000 +#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ +#define E1000_I2CCMD_REG_ADDR_SHIFT 16 +#define E1000_I2CCMD_REG_ADDR 0x00FF0000 +#define E1000_I2CCMD_PHY_ADDR_SHIFT 24 +#define E1000_I2CCMD_PHY_ADDR 0x07000000 +#define E1000_I2CCMD_OPCODE_READ 0x08000000 +#define E1000_I2CCMD_OPCODE_WRITE 0x00000000 +#define E1000_I2CCMD_RESET 0x10000000 +#define E1000_I2CCMD_READY 0x20000000 +#define E1000_I2CCMD_INTERRUPT_ENA 0x40000000 +#define E1000_I2CCMD_ERROR 0x80000000 +#define E1000_MAX_SGMII_PHY_REG_ADDR 255 +#define E1000_I2CCMD_PHY_TIMEOUT 200 + +/* Receive Descriptor bit definitions */ +#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ +#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ +#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ +#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ +#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ +#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ +#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ +#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ +#define E1000_RXD_STAT_CRCV 0x100 /* Speculative CRC Valid */ +#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ +#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ +#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */ +#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */ +#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ +#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ +#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ +#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ +#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ +#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ +#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ +#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ +#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ +#define E1000_RXD_SPC_PRI_SHIFT 13 +#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ +#define E1000_RXD_SPC_CFI_SHIFT 12 + +#define E1000_RXDEXT_STATERR_CE 0x01000000 +#define E1000_RXDEXT_STATERR_SE 0x02000000 +#define E1000_RXDEXT_STATERR_SEQ 0x04000000 +#define E1000_RXDEXT_STATERR_CXE 0x10000000 +#define E1000_RXDEXT_STATERR_TCPE 0x20000000 +#define E1000_RXDEXT_STATERR_IPE 0x40000000 +#define E1000_RXDEXT_STATERR_RXE 0x80000000 + +/* mask to determine if packets should be dropped due to frame errors */ +#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ + E1000_RXD_ERR_CE | \ + E1000_RXD_ERR_SE | \ + E1000_RXD_ERR_SEQ | \ + E1000_RXD_ERR_CXE | \ + E1000_RXD_ERR_RXE) + +/* Same mask, but for extended and packet split descriptors */ +#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ + E1000_RXDEXT_STATERR_CE | \ + E1000_RXDEXT_STATERR_SE | \ + E1000_RXDEXT_STATERR_SEQ | \ + E1000_RXDEXT_STATERR_CXE | \ + E1000_RXDEXT_STATERR_RXE) + +#define E1000_MRQC_ENABLE_MASK 0x00000007 +#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001 +#define E1000_MRQC_ENABLE_RSS_INT 0x00000004 +#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 +#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 +#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 +#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 +#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 + +#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 +#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF + +/* Management Control */ +#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ +#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ +#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ +#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ +#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ +#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ +#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ +#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ +#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ +/* Enable Neighbor Discovery Filtering */ +#define E1000_MANC_NEIGHBOR_EN 0x00004000 +#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */ +#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ +#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ +#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ +#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */ +#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ +/* Enable MAC address filtering */ +#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 +/* Enable MNG packets to host memory */ +#define E1000_MANC_EN_MNG2HOST 0x00200000 +/* Enable IP address filtering */ +#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 +#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */ +#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */ +#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ +#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ +#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ +#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ +#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ +#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ + +#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ +#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ + +/* Receive Control */ +#define E1000_RCTL_RST 0x00000001 /* Software reset */ +#define E1000_RCTL_EN 0x00000002 /* enable */ +#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ +#define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */ +#define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */ +#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ +#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ +#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ +#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ +#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ +#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */ +#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ +#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min thresh size */ +#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min thresh size */ +#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min thresh size */ +#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ +#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ +#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ +#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ +#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ +#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ +#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ +#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ +#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ +#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ +#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ +#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ +#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ +#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ +#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ +#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ +#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ +#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ +#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ +#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ +#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ +#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */ +#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */ + +/* + * Use byte values for the following shift parameters + * Usage: + * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & + * E1000_PSRCTL_BSIZE0_MASK) | + * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & + * E1000_PSRCTL_BSIZE1_MASK) | + * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & + * E1000_PSRCTL_BSIZE2_MASK) | + * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; + * E1000_PSRCTL_BSIZE3_MASK)) + * where value0 = [128..16256], default=256 + * value1 = [1024..64512], default=4096 + * value2 = [0..64512], default=4096 + * value3 = [0..64512], default=0 + */ + +#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F +#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 +#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 +#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 + +#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ +#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ +#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ +#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ + +/* SWFW_SYNC Definitions */ +#define E1000_SWFW_EEP_SM 0x01 +#define E1000_SWFW_PHY0_SM 0x02 +#define E1000_SWFW_PHY1_SM 0x04 +#define E1000_SWFW_CSR_SM 0x08 + +/* FACTPS Definitions */ +#define E1000_FACTPS_LFS 0x40000000 /* LAN Function Select */ +/* Device Control */ +#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ +#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ +#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ +#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */ +#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ +#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ +#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ +#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ +#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ +#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ +#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ +#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ +#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ +#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ +#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ +#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ +#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ +#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */ +#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock + * indication in SDP[0] */ +#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through + * PHYRST_N pin */ +#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external + * LINK_0 and LINK_1 pins */ +#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ +#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ +#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ +#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ +#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ +#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ +#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ +#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ +#define E1000_CTRL_RST 0x04000000 /* Global reset */ +#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ +#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ +#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ +#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ +#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ +#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to ME */ +#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */ + +/* + * Bit definitions for the Management Data IO (MDIO) and Management Data + * Clock (MDC) pins in the Device Control Register. + */ +#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0 +#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0 +#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 +#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 +#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 +#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 +#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR +#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA + +#define E1000_CONNSW_ENRGSRC 0x4 +#define E1000_PCS_CFG_PCS_EN 8 +#define E1000_PCS_LCTL_FLV_LINK_UP 1 +#define E1000_PCS_LCTL_FSV_10 0 +#define E1000_PCS_LCTL_FSV_100 2 +#define E1000_PCS_LCTL_FSV_1000 4 +#define E1000_PCS_LCTL_FDV_FULL 8 +#define E1000_PCS_LCTL_FSD 0x10 +#define E1000_PCS_LCTL_FORCE_LINK 0x20 +#define E1000_PCS_LCTL_LOW_LINK_LATCH 0x40 +#define E1000_PCS_LCTL_FORCE_FCTRL 0x80 +#define E1000_PCS_LCTL_AN_ENABLE 0x10000 +#define E1000_PCS_LCTL_AN_RESTART 0x20000 +#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000 +#define E1000_PCS_LCTL_AN_SGMII_BYPASS 0x80000 +#define E1000_PCS_LCTL_AN_SGMII_TRIGGER 0x100000 +#define E1000_PCS_LCTL_FAST_LINK_TIMER 0x1000000 +#define E1000_PCS_LCTL_LINK_OK_FIX 0x2000000 +#define E1000_PCS_LCTL_CRS_ON_NI 0x4000000 +#define E1000_ENABLE_SERDES_LOOPBACK 0x0410 + +#define E1000_PCS_LSTS_LINK_OK 1 +#define E1000_PCS_LSTS_SPEED_10 0 +#define E1000_PCS_LSTS_SPEED_100 2 +#define E1000_PCS_LSTS_SPEED_1000 4 +#define E1000_PCS_LSTS_DUPLEX_FULL 8 +#define E1000_PCS_LSTS_SYNK_OK 0x10 +#define E1000_PCS_LSTS_AN_COMPLETE 0x10000 +#define E1000_PCS_LSTS_AN_PAGE_RX 0x20000 +#define E1000_PCS_LSTS_AN_TIMED_OUT 0x40000 +#define E1000_PCS_LSTS_AN_REMOTE_FAULT 0x80000 +#define E1000_PCS_LSTS_AN_ERROR_RWS 0x100000 + +/* Device Status */ +#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ +#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ +#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ +#define E1000_STATUS_FUNC_SHIFT 2 +#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ +#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ +#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ +#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ +#define E1000_STATUS_SPEED_MASK 0x000000C0 +#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ +#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ +#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ +#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */ +#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ +#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */ +#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. + * Clear on write '0'. */ +#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */ +#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ +#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ +#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ +#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ +#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ +#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */ +#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */ +#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */ +#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */ +#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution + * disabled */ +#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */ +#define E1000_STATUS_FUSE_8 0x04000000 +#define E1000_STATUS_FUSE_9 0x08000000 +#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */ +#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */ + +/* Constants used to interpret the masked PCI-X bus speed. */ +#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */ +#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */ +#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /*PCI-X bus speed 100-133 MHz*/ + +#define SPEED_10 10 +#define SPEED_100 100 +#define SPEED_1000 1000 +#define HALF_DUPLEX 1 +#define FULL_DUPLEX 2 + +#define PHY_FORCE_TIME 20 + +#define ADVERTISE_10_HALF 0x0001 +#define ADVERTISE_10_FULL 0x0002 +#define ADVERTISE_100_HALF 0x0004 +#define ADVERTISE_100_FULL 0x0008 +#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ +#define ADVERTISE_1000_FULL 0x0020 + +/* 1000/H is not supported, nor spec-compliant. */ +#define E1000_ALL_SPEED_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ + ADVERTISE_100_HALF | ADVERTISE_100_FULL | \ + ADVERTISE_1000_FULL) +#define E1000_ALL_NOT_GIG (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ + ADVERTISE_100_HALF | ADVERTISE_100_FULL) +#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) +#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) +#define E1000_ALL_FULL_DUPLEX (ADVERTISE_10_FULL | ADVERTISE_100_FULL | \ + ADVERTISE_1000_FULL) +#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) + +#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX + +/* LED Control */ +#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F +#define E1000_LEDCTL_LED0_MODE_SHIFT 0 +#define E1000_LEDCTL_LED0_BLINK_RATE 0x00000020 +#define E1000_LEDCTL_LED0_IVRT 0x00000040 +#define E1000_LEDCTL_LED0_BLINK 0x00000080 +#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 +#define E1000_LEDCTL_LED1_MODE_SHIFT 8 +#define E1000_LEDCTL_LED1_BLINK_RATE 0x00002000 +#define E1000_LEDCTL_LED1_IVRT 0x00004000 +#define E1000_LEDCTL_LED1_BLINK 0x00008000 +#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 +#define E1000_LEDCTL_LED2_MODE_SHIFT 16 +#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000 +#define E1000_LEDCTL_LED2_IVRT 0x00400000 +#define E1000_LEDCTL_LED2_BLINK 0x00800000 +#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 +#define E1000_LEDCTL_LED3_MODE_SHIFT 24 +#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000 +#define E1000_LEDCTL_LED3_IVRT 0x40000000 +#define E1000_LEDCTL_LED3_BLINK 0x80000000 + +#define E1000_LEDCTL_MODE_LINK_10_1000 0x0 +#define E1000_LEDCTL_MODE_LINK_100_1000 0x1 +#define E1000_LEDCTL_MODE_LINK_UP 0x2 +#define E1000_LEDCTL_MODE_ACTIVITY 0x3 +#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4 +#define E1000_LEDCTL_MODE_LINK_10 0x5 +#define E1000_LEDCTL_MODE_LINK_100 0x6 +#define E1000_LEDCTL_MODE_LINK_1000 0x7 +#define E1000_LEDCTL_MODE_PCIX_MODE 0x8 +#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9 +#define E1000_LEDCTL_MODE_COLLISION 0xA +#define E1000_LEDCTL_MODE_BUS_SPEED 0xB +#define E1000_LEDCTL_MODE_BUS_SIZE 0xC +#define E1000_LEDCTL_MODE_PAUSED 0xD +#define E1000_LEDCTL_MODE_LED_ON 0xE +#define E1000_LEDCTL_MODE_LED_OFF 0xF + +/* Transmit Descriptor bit definitions */ +#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ +#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ +#define E1000_TXD_POPTS_SHIFT 8 /* POPTS shift */ +#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ +#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ +#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ +#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ +#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ +#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ +#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ +#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ +#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ +#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ +#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ +#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ +#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ +#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ +#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ +#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ +#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ +/* Extended desc bits for Linksec and timesync */ + +/* Transmit Control */ +#define E1000_TCTL_RST 0x00000001 /* software reset */ +#define E1000_TCTL_EN 0x00000002 /* enable tx */ +#define E1000_TCTL_BCE 0x00000004 /* busy check enable */ +#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ +#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ +#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ +#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ +#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ +#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ +#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ +#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ + +/* Transmit Arbitration Count */ +#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */ + +/* SerDes Control */ +#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 + +/* Receive Checksum Control */ +#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ +#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ +#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ +#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ +#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */ +#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ +#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ + +/* Header split receive */ +#define E1000_RFCTL_ISCSI_DIS 0x00000001 +#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E +#define E1000_RFCTL_ISCSI_DWC_SHIFT 1 +#define E1000_RFCTL_NFSW_DIS 0x00000040 +#define E1000_RFCTL_NFSR_DIS 0x00000080 +#define E1000_RFCTL_NFS_VER_MASK 0x00000300 +#define E1000_RFCTL_NFS_VER_SHIFT 8 +#define E1000_RFCTL_IPV6_DIS 0x00000400 +#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800 +#define E1000_RFCTL_ACK_DIS 0x00001000 +#define E1000_RFCTL_ACKD_DIS 0x00002000 +#define E1000_RFCTL_IPFRSP_DIS 0x00004000 +#define E1000_RFCTL_EXTEN 0x00008000 +#define E1000_RFCTL_IPV6_EX_DIS 0x00010000 +#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 +#define E1000_RFCTL_LEF 0x00040000 + +/* Collision related configuration parameters */ +#define E1000_COLLISION_THRESHOLD 15 +#define E1000_CT_SHIFT 4 +#define E1000_COLLISION_DISTANCE 63 +#define E1000_COLD_SHIFT 12 + +/* Default values for the transmit IPG register */ +#define DEFAULT_82542_TIPG_IPGT 10 +#define DEFAULT_82543_TIPG_IPGT_FIBER 9 +#define DEFAULT_82543_TIPG_IPGT_COPPER 8 + +#define E1000_TIPG_IPGT_MASK 0x000003FF +#define E1000_TIPG_IPGR1_MASK 0x000FFC00 +#define E1000_TIPG_IPGR2_MASK 0x3FF00000 + +#define DEFAULT_82542_TIPG_IPGR1 2 +#define DEFAULT_82543_TIPG_IPGR1 8 +#define E1000_TIPG_IPGR1_SHIFT 10 + +#define DEFAULT_82542_TIPG_IPGR2 10 +#define DEFAULT_82543_TIPG_IPGR2 6 +#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 +#define E1000_TIPG_IPGR2_SHIFT 20 + +/* Ethertype field values */ +#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ + +#define ETHERNET_FCS_SIZE 4 +#define MAX_JUMBO_FRAME_SIZE 0x3F00 + +/* Extended Configuration Control and Size */ +#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 +#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 +#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 +#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000 +#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16 +#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000 +#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16 + +#define E1000_PHY_CTRL_SPD_EN 0x00000001 +#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 +#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 +#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 +#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 + +#define E1000_KABGTXD_BGSQLBIAS 0x00050000 + +/* PBA constants */ +#define E1000_PBA_6K 0x0006 /* 6KB */ +#define E1000_PBA_8K 0x0008 /* 8KB */ +#define E1000_PBA_10K 0x000A /* 10KB */ +#define E1000_PBA_12K 0x000C /* 12KB */ +#define E1000_PBA_14K 0x000E /* 14KB */ +#define E1000_PBA_16K 0x0010 /* 16KB */ +#define E1000_PBA_18K 0x0012 +#define E1000_PBA_20K 0x0014 +#define E1000_PBA_22K 0x0016 +#define E1000_PBA_24K 0x0018 +#define E1000_PBA_26K 0x001A +#define E1000_PBA_30K 0x001E +#define E1000_PBA_32K 0x0020 +#define E1000_PBA_34K 0x0022 +#define E1000_PBA_35K 0x0023 +#define E1000_PBA_38K 0x0026 +#define E1000_PBA_40K 0x0028 +#define E1000_PBA_48K 0x0030 /* 48KB */ +#define E1000_PBA_64K 0x0040 /* 64KB */ + +#define E1000_PBS_16K E1000_PBA_16K +#define E1000_PBS_24K E1000_PBA_24K + +#define IFS_MAX 80 +#define IFS_MIN 40 +#define IFS_RATIO 4 +#define IFS_STEP 10 +#define MIN_NUM_XMITS 1000 + +/* SW Semaphore Register */ +#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ +#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ +#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */ +#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ + +#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */ + +/* Interrupt Cause Read */ +#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ +#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ +#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ +#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ +#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ +#define E1000_ICR_RXO 0x00000040 /* rx overrun */ +#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ +#define E1000_ICR_VMMB 0x00000100 /* VM MB event */ +#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ +#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */ +#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ +#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ +#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ +#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ +#define E1000_ICR_TXD_LOW 0x00008000 +#define E1000_ICR_SRPD 0x00010000 +#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */ +#define E1000_ICR_MNG 0x00040000 /* Manageability event */ +#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */ +#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver + * should claim the interrupt */ +#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* Q0 Rx desc FIFO parity error */ +#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* Q0 Tx desc FIFO parity error */ +#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity err */ +#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */ +#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* Q1 Rx desc FIFO parity error */ +#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* Q1 Tx desc FIFO parity error */ +#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ +#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW + * bit in the FWSM */ +#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates + * an interrupt */ +#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */ +#define E1000_ICR_EPRST 0x00100000 /* ME hardware reset occurs */ + + +/* + * This defines the bits that are set in the Interrupt Mask + * Set/Read Register. Each bit is documented below: + * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + * o RXSEQ = Receive Sequence Error + */ +#define POLL_IMS_ENABLE_MASK ( \ + E1000_IMS_RXDMT0 | \ + E1000_IMS_RXSEQ) + +/* + * This defines the bits that are set in the Interrupt Mask + * Set/Read Register. Each bit is documented below: + * o RXT0 = Receiver Timer Interrupt (ring 0) + * o TXDW = Transmit Descriptor Written Back + * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + * o RXSEQ = Receive Sequence Error + * o LSC = Link Status Change + */ +#define IMS_ENABLE_MASK ( \ + E1000_IMS_RXT0 | \ + E1000_IMS_TXDW | \ + E1000_IMS_RXDMT0 | \ + E1000_IMS_RXSEQ | \ + E1000_IMS_LSC) + +/* Interrupt Mask Set */ +#define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */ +#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */ +#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */ +#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMS_SRPD E1000_ICR_SRPD +#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */ +#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */ +#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */ +#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* Q0 Rx desc FIFO + * parity error */ +#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* Q0 Tx desc FIFO + * parity error */ +#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer + * parity error */ +#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity + * error */ +#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* Q1 Rx desc FIFO + * parity error */ +#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* Q1 Tx desc FIFO + * parity error */ +#define E1000_IMS_DSW E1000_ICR_DSW +#define E1000_IMS_PHYINT E1000_ICR_PHYINT +#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ +#define E1000_IMS_EPRST E1000_ICR_EPRST + +/* Interrupt Cause Set */ +#define E1000_ICS_TXDW E1000_ICR_TXDW /* Tx desc written back */ +#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */ +#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_ICS_SRPD E1000_ICR_SRPD +#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */ +#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */ +#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */ +#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* Q0 Rx desc FIFO + * parity error */ +#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* Q0 Tx desc FIFO + * parity error */ +#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer + * parity error */ +#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity + * error */ +#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* Q1 Rx desc FIFO + * parity error */ +#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* Q1 Tx desc FIFO + * parity error */ +#define E1000_ICS_DSW E1000_ICR_DSW +#define E1000_ICS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ +#define E1000_ICS_PHYINT E1000_ICR_PHYINT +#define E1000_ICS_EPRST E1000_ICR_EPRST + +/* Transmit Descriptor Control */ +#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ +#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ +#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ +#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ +#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ +#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ +#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */ +/* Enable the counting of descriptors still to be processed. */ +#define E1000_TXDCTL_COUNT_DESC 0x00400000 + +/* Flow Control Constants */ +#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 +#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 +#define FLOW_CONTROL_TYPE 0x8808 + +/* 802.1q VLAN Packet Size */ +#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */ +#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ + +/* Receive Address */ +/* + * Number of high/low register pairs in the RAR. The RAR (Receive Address + * Registers) holds the directed and multicast addresses that we monitor. + * Technically, we have 16 spots. However, we reserve one of these spots + * (RAR[15]) for our directed address used by controllers with + * manageability enabled, allowing us room for 15 multicast addresses. + */ +#define E1000_RAR_ENTRIES 15 +#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ +#define E1000_RAL_MAC_ADDR_LEN 4 +#define E1000_RAH_MAC_ADDR_LEN 2 +#define E1000_RAH_POOL_MASK 0x03FC0000 +#define E1000_RAH_POOL_1 0x00040000 + +/* Error Codes */ +#define E1000_SUCCESS 0 +#define E1000_ERR_NVM 1 +#define E1000_ERR_PHY 2 +#define E1000_ERR_CONFIG 3 +#define E1000_ERR_PARAM 4 +#define E1000_ERR_MAC_INIT 5 +#define E1000_ERR_PHY_TYPE 6 +#define E1000_ERR_RESET 9 +#define E1000_ERR_MASTER_REQUESTS_PENDING 10 +#define E1000_ERR_HOST_INTERFACE_COMMAND 11 +#define E1000_BLK_PHY_RESET 12 +#define E1000_ERR_SWFW_SYNC 13 +#define E1000_NOT_IMPLEMENTED 14 +#define E1000_ERR_MBX 15 + +/* Loop limit on how long we wait for auto-negotiation to complete */ +#define FIBER_LINK_UP_LIMIT 50 +#define COPPER_LINK_UP_LIMIT 10 +#define PHY_AUTO_NEG_LIMIT 45 +#define PHY_FORCE_LIMIT 20 +/* Number of 100 microseconds we wait for PCI Express master disable */ +#define MASTER_DISABLE_TIMEOUT 800 +/* Number of milliseconds we wait for PHY configuration done after MAC reset */ +#define PHY_CFG_TIMEOUT 100 +/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ +#define MDIO_OWNERSHIP_TIMEOUT 10 +/* Number of milliseconds for NVM auto read done after MAC reset. */ +#define AUTO_READ_DONE_TIMEOUT 10 + +/* Flow Control */ +#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ +#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ +#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ +#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ + +/* Transmit Configuration Word */ +#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ +#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ +#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ +#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ +#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ +#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ +#define E1000_TXCW_NP 0x00008000 /* TXCW next page */ +#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ +#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ +#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ + +/* Receive Configuration Word */ +#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ +#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ +#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ +#define E1000_RXCW_CC 0x10000000 /* Receive config change */ +#define E1000_RXCW_C 0x20000000 /* Receive config */ +#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ +#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ + + +/* PCI Express Control */ +#define E1000_GCR_RXD_NO_SNOOP 0x00000001 +#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 +#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 +#define E1000_GCR_TXD_NO_SNOOP 0x00000008 +#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 +#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 +#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000 +#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000 +#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000 +#define E1000_GCR_CAP_VER2 0x00040000 + +#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ + E1000_GCR_RXDSCW_NO_SNOOP | \ + E1000_GCR_RXDSCR_NO_SNOOP | \ + E1000_GCR_TXD_NO_SNOOP | \ + E1000_GCR_TXDSCW_NO_SNOOP | \ + E1000_GCR_TXDSCR_NO_SNOOP) + +/* PHY Control Register */ +#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ +#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ +#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ +#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ +#define MII_CR_POWER_DOWN 0x0800 /* Power down */ +#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ +#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ +#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ +#define MII_CR_SPEED_1000 0x0040 +#define MII_CR_SPEED_100 0x2000 +#define MII_CR_SPEED_10 0x0000 + +/* PHY Status Register */ +#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ +#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ +#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ +#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ +#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ +#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ +#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ +#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ +#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ +#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ +#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ +#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ +#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ +#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ +#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ + +/* Autoneg Advertisement Register */ +#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ +#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ +#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ +#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ +#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ +#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ +#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ +#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ +#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ +#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Link Partner Ability Register (Base Page) */ +#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ +#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ +#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ +#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ +#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ +#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ +#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ +#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ +#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ +#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ +#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Autoneg Expansion Register */ +#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ +#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ +#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ +#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ +#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */ + +/* 1000BASE-T Control Register */ +#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ +#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ +#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ +#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ + /* 0=DTE device */ +#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ + /* 0=Configure PHY as Slave */ +#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ + /* 0=Automatic Master/Slave config */ +#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ +#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ +#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ +#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ +#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ + +/* 1000BASE-T Status Register */ +#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ +#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ +#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ +#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ +#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ +#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ +#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx is Master, 0=Slave */ +#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ + +#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 + +/* PHY 1000 MII Register/Bit Definitions */ +/* PHY Registers defined by IEEE */ +#define PHY_CONTROL 0x00 /* Control Register */ +#define PHY_STATUS 0x01 /* Status Register */ +#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ +#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ +#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ +#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ +#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ +#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */ +#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ +#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ +#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ +#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ + +#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */ + +/* NVM Control */ +#define E1000_EECD_SK 0x00000001 /* NVM Clock */ +#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ +#define E1000_EECD_DI 0x00000004 /* NVM Data In */ +#define E1000_EECD_DO 0x00000008 /* NVM Data Out */ +#define E1000_EECD_FWE_MASK 0x00000030 +#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ +#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ +#define E1000_EECD_FWE_SHIFT 4 +#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ +#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ +#define E1000_EECD_PRES 0x00000100 /* NVM Present */ +#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */ +/* NVM Addressing bits based on type 0=small, 1=large */ +#define E1000_EECD_ADDR_BITS 0x00000400 +#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */ +#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ +#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ +#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ +#define E1000_EECD_SIZE_EX_SHIFT 11 +#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */ +#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */ +#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */ +#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ +#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ +#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */ +#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ +#define E1000_EECD_SECVAL_SHIFT 22 +#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES) + +#define E1000_NVM_SWDPIN0 0x0001 /* SWDPIN 0 NVM Value */ +#define E1000_NVM_LED_LOGIC 0x0020 /* Led Logic Word */ +#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */ +#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ +#define E1000_NVM_RW_REG_START 1 /* Start operation */ +#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ +#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */ +#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ +#define E1000_FLASH_UPDATES 2000 + +/* NVM Word Offsets */ +#define NVM_COMPAT 0x0003 +#define NVM_ID_LED_SETTINGS 0x0004 +#define NVM_VERSION 0x0005 +#define NVM_SERDES_AMPLITUDE 0x0006 /* SERDES output amplitude */ +#define NVM_PHY_CLASS_WORD 0x0007 +#define NVM_INIT_CONTROL1_REG 0x000A +#define NVM_INIT_CONTROL2_REG 0x000F +#define NVM_SWDEF_PINS_CTRL_PORT_1 0x0010 +#define NVM_INIT_CONTROL3_PORT_B 0x0014 +#define NVM_INIT_3GIO_3 0x001A +#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020 +#define NVM_INIT_CONTROL3_PORT_A 0x0024 +#define NVM_CFG 0x0012 +#define NVM_FLASH_VERSION 0x0032 +#define NVM_ALT_MAC_ADDR_PTR 0x0037 +#define NVM_CHECKSUM_REG 0x003F + +#define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */ +#define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */ + +/* Mask bits for fields in Word 0x0f of the NVM */ +#define NVM_WORD0F_PAUSE_MASK 0x3000 +#define NVM_WORD0F_PAUSE 0x1000 +#define NVM_WORD0F_ASM_DIR 0x2000 +#define NVM_WORD0F_ANE 0x0800 +#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0 +#define NVM_WORD0F_LPLU 0x0001 + +/* Mask bits for fields in Word 0x1a of the NVM */ +#define NVM_WORD1A_ASPM_MASK 0x000C + +/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ +#define NVM_SUM 0xBABA + +#define NVM_MAC_ADDR_OFFSET 0 +#define NVM_PBA_OFFSET_0 8 +#define NVM_PBA_OFFSET_1 9 +#define NVM_RESERVED_WORD 0xFFFF +#define NVM_PHY_CLASS_A 0x8000 +#define NVM_SERDES_AMPLITUDE_MASK 0x000F +#define NVM_SIZE_MASK 0x1C00 +#define NVM_SIZE_SHIFT 10 +#define NVM_WORD_SIZE_BASE_SHIFT 6 +#define NVM_SWDPIO_EXT_SHIFT 4 + +/* NVM Commands - Microwire */ +#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */ +#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */ +#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */ +#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */ +#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */ + +/* NVM Commands - SPI */ +#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ +#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ +#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ +#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ +#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ +#define NVM_WRDI_OPCODE_SPI 0x04 /* NVM reset Write Enable latch */ +#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ +#define NVM_WRSR_OPCODE_SPI 0x01 /* NVM write Status register */ + +/* SPI NVM Status Register */ +#define NVM_STATUS_RDY_SPI 0x01 +#define NVM_STATUS_WEN_SPI 0x02 +#define NVM_STATUS_BP0_SPI 0x04 +#define NVM_STATUS_BP1_SPI 0x08 +#define NVM_STATUS_WPEN_SPI 0x80 + +/* Word definitions for ID LED Settings */ +#define ID_LED_RESERVED_0000 0x0000 +#define ID_LED_RESERVED_FFFF 0xFFFF +#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ + (ID_LED_OFF1_OFF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) +#define ID_LED_DEF1_DEF2 0x1 +#define ID_LED_DEF1_ON2 0x2 +#define ID_LED_DEF1_OFF2 0x3 +#define ID_LED_ON1_DEF2 0x4 +#define ID_LED_ON1_ON2 0x5 +#define ID_LED_ON1_OFF2 0x6 +#define ID_LED_OFF1_DEF2 0x7 +#define ID_LED_OFF1_ON2 0x8 +#define ID_LED_OFF1_OFF2 0x9 + +#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF +#define IGP_ACTIVITY_LED_ENABLE 0x0300 +#define IGP_LED3_MODE 0x07000000 + +/* PCI/PCI-X/PCI-EX Config space */ +#define PCIX_COMMAND_REGISTER 0xE6 +#define PCIX_STATUS_REGISTER_LO 0xE8 +#define PCIX_STATUS_REGISTER_HI 0xEA +#define PCI_HEADER_TYPE_REGISTER 0x0E +#define PCIE_LINK_STATUS 0x12 +#define PCIE_DEVICE_CONTROL2 0x28 + +#define PCIX_COMMAND_MMRBC_MASK 0x000C +#define PCIX_COMMAND_MMRBC_SHIFT 0x2 +#define PCIX_STATUS_HI_MMRBC_MASK 0x0060 +#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5 +#define PCIX_STATUS_HI_MMRBC_4K 0x3 +#define PCIX_STATUS_HI_MMRBC_2K 0x2 +#define PCIX_STATUS_LO_FUNC_MASK 0x7 +#define PCI_HEADER_TYPE_MULTIFUNC 0x80 +#define PCIE_LINK_WIDTH_MASK 0x3F0 +#define PCIE_LINK_WIDTH_SHIFT 4 +#define PCIE_DEVICE_CONTROL2_16ms 0x0005 + +#ifndef ETH_ADDR_LEN +#define ETH_ADDR_LEN 6 +#endif + +#define PHY_REVISION_MASK 0xFFFFFFF0 +#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ +#define MAX_PHY_MULTI_PAGE_REG 0xF + +/* Bit definitions for valid PHY IDs. */ +/* + * I = Integrated + * E = External + */ +#define M88E1000_E_PHY_ID 0x01410C50 +#define M88E1000_I_PHY_ID 0x01410C30 +#define M88E1011_I_PHY_ID 0x01410C20 +#define IGP01E1000_I_PHY_ID 0x02A80380 +#define M88E1011_I_REV_4 0x04 +#define M88E1111_I_PHY_ID 0x01410CC0 +#define GG82563_E_PHY_ID 0x01410CA0 +#define IGP03E1000_E_PHY_ID 0x02A80390 +#define IFE_E_PHY_ID 0x02A80330 +#define IFE_PLUS_E_PHY_ID 0x02A80320 +#define IFE_C_E_PHY_ID 0x02A80310 +#define M88_VENDOR 0x0141 + +/* M88E1000 Specific Registers */ +#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ +#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ +#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ +#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ +#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ +#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ + +#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ +#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ +#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ +#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ +#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ + +/* M88E1000 PHY Specific Control Register */ +#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ +#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */ +#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ +/* 1=CLK125 low, 0=CLK125 toggling */ +#define M88E1000_PSCR_CLK125_DISABLE 0x0010 +#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ + /* Manual MDI configuration */ +#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ +/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */ +#define M88E1000_PSCR_AUTO_X_1000T 0x0040 +/* Auto crossover enabled all speeds */ +#define M88E1000_PSCR_AUTO_X_MODE 0x0060 +/* + * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold + * 0=Normal 10BASE-T Rx Threshold + */ +#define M88E1000_PSCR_EN_10BT_EXT_DIST 0x0080 +/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */ +#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100 +#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ +#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ +#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */ + +/* M88E1000 PHY Specific Status Register */ +#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ +#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ +#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ +#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ +/* + * 0 = <50M + * 1 = 50-80M + * 2 = 80-110M + * 3 = 110-140M + * 4 = >140M + */ +#define M88E1000_PSSR_CABLE_LENGTH 0x0380 +#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ +#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ +#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ +#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ +#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ +#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ +#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ +#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ + +#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 + +/* M88E1000 Extended PHY Specific Control Register */ +#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ +/* + * 1 = Lost lock detect enabled. + * Will assert lost lock and bring + * link down if idle not seen + * within 1ms in 1000BASE-T + */ +#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 +/* + * Number of times we will attempt to autonegotiate before downshifting if we + * are the master + */ +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00 +/* + * Number of times we will attempt to autonegotiate before downshifting if we + * are the slave + */ +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300 +#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ + +/* M88EC018 Rev 2 specific DownShift settings */ +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00 + +/* + * Bits... + * 15-5: page + * 4-0: register offset + */ +#define GG82563_PAGE_SHIFT 5 +#define GG82563_REG(page, reg) \ + (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) +#define GG82563_MIN_ALT_REG 30 + +/* GG82563 Specific Registers */ +#define GG82563_PHY_SPEC_CTRL \ + GG82563_REG(0, 16) /* PHY Specific Control */ +#define GG82563_PHY_SPEC_STATUS \ + GG82563_REG(0, 17) /* PHY Specific Status */ +#define GG82563_PHY_INT_ENABLE \ + GG82563_REG(0, 18) /* Interrupt Enable */ +#define GG82563_PHY_SPEC_STATUS_2 \ + GG82563_REG(0, 19) /* PHY Specific Status 2 */ +#define GG82563_PHY_RX_ERR_CNTR \ + GG82563_REG(0, 21) /* Receive Error Counter */ +#define GG82563_PHY_PAGE_SELECT \ + GG82563_REG(0, 22) /* Page Select */ +#define GG82563_PHY_SPEC_CTRL_2 \ + GG82563_REG(0, 26) /* PHY Specific Control 2 */ +#define GG82563_PHY_PAGE_SELECT_ALT \ + GG82563_REG(0, 29) /* Alternate Page Select */ +#define GG82563_PHY_TEST_CLK_CTRL \ + GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */ + +#define GG82563_PHY_MAC_SPEC_CTRL \ + GG82563_REG(2, 21) /* MAC Specific Control Register */ +#define GG82563_PHY_MAC_SPEC_CTRL_2 \ + GG82563_REG(2, 26) /* MAC Specific Control 2 */ + +#define GG82563_PHY_DSP_DISTANCE \ + GG82563_REG(5, 26) /* DSP Distance */ + +/* Page 193 - Port Control Registers */ +#define GG82563_PHY_KMRN_MODE_CTRL \ + GG82563_REG(193, 16) /* Kumeran Mode Control */ +#define GG82563_PHY_PORT_RESET \ + GG82563_REG(193, 17) /* Port Reset */ +#define GG82563_PHY_REVISION_ID \ + GG82563_REG(193, 18) /* Revision ID */ +#define GG82563_PHY_DEVICE_ID \ + GG82563_REG(193, 19) /* Device ID */ +#define GG82563_PHY_PWR_MGMT_CTRL \ + GG82563_REG(193, 20) /* Power Management Control */ +#define GG82563_PHY_RATE_ADAPT_CTRL \ + GG82563_REG(193, 25) /* Rate Adaptation Control */ + +/* Page 194 - KMRN Registers */ +#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \ + GG82563_REG(194, 16) /* FIFO's Control/Status */ +#define GG82563_PHY_KMRN_CTRL \ + GG82563_REG(194, 17) /* Control */ +#define GG82563_PHY_INBAND_CTRL \ + GG82563_REG(194, 18) /* Inband Control */ +#define GG82563_PHY_KMRN_DIAGNOSTIC \ + GG82563_REG(194, 19) /* Diagnostic */ +#define GG82563_PHY_ACK_TIMEOUTS \ + GG82563_REG(194, 20) /* Acknowledge Timeouts */ +#define GG82563_PHY_ADV_ABILITY \ + GG82563_REG(194, 21) /* Advertised Ability */ +#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \ + GG82563_REG(194, 23) /* Link Partner Advertised Ability */ +#define GG82563_PHY_ADV_NEXT_PAGE \ + GG82563_REG(194, 24) /* Advertised Next Page */ +#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \ + GG82563_REG(194, 25) /* Link Partner Advertised Next page */ +#define GG82563_PHY_KMRN_MISC \ + GG82563_REG(194, 26) /* Misc. */ + +/* MDI Control */ +#define E1000_MDIC_DATA_MASK 0x0000FFFF +#define E1000_MDIC_REG_MASK 0x001F0000 +#define E1000_MDIC_REG_SHIFT 16 +#define E1000_MDIC_PHY_MASK 0x03E00000 +#define E1000_MDIC_PHY_SHIFT 21 +#define E1000_MDIC_OP_WRITE 0x04000000 +#define E1000_MDIC_OP_READ 0x08000000 +#define E1000_MDIC_READY 0x10000000 +#define E1000_MDIC_INT_EN 0x20000000 +#define E1000_MDIC_ERROR 0x40000000 + +/* SerDes Control */ +#define E1000_GEN_CTL_READY 0x80000000 +#define E1000_GEN_CTL_ADDRESS_SHIFT 8 +#define E1000_GEN_POLL_TIMEOUT 640 + + + +#endif /* _E1000_DEFINES_H_ */ diff --git a/src/drivers/net/e1000/e1000_hw.c b/src/drivers/net/e1000/e1000_hw.c deleted file mode 100644 index 1871dfc90..000000000 --- a/src/drivers/net/e1000/e1000_hw.c +++ /dev/null @@ -1,9174 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2006 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -FILE_LICENCE ( GPL2_ONLY ); - -/* e1000_hw.c - * Shared functions for accessing and configuring the MAC - */ - - -#include "e1000_hw.h" - -static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); -static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask); -static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data); -static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); -static int32_t e1000_get_software_semaphore(struct e1000_hw *hw); -static void e1000_release_software_semaphore(struct e1000_hw *hw); - -static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw); -static int32_t e1000_check_downshift(struct e1000_hw *hw); -static int32_t e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity); -static void e1000_clear_hw_cntrs(struct e1000_hw *hw); -static void e1000_clear_vfta(struct e1000_hw *hw); -static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw); -static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up); -static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw); -static int32_t e1000_detect_gig_phy(struct e1000_hw *hw); -static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank); -static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw); -static int32_t e1000_get_cable_length(struct e1000_hw *hw, uint16_t *min_length, uint16_t *max_length); -static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw); -static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw); -static int32_t e1000_get_software_flag(struct e1000_hw *hw); -static int32_t e1000_ich8_cycle_init(struct e1000_hw *hw); -static int32_t e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout); -static int32_t e1000_id_led_init(struct e1000_hw *hw); -static int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size); -static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw); -static void e1000_init_rx_addrs(struct e1000_hw *hw); -static void e1000_initialize_hardware_bits(struct e1000_hw *hw); -static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw); -static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw); -static int32_t e1000_mng_enable_host_if(struct e1000_hw *hw); -static int32_t e1000_mng_host_if_write(struct e1000_hw *hw, uint8_t *buffer, uint16_t length, uint16_t offset, uint8_t *sum); -static int32_t e1000_mng_write_cmd_header(struct e1000_hw* hw, struct e1000_host_mng_command_header* hdr); -static int32_t e1000_mng_write_commit(struct e1000_hw *hw); -static int32_t e1000_phy_ife_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); -static int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); -static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); -static int32_t e1000_write_eeprom_eewr(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); -static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd); -static int32_t e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); -static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); -static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t *data); -static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte); -static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte); -static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data); -static int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t *data); -static int32_t e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t data); -static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); -static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); -static void e1000_release_software_flag(struct e1000_hw *hw); -static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); -static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active); -static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop); -static void e1000_set_pci_express_master_disable(struct e1000_hw *hw); -static int32_t e1000_wait_autoneg(struct e1000_hw *hw); -static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value); -static int32_t e1000_set_phy_type(struct e1000_hw *hw); -static void e1000_phy_init_script(struct e1000_hw *hw); -static int32_t e1000_setup_copper_link(struct e1000_hw *hw); -static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw); -static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw); -static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw); -static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw); -static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); -static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); -static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, - uint16_t count); -static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw); -static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw); -static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset, - uint16_t words, uint16_t *data); -static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw, - uint16_t offset, uint16_t words, - uint16_t *data); -static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw); -static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd); -static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd); -static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, - uint16_t count); -static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, - uint16_t phy_data); -static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr, - uint16_t *phy_data); -static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count); -static int32_t e1000_acquire_eeprom(struct e1000_hw *hw); -static void e1000_release_eeprom(struct e1000_hw *hw); -static void e1000_standby_eeprom(struct e1000_hw *hw); -static int32_t e1000_set_vco_speed(struct e1000_hw *hw); -static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw); -static int32_t e1000_set_phy_mode(struct e1000_hw *hw); -static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer); -static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length); -static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, - uint16_t duplex); -static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw); - -/* IGP cable length table */ -static const -uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = - { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, - 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, - 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, - 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, - 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, - 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, - 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, - 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; - -static const -uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = - { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, - 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, - 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, - 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, - 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, - 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, - 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, - 104, 109, 114, 118, 121, 124}; - -/****************************************************************************** - * Set the phy type member in the hw struct. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static int32_t -e1000_set_phy_type(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_set_phy_type"); - - if (hw->mac_type == e1000_undefined) - return -E1000_ERR_PHY_TYPE; - - switch (hw->phy_id) { - case M88E1000_E_PHY_ID: - case M88E1000_I_PHY_ID: - case M88E1011_I_PHY_ID: - case M88E1111_I_PHY_ID: - hw->phy_type = e1000_phy_m88; - break; - case IGP01E1000_I_PHY_ID: - if (hw->mac_type == e1000_82541 || - hw->mac_type == e1000_82541_rev_2 || - hw->mac_type == e1000_82547 || - hw->mac_type == e1000_82547_rev_2) { - hw->phy_type = e1000_phy_igp; - break; - } - case IGP03E1000_E_PHY_ID: - hw->phy_type = e1000_phy_igp_3; - break; - case IFE_E_PHY_ID: - case IFE_PLUS_E_PHY_ID: - case IFE_C_E_PHY_ID: - hw->phy_type = e1000_phy_ife; - break; - case GG82563_E_PHY_ID: - if (hw->mac_type == e1000_80003es2lan) { - hw->phy_type = e1000_phy_gg82563; - break; - } - /* Fall Through */ - default: - /* Should never have loaded on this device */ - hw->phy_type = e1000_phy_undefined; - return -E1000_ERR_PHY_TYPE; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * IGP phy init script - initializes the GbE PHY - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void -e1000_phy_init_script(struct e1000_hw *hw) -{ - uint32_t ret_val; - uint16_t phy_saved_data; - - DEBUGFUNC("e1000_phy_init_script"); - - if (hw->phy_init_script) { - msleep(20); - - /* Save off the current value of register 0x2F5B to be restored at - * the end of this routine. */ - ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - - /* Disabled the PHY transmitter */ - e1000_write_phy_reg(hw, 0x2F5B, 0x0003); - - msleep(20); - - e1000_write_phy_reg(hw,0x0000,0x0140); - - msleep(5); - - switch (hw->mac_type) { - case e1000_82541: - case e1000_82547: - e1000_write_phy_reg(hw, 0x1F95, 0x0001); - - e1000_write_phy_reg(hw, 0x1F71, 0xBD21); - - e1000_write_phy_reg(hw, 0x1F79, 0x0018); - - e1000_write_phy_reg(hw, 0x1F30, 0x1600); - - e1000_write_phy_reg(hw, 0x1F31, 0x0014); - - e1000_write_phy_reg(hw, 0x1F32, 0x161C); - - e1000_write_phy_reg(hw, 0x1F94, 0x0003); - - e1000_write_phy_reg(hw, 0x1F96, 0x003F); - - e1000_write_phy_reg(hw, 0x2010, 0x0008); - break; - - case e1000_82541_rev_2: - case e1000_82547_rev_2: - e1000_write_phy_reg(hw, 0x1F73, 0x0099); - break; - default: - break; - } - - e1000_write_phy_reg(hw, 0x0000, 0x3300); - - msleep(20); - - /* Now enable the transmitter */ - e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); - - if (hw->mac_type == e1000_82547) { - uint16_t fused, fine, coarse; - - /* Move to analog registers page */ - e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); - - if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { - e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); - - fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; - coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; - - if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { - coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; - fine -= IGP01E1000_ANALOG_FUSE_FINE_1; - } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) - fine -= IGP01E1000_ANALOG_FUSE_FINE_10; - - fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | - (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | - (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); - - e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); - e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, - IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); - } - } - } -} - -/****************************************************************************** - * Set the mac type member in the hw struct. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -int32_t -e1000_set_mac_type(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_set_mac_type"); - - switch (hw->device_id) { - case E1000_DEV_ID_82542: - switch (hw->revision_id) { - case E1000_82542_2_0_REV_ID: - hw->mac_type = e1000_82542_rev2_0; - break; - case E1000_82542_2_1_REV_ID: - hw->mac_type = e1000_82542_rev2_1; - break; - default: - /* Invalid 82542 revision ID */ - return -E1000_ERR_MAC_TYPE; - } - break; - case E1000_DEV_ID_82543GC_FIBER: - case E1000_DEV_ID_82543GC_COPPER: - hw->mac_type = e1000_82543; - break; - case E1000_DEV_ID_82544EI_COPPER: - case E1000_DEV_ID_82544EI_FIBER: - case E1000_DEV_ID_82544GC_COPPER: - case E1000_DEV_ID_82544GC_LOM: - hw->mac_type = e1000_82544; - break; - case E1000_DEV_ID_82540EM: - case E1000_DEV_ID_82540EM_LOM: - case E1000_DEV_ID_82540EP: - case E1000_DEV_ID_82540EP_LOM: - case E1000_DEV_ID_82540EP_LP: - hw->mac_type = e1000_82540; - break; - case E1000_DEV_ID_82545EM_COPPER: - case E1000_DEV_ID_82545EM_FIBER: - hw->mac_type = e1000_82545; - break; - case E1000_DEV_ID_82545GM_COPPER: - case E1000_DEV_ID_82545GM_FIBER: - case E1000_DEV_ID_82545GM_SERDES: - hw->mac_type = e1000_82545_rev_3; - break; - case E1000_DEV_ID_82546EB_COPPER: - case E1000_DEV_ID_82546EB_FIBER: - case E1000_DEV_ID_82546EB_QUAD_COPPER: - hw->mac_type = e1000_82546; - break; - case E1000_DEV_ID_82546GB_COPPER: - case E1000_DEV_ID_82546GB_FIBER: - case E1000_DEV_ID_82546GB_SERDES: - case E1000_DEV_ID_82546GB_PCIE: - case E1000_DEV_ID_82546GB_QUAD_COPPER: - case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: - hw->mac_type = e1000_82546_rev_3; - break; - case E1000_DEV_ID_82541EI: - case E1000_DEV_ID_82541EI_MOBILE: - case E1000_DEV_ID_82541ER_LOM: - hw->mac_type = e1000_82541; - break; - case E1000_DEV_ID_82541ER: - case E1000_DEV_ID_82541GI: - case E1000_DEV_ID_82541GI_LF: - case E1000_DEV_ID_82541GI_MOBILE: - hw->mac_type = e1000_82541_rev_2; - break; - case E1000_DEV_ID_82547EI: - case E1000_DEV_ID_82547EI_MOBILE: - hw->mac_type = e1000_82547; - break; - case E1000_DEV_ID_82547GI: - hw->mac_type = e1000_82547_rev_2; - break; - case E1000_DEV_ID_82571EB_COPPER: - case E1000_DEV_ID_82571EB_FIBER: - case E1000_DEV_ID_82571EB_SERDES: - case E1000_DEV_ID_82571EB_SERDES_DUAL: - case E1000_DEV_ID_82571EB_SERDES_QUAD: - case E1000_DEV_ID_82571EB_QUAD_COPPER: - case E1000_DEV_ID_82571EB_QUAD_FIBER: - case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: - hw->mac_type = e1000_82571; - break; - case E1000_DEV_ID_82572EI_COPPER: - case E1000_DEV_ID_82572EI_FIBER: - case E1000_DEV_ID_82572EI_SERDES: - case E1000_DEV_ID_82572EI: - hw->mac_type = e1000_82572; - break; - case E1000_DEV_ID_82573E: - case E1000_DEV_ID_82573E_IAMT: - case E1000_DEV_ID_82573L: - hw->mac_type = e1000_82573; - break; - case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: - case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: - case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: - case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: - hw->mac_type = e1000_80003es2lan; - break; - case E1000_DEV_ID_ICH8_IGP_M_AMT: - case E1000_DEV_ID_ICH8_IGP_AMT: - case E1000_DEV_ID_ICH8_IGP_C: - case E1000_DEV_ID_ICH8_IFE: - case E1000_DEV_ID_ICH8_IFE_GT: - case E1000_DEV_ID_ICH8_IFE_G: - case E1000_DEV_ID_ICH8_IGP_M: - hw->mac_type = e1000_ich8lan; - break; - case E1000_DEV_ID_82576: - hw->mac_type = e1000_82576; - break; - default: - /* Should never have loaded on this device */ - return -E1000_ERR_MAC_TYPE; - } - - switch (hw->mac_type) { - case e1000_ich8lan: - case e1000_82576: - hw->swfwhw_semaphore_present = TRUE; - hw->asf_firmware_present = TRUE; - break; - case e1000_80003es2lan: - hw->swfw_sync_present = TRUE; - /* fall through */ - case e1000_82571: - case e1000_82572: - case e1000_82573: - hw->eeprom_semaphore_present = TRUE; - /* fall through */ - case e1000_82541: - case e1000_82547: - case e1000_82541_rev_2: - case e1000_82547_rev_2: - hw->asf_firmware_present = TRUE; - break; - default: - break; - } - - /* The 82543 chip does not count tx_carrier_errors properly in - * FD mode - */ - if (hw->mac_type == e1000_82543) - hw->bad_tx_carr_stats_fd = TRUE; - - /* capable of receiving management packets to the host */ - if (hw->mac_type >= e1000_82571) - hw->has_manc2h = TRUE; - - /* In rare occasions, ESB2 systems would end up started without - * the RX unit being turned on. - */ - if (hw->mac_type == e1000_80003es2lan) - hw->rx_needs_kicking = TRUE; - - if (hw->mac_type > e1000_82544) - hw->has_smbus = TRUE; - - return E1000_SUCCESS; -} - -/***************************************************************************** - * Set media type and TBI compatibility. - * - * hw - Struct containing variables accessed by shared code - * **************************************************************************/ -void -e1000_set_media_type(struct e1000_hw *hw) -{ - uint32_t status; - - DEBUGFUNC("e1000_set_media_type"); - - if (hw->mac_type != e1000_82543) { - /* tbi_compatibility is only valid on 82543 */ - hw->tbi_compatibility_en = FALSE; - } - - switch (hw->device_id) { - case E1000_DEV_ID_82545GM_SERDES: - case E1000_DEV_ID_82546GB_SERDES: - case E1000_DEV_ID_82571EB_SERDES: - case E1000_DEV_ID_82571EB_SERDES_DUAL: - case E1000_DEV_ID_82571EB_SERDES_QUAD: - case E1000_DEV_ID_82572EI_SERDES: - case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: - hw->media_type = e1000_media_type_internal_serdes; - break; - default: - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - hw->media_type = e1000_media_type_fiber; - break; - case e1000_ich8lan: - case e1000_82573: - case e1000_82576: - /* The STATUS_TBIMODE bit is reserved or reused for the this - * device. - */ - hw->media_type = e1000_media_type_copper; - break; - default: - status = E1000_READ_REG(hw, STATUS); - if (status & E1000_STATUS_TBIMODE) { - hw->media_type = e1000_media_type_fiber; - /* tbi_compatibility not valid on fiber */ - hw->tbi_compatibility_en = FALSE; - } else { - hw->media_type = e1000_media_type_copper; - } - break; - } - } -} - -/****************************************************************************** - * Reset the transmit and receive units; mask and clear all interrupts. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -int32_t -e1000_reset_hw(struct e1000_hw *hw) -{ - uint32_t ctrl; - uint32_t ctrl_ext; - uint32_t icr; - uint32_t manc; - uint32_t led_ctrl; - uint32_t timeout; - uint32_t extcnf_ctrl; - int32_t ret_val; - - DEBUGFUNC("e1000_reset_hw"); - - /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ - if (hw->mac_type == e1000_82542_rev2_0) { - DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); - e1000_pci_clear_mwi(hw); - } - - if (hw->bus_type == e1000_bus_type_pci_express) { - /* Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) { - DEBUGOUT("PCI-E Master disable polling has failed.\n"); - } - } - - /* Clear interrupt mask to stop board from generating interrupts */ - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, IMC, 0xffffffff); - - /* Disable the Transmit and Receive units. Then delay to allow - * any pending transactions to complete before we hit the MAC with - * the global reset. - */ - E1000_WRITE_REG(hw, RCTL, 0); - E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ - hw->tbi_compatibility_on = FALSE; - - /* Delay to allow any outstanding PCI transactions to complete before - * resetting the device - */ - msleep(10); - - ctrl = E1000_READ_REG(hw, CTRL); - - /* Must reset the PHY before resetting the MAC */ - if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); - msleep(5); - } - - /* Must acquire the MDIO ownership before MAC reset. - * Ownership defaults to firmware after a reset. */ - if (hw->mac_type == e1000_82573) { - timeout = 10; - - extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); - extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; - - do { - E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); - extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); - - if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) - break; - else - extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; - - msleep(2); - timeout--; - } while (timeout); - } - - /* Workaround for ICH8 bit corruption issue in FIFO memory */ - if (hw->mac_type == e1000_ich8lan) { - /* Set Tx and Rx buffer allocation to 8k apiece. */ - E1000_WRITE_REG(hw, PBA, E1000_PBA_8K); - /* Set Packet Buffer Size to 16k. */ - E1000_WRITE_REG(hw, PBS, E1000_PBS_16K); - } - - /* Issue a global reset to the MAC. This will reset the chip's - * transmit, receive, DMA, and link units. It will not effect - * the current PCI configuration. The global reset bit is self- - * clearing, and should clear within a microsecond. - */ - DEBUGOUT("Issuing a global reset to MAC\n"); - - switch (hw->mac_type) { - case e1000_82544: - case e1000_82540: - case e1000_82545: - case e1000_82546: - case e1000_82541: - case e1000_82541_rev_2: - /* These controllers can't ack the 64-bit write when issuing the - * reset, so use IO-mapping as a workaround to issue the reset */ - E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); - break; - case e1000_82545_rev_3: - case e1000_82546_rev_3: - /* Reset is performed on a shadow of the control register */ - E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); - break; - case e1000_ich8lan: - if (!hw->phy_reset_disable && - e1000_check_phy_reset_block(hw) == E1000_SUCCESS) { - /* e1000_ich8lan PHY HW reset requires MAC CORE reset - * at the same time to make sure the interface between - * MAC and the external PHY is reset. - */ - ctrl |= E1000_CTRL_PHY_RST; - } - - e1000_get_software_flag(hw); - E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); - msleep(5); - break; - default: - E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); - break; - } - - /* After MAC reset, force reload of EEPROM to restore power-on settings to - * device. Later controllers reload the EEPROM automatically, so just wait - * for reload to complete. - */ - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - /* Wait for reset to complete */ - udelay(10); - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - /* Wait for EEPROM reload */ - msleep(2); - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - /* Wait for EEPROM reload */ - msleep(20); - break; - case e1000_82573: - if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) { - udelay(10); - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - } - /* fall through */ - default: - /* Auto read done will delay 5ms or poll based on mac type */ - ret_val = e1000_get_auto_rd_done(hw); - if (ret_val) - return ret_val; - break; - } - - /* Disable HW ARPs on ASF enabled adapters */ - if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { - manc = E1000_READ_REG(hw, MANC); - manc &= ~(E1000_MANC_ARP_EN); - E1000_WRITE_REG(hw, MANC, manc); - } - - if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - e1000_phy_init_script(hw); - - /* Configure activity LED after PHY reset */ - led_ctrl = E1000_READ_REG(hw, LEDCTL); - led_ctrl &= IGP_ACTIVITY_LED_MASK; - led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - E1000_WRITE_REG(hw, LEDCTL, led_ctrl); - } - - /* Clear interrupt mask to stop board from generating interrupts */ - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, IMC, 0xffffffff); - - /* Clear any pending interrupt events. */ - icr = E1000_READ_REG(hw, ICR); - - if (hw->mac_type == e1000_82571 && hw->laa_is_present == TRUE) { - /* - * Hold a copy of the LAA in RAR[14] This is done so that - * between the time RAR[0] gets clobbered and the time it - * gets fixed, the actual LAA is in one of the RARs and no - * incoming packets directed to this port are dropped. - * Eventually the LAA will be in RAR[0] and RAR[14]. - */ - e1000_rar_set(hw, hw->mac_addr, E1000_RAR_ENTRIES - 1); - } - - /* If MWI was previously enabled, reenable it. */ - if (hw->mac_type == e1000_82542_rev2_0) { - if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) - e1000_pci_set_mwi(hw); - } - - if (hw->mac_type == e1000_ich8lan) { - uint32_t kab = E1000_READ_REG(hw, KABGTXD); - kab |= E1000_KABGTXD_BGSQLBIAS; - E1000_WRITE_REG(hw, KABGTXD, kab); - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * - * Initialize a number of hardware-dependent bits - * - * hw: Struct containing variables accessed by shared code - * - * This function contains hardware limitation workarounds for PCI-E adapters - * - *****************************************************************************/ -static void -e1000_initialize_hardware_bits(struct e1000_hw *hw) -{ - if ((hw->mac_type >= e1000_82571 && hw->mac_type < e1000_82576) && - (!hw->initialize_hw_bits_disable)) { - /* Settings common to all PCI-express silicon */ - uint32_t reg_ctrl, reg_ctrl_ext; - uint32_t reg_tarc0, reg_tarc1; - uint32_t reg_tctl; - uint32_t reg_txdctl, reg_txdctl1; - - /* link autonegotiation/sync workarounds */ - reg_tarc0 = E1000_READ_REG(hw, TARC0); - reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27)); - - /* Enable not-done TX descriptor counting */ - reg_txdctl = E1000_READ_REG(hw, TXDCTL); - reg_txdctl |= E1000_TXDCTL_COUNT_DESC; - E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); - reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1); - reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; - E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1); - - switch (hw->mac_type) { - case e1000_82571: - case e1000_82572: - /* Clear PHY TX compatible mode bits */ - reg_tarc1 = E1000_READ_REG(hw, TARC1); - reg_tarc1 &= ~((1 << 30)|(1 << 29)); - - /* link autonegotiation/sync workarounds */ - reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23)); - - /* TX ring control fixes */ - reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24)); - - /* Multiple read bit is reversed polarity */ - reg_tctl = E1000_READ_REG(hw, TCTL); - if (reg_tctl & E1000_TCTL_MULR) - reg_tarc1 &= ~(1 << 28); - else - reg_tarc1 |= (1 << 28); - - E1000_WRITE_REG(hw, TARC1, reg_tarc1); - break; - case e1000_82573: - reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - reg_ctrl_ext &= ~(1 << 23); - reg_ctrl_ext |= (1 << 22); - - /* TX byte count fix */ - reg_ctrl = E1000_READ_REG(hw, CTRL); - reg_ctrl &= ~(1 << 29); - - E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); - E1000_WRITE_REG(hw, CTRL, reg_ctrl); - break; - case e1000_80003es2lan: - /* improve small packet performace for fiber/serdes */ - if ((hw->media_type == e1000_media_type_fiber) || - (hw->media_type == e1000_media_type_internal_serdes)) { - reg_tarc0 &= ~(1 << 20); - } - - /* Multiple read bit is reversed polarity */ - reg_tctl = E1000_READ_REG(hw, TCTL); - reg_tarc1 = E1000_READ_REG(hw, TARC1); - if (reg_tctl & E1000_TCTL_MULR) - reg_tarc1 &= ~(1 << 28); - else - reg_tarc1 |= (1 << 28); - - E1000_WRITE_REG(hw, TARC1, reg_tarc1); - break; - case e1000_ich8lan: - /* Reduce concurrent DMA requests to 3 from 4 */ - if ((hw->revision_id < 3) || - ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && - (hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) - reg_tarc0 |= ((1 << 29)|(1 << 28)); - - reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - reg_ctrl_ext |= (1 << 22); - E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); - - /* workaround TX hang with TSO=on */ - reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23)); - - /* Multiple read bit is reversed polarity */ - reg_tctl = E1000_READ_REG(hw, TCTL); - reg_tarc1 = E1000_READ_REG(hw, TARC1); - if (reg_tctl & E1000_TCTL_MULR) - reg_tarc1 &= ~(1 << 28); - else - reg_tarc1 |= (1 << 28); - - /* workaround TX hang with TSO=on */ - reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24)); - - E1000_WRITE_REG(hw, TARC1, reg_tarc1); - break; - default: - break; - } - - E1000_WRITE_REG(hw, TARC0, reg_tarc0); - } -} - -/****************************************************************************** - * Performs basic configuration of the adapter. - * - * hw - Struct containing variables accessed by shared code - * - * Assumes that the controller has previously been reset and is in a - * post-reset uninitialized state. Initializes the receive address registers, - * multicast table, and VLAN filter table. Calls routines to setup link - * configuration and flow control settings. Clears all on-chip counters. Leaves - * the transmit and receive units disabled and uninitialized. - *****************************************************************************/ -int32_t -e1000_init_hw(struct e1000_hw *hw) -{ - uint32_t ctrl; - uint32_t i; - int32_t ret_val; - uint16_t pcix_cmd_word; - uint16_t pcix_stat_hi_word; - uint16_t cmd_mmrbc; - uint16_t stat_mmrbc; - uint32_t mta_size; - uint32_t reg_data; - uint32_t ctrl_ext; - - DEBUGFUNC("e1000_init_hw"); - - /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */ - if ((hw->mac_type == e1000_ich8lan) && - ((hw->revision_id < 3) || - ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && - (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { - reg_data = E1000_READ_REG(hw, STATUS); - reg_data &= ~0x80000000; - E1000_WRITE_REG(hw, STATUS, reg_data); - } - - /* Initialize Identification LED */ - ret_val = e1000_id_led_init(hw); - if (ret_val) { - DEBUGOUT("Error Initializing Identification LED\n"); - return ret_val; - } - - /* Set the media type and TBI compatibility */ - e1000_set_media_type(hw); - - /* Must be called after e1000_set_media_type because media_type is used */ - e1000_initialize_hardware_bits(hw); - - /* Disabling VLAN filtering. */ - DEBUGOUT("Initializing the IEEE VLAN\n"); - switch (hw->mac_type) { - case e1000_ich8lan: - /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ - break; - case e1000_82576: - /* There is no need to clear vfta on 82576 if VLANs are not used. - * - IntelĀ® 82576 Gigabit Ethernet Controller Datasheet r2.41 - * Section 8.10.19 Table Array - VFTA - * - * Setting VET may also be unnecessary, however the documentation - * isn't specific on this point. The value used here is as advised in - * - IntelĀ® 82576 Gigabit Ethernet Controller Datasheet r2.41 - * Section 8.2.7 VLAN Ether Type - VET - */ - E1000_WRITE_REG(hw, VET, ETHERNET_IEEE_VLAN_TYPE); - break; - default: - if (hw->mac_type < e1000_82545_rev_3) - E1000_WRITE_REG(hw, VET, 0); - e1000_clear_vfta(hw); - break; - } - - /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ - if (hw->mac_type == e1000_82542_rev2_0) { - DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); - e1000_pci_clear_mwi(hw); - E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); - E1000_WRITE_FLUSH(hw); - msleep(5); - } - - /* Setup the receive address. This involves initializing all of the Receive - * Address Registers (RARs 0 - 15). - */ - e1000_init_rx_addrs(hw); - - /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ - if (hw->mac_type == e1000_82542_rev2_0) { - E1000_WRITE_REG(hw, RCTL, 0); - E1000_WRITE_FLUSH(hw); - msleep(1); - if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) - e1000_pci_set_mwi(hw); - } - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - mta_size = E1000_MC_TBL_SIZE; - if (hw->mac_type == e1000_ich8lan) - mta_size = E1000_MC_TBL_SIZE_ICH8LAN; - for (i = 0; i < mta_size; i++) { - E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); - /* use write flush to prevent Memory Write Block (MWB) from - * occuring when accessing our register space */ - E1000_WRITE_FLUSH(hw); - } - - /* Set the PCI priority bit correctly in the CTRL register. This - * determines if the adapter gives priority to receives, or if it - * gives equal priority to transmits and receives. Valid only on - * 82542 and 82543 silicon. - */ - if (hw->dma_fairness && hw->mac_type <= e1000_82543) { - ctrl = E1000_READ_REG(hw, CTRL); - E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); - } - - switch (hw->mac_type) { - case e1000_82545_rev_3: - case e1000_82546_rev_3: - break; - default: - /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ - if (hw->bus_type == e1000_bus_type_pcix) { - e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); - e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, - &pcix_stat_hi_word); - cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> - PCIX_COMMAND_MMRBC_SHIFT; - stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> - PCIX_STATUS_HI_MMRBC_SHIFT; - if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) - stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; - if (cmd_mmrbc > stat_mmrbc) { - pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; - pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; - e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, - &pcix_cmd_word); - } - } - break; - } - - /* More time needed for PHY to initialize */ - if (hw->mac_type == e1000_ich8lan) - msleep(15); - - /* Call a subroutine to configure the link and setup flow control. */ - ret_val = e1000_setup_link(hw); - - /* Set the transmit descriptor write-back policy */ - if (hw->mac_type > e1000_82544) { - ctrl = E1000_READ_REG(hw, TXDCTL); - ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; - E1000_WRITE_REG(hw, TXDCTL, ctrl); - } - - if (hw->mac_type == e1000_82573) { - e1000_enable_tx_pkt_filtering(hw); - } - - switch (hw->mac_type) { - default: - break; - case e1000_80003es2lan: - /* Enable retransmit on late collisions */ - reg_data = E1000_READ_REG(hw, TCTL); - reg_data |= E1000_TCTL_RTLC; - E1000_WRITE_REG(hw, TCTL, reg_data); - - /* Configure Gigabit Carry Extend Padding */ - reg_data = E1000_READ_REG(hw, TCTL_EXT); - reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; - reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; - E1000_WRITE_REG(hw, TCTL_EXT, reg_data); - - /* Configure Transmit Inter-Packet Gap */ - reg_data = E1000_READ_REG(hw, TIPG); - reg_data &= ~E1000_TIPG_IPGT_MASK; - reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; - E1000_WRITE_REG(hw, TIPG, reg_data); - - reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); - reg_data &= ~0x00100000; - E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); - /* Fall through */ - case e1000_82571: - case e1000_82572: - case e1000_ich8lan: - ctrl = E1000_READ_REG(hw, TXDCTL1); - ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; - E1000_WRITE_REG(hw, TXDCTL1, ctrl); - break; - } - - - if (hw->mac_type == e1000_82573) { - uint32_t gcr = E1000_READ_REG(hw, GCR); - gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; - E1000_WRITE_REG(hw, GCR, gcr); - } - - /* Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs(hw); - - /* ICH8 No-snoop bits are opposite polarity. - * Set to snoop by default after reset. */ - if (hw->mac_type == e1000_ich8lan) - e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); - - if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || - hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - /* Relaxed ordering must be disabled to avoid a parity - * error crash in a PCI slot. */ - ctrl_ext |= E1000_CTRL_EXT_RO_DIS; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - } - - return ret_val; -} - -/****************************************************************************** - * Adjust SERDES output amplitude based on EEPROM setting. - * - * hw - Struct containing variables accessed by shared code. - *****************************************************************************/ -static int32_t -e1000_adjust_serdes_amplitude(struct e1000_hw *hw) -{ - uint16_t eeprom_data; - int32_t ret_val; - - DEBUGFUNC("e1000_adjust_serdes_amplitude"); - - if (hw->media_type != e1000_media_type_internal_serdes) - return E1000_SUCCESS; - - switch (hw->mac_type) { - case e1000_82545_rev_3: - case e1000_82546_rev_3: - break; - default: - return E1000_SUCCESS; - } - - ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); - if (ret_val) { - return ret_val; - } - - if (eeprom_data != EEPROM_RESERVED_WORD) { - /* Adjust SERDES output amplitude only. */ - eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Configures flow control and link settings. - * - * hw - Struct containing variables accessed by shared code - * - * Determines which flow control settings to use. Calls the apropriate media- - * specific link configuration function. Configures the flow control settings. - * Assuming the adapter has a valid link partner, a valid link should be - * established. Assumes the hardware has previously been reset and the - * transmitter and receiver are not enabled. - *****************************************************************************/ -int32_t -e1000_setup_link(struct e1000_hw *hw) -{ - uint32_t ctrl_ext; - int32_t ret_val; - uint16_t eeprom_data; - - DEBUGFUNC("e1000_setup_link"); - - /* In the case of the phy reset being blocked, we already have a link. - * We do not have to set it up again. */ - if (e1000_check_phy_reset_block(hw)) - return E1000_SUCCESS; - - /* Read and store word 0x0F of the EEPROM. This word contains bits - * that determine the hardware's default PAUSE (flow control) mode, - * a bit that determines whether the HW defaults to enabling or - * disabling auto-negotiation, and the direction of the - * SW defined pins. If there is no SW over-ride of the flow - * control setting, then the variable hw->fc will - * be initialized based on a value in the EEPROM. - */ - if (hw->fc == E1000_FC_DEFAULT) { - switch (hw->mac_type) { - case e1000_ich8lan: - case e1000_82573: - hw->fc = E1000_FC_FULL; - break; - default: - ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, - 1, &eeprom_data); - if (ret_val) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) - hw->fc = E1000_FC_NONE; - else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == - EEPROM_WORD0F_ASM_DIR) - hw->fc = E1000_FC_TX_PAUSE; - else - hw->fc = E1000_FC_FULL; - break; - } - } - - /* We want to save off the original Flow Control configuration just - * in case we get disconnected and then reconnected into a different - * hub or switch with different Flow Control capabilities. - */ - if (hw->mac_type == e1000_82542_rev2_0) - hw->fc &= (~E1000_FC_TX_PAUSE); - - if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) - hw->fc &= (~E1000_FC_RX_PAUSE); - - hw->original_fc = hw->fc; - - DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); - - /* Take the 4 bits from EEPROM word 0x0F that determine the initial - * polarity value for the SW controlled pins, and setup the - * Extended Device Control reg with that info. - * This is needed because one of the SW controlled pins is used for - * signal detection. So this should be done before e1000_setup_pcs_link() - * or e1000_phy_setup() is called. - */ - if (hw->mac_type == e1000_82543) { - ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, - 1, &eeprom_data); - if (ret_val) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << - SWDPIO__EXT_SHIFT); - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - } - - /* Call the necessary subroutine to configure the link. */ - ret_val = (hw->media_type == e1000_media_type_copper) ? - e1000_setup_copper_link(hw) : - e1000_setup_fiber_serdes_link(hw); - - /* Initialize the flow control address, type, and PAUSE timer - * registers to their default values. This is done even if flow - * control is disabled, because it does not hurt anything to - * initialize these registers. - */ - DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); - - /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ - if (hw->mac_type != e1000_ich8lan) { - E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); - E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); - E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); - } - - E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); - - /* Set the flow control receive threshold registers. Normally, - * these registers will be set to a default threshold that may be - * adjusted later by the driver's runtime code. However, if the - * ability to transmit pause frames in not enabled, then these - * registers will be set to 0. - */ - if (!(hw->fc & E1000_FC_TX_PAUSE)) { - E1000_WRITE_REG(hw, FCRTL, 0); - E1000_WRITE_REG(hw, FCRTH, 0); - } else { - /* We need to set up the Receive Threshold high and low water marks - * as well as (optionally) enabling the transmission of XON frames. - */ - if (hw->fc_send_xon) { - E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); - E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); - } else { - E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); - E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); - } - } - return ret_val; -} - -/****************************************************************************** - * Sets up link for a fiber based or serdes based adapter - * - * hw - Struct containing variables accessed by shared code - * - * Manipulates Physical Coding Sublayer functions in order to configure - * link. Assumes the hardware has been previously reset and the transmitter - * and receiver are not enabled. - *****************************************************************************/ -static int32_t -e1000_setup_fiber_serdes_link(struct e1000_hw *hw) -{ - uint32_t ctrl; - uint32_t status; - uint32_t txcw = 0; - uint32_t i; - uint32_t signal = 0; - int32_t ret_val; - - DEBUGFUNC("e1000_setup_fiber_serdes_link"); - - /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists - * until explicitly turned off or a power cycle is performed. A read to - * the register does not indicate its status. Therefore, we ensure - * loopback mode is disabled during initialization. - */ - if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) - E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK); - - /* On adapters with a MAC newer than 82544, SWDP 1 will be - * set when the optics detect a signal. On older adapters, it will be - * cleared when there is a signal. This applies to fiber media only. - * If we're on serdes media, adjust the output amplitude to value - * set in the EEPROM. - */ - ctrl = E1000_READ_REG(hw, CTRL); - if (hw->media_type == e1000_media_type_fiber) - signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; - - ret_val = e1000_adjust_serdes_amplitude(hw); - if (ret_val) - return ret_val; - - /* Take the link out of reset */ - ctrl &= ~(E1000_CTRL_LRST); - - /* Adjust VCO speed to improve BER performance */ - ret_val = e1000_set_vco_speed(hw); - if (ret_val) - return ret_val; - - e1000_config_collision_dist(hw); - - /* Check for a software override of the flow control settings, and setup - * the device accordingly. If auto-negotiation is enabled, then software - * will have to set the "PAUSE" bits to the correct value in the Tranmsit - * Config Word Register (TXCW) and re-start auto-negotiation. However, if - * auto-negotiation is disabled, then software will have to manually - * configure the two flow control enable bits in the CTRL register. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames, but - * not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames but we do - * not support receiving pause frames). - * 3: Both Rx and TX flow control (symmetric) are enabled. - */ - switch (hw->fc) { - case E1000_FC_NONE: - /* Flow control is completely disabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); - break; - case E1000_FC_RX_PAUSE: - /* RX Flow control is enabled and TX Flow control is disabled by a - * software over-ride. Since there really isn't a way to advertise - * that we are capable of RX Pause ONLY, we will advertise that we - * support both symmetric and asymmetric RX PAUSE. Later, we will - * disable the adapter's ability to send PAUSE frames. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - case E1000_FC_TX_PAUSE: - /* TX Flow control is enabled, and RX Flow control is disabled, by a - * software over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); - break; - case E1000_FC_FULL: - /* Flow control (both RX and TX) is enabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - break; - } - - /* Since auto-negotiation is enabled, take the link out of reset (the link - * will be in reset, because we previously reset the chip). This will - * restart auto-negotiation. If auto-neogtiation is successful then the - * link-up status bit will be set and the flow control enable bits (RFCE - * and TFCE) will be set according to their negotiated value. - */ - DEBUGOUT("Auto-negotiation enabled\n"); - - E1000_WRITE_REG(hw, TXCW, txcw); - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - hw->txcw = txcw; - msleep(1); - - /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" - * indication in the Device Status Register. Time-out if a link isn't - * seen in 500 milliseconds seconds (Auto-negotiation should complete in - * less than 500 milliseconds even if the other end is doing it in SW). - * For internal serdes, we just assume a signal is present, then poll. - */ - if (hw->media_type == e1000_media_type_internal_serdes || - (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { - DEBUGOUT("Looking for Link\n"); - for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { - msleep(10); - status = E1000_READ_REG(hw, STATUS); - if (status & E1000_STATUS_LU) break; - } - if (i == (LINK_UP_TIMEOUT / 10)) { - DEBUGOUT("Never got a valid link from auto-neg!!!\n"); - hw->autoneg_failed = 1; - /* AutoNeg failed to achieve a link, so we'll call - * e1000_check_for_link. This routine will force the link up if - * we detect a signal. This will allow us to communicate with - * non-autonegotiating link partners. - */ - ret_val = e1000_check_for_link(hw); - if (ret_val) { - DEBUGOUT("Error while checking for link\n"); - return ret_val; - } - hw->autoneg_failed = 0; - } else { - hw->autoneg_failed = 0; - DEBUGOUT("Valid Link Found\n"); - } - } else { - DEBUGOUT("No Signal Detected\n"); - } - return E1000_SUCCESS; -} - -/****************************************************************************** -* Make sure we have a valid PHY and change PHY mode before link setup. -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int32_t -e1000_copper_link_preconfig(struct e1000_hw *hw) -{ - uint32_t ctrl; - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("e1000_copper_link_preconfig"); - - ctrl = E1000_READ_REG(hw, CTRL); - /* With 82543, we need to force speed and duplex on the MAC equal to what - * the PHY speed and duplex configuration is. In addition, we need to - * perform a hardware reset on the PHY to take it out of reset. - */ - if (hw->mac_type > e1000_82543) { - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, CTRL, ctrl); - } else { - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); - E1000_WRITE_REG(hw, CTRL, ctrl); - ret_val = e1000_phy_hw_reset(hw); - if (ret_val) - return ret_val; - } - - /* Make sure we have a valid PHY */ - ret_val = e1000_detect_gig_phy(hw); - if (ret_val) { - DEBUGOUT("Error, did not detect valid phy.\n"); - return ret_val; - } - DEBUGOUT1("Phy ID = %#08x \n", hw->phy_id); - - /* Set PHY to class A mode (if necessary) */ - ret_val = e1000_set_phy_mode(hw); - if (ret_val) - return ret_val; - - if ((hw->mac_type == e1000_82545_rev_3) || - (hw->mac_type == e1000_82546_rev_3)) { - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - phy_data |= 0x00000008; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - } - - if (hw->mac_type <= e1000_82543 || - hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || - hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) - hw->phy_reset_disable = FALSE; - - return E1000_SUCCESS; -} - - -/******************************************************************** -* Copper link setup for e1000_phy_igp series. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ -static int32_t -e1000_copper_link_igp_setup(struct e1000_hw *hw) -{ - uint32_t led_ctrl; - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("e1000_copper_link_igp_setup"); - - if (hw->phy_reset_disable) - return E1000_SUCCESS; - - ret_val = e1000_phy_reset(hw); - if (ret_val) { - DEBUGOUT("Error Resetting the PHY\n"); - return ret_val; - } - - /* - * Wait 100ms for MAC to configure PHY from NVM settings, to avoid - * timeout issues when LFS is enabled. - */ - msleep(100); - - if (hw->mac_type != e1000_ich8lan && hw->mac_type != e1000_82576) { - /* Configure activity LED after PHY reset */ - led_ctrl = E1000_READ_REG(hw, LEDCTL); - led_ctrl &= IGP_ACTIVITY_LED_MASK; - led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - E1000_WRITE_REG(hw, LEDCTL, led_ctrl); - } - - /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ - if (hw->phy_type == e1000_phy_igp) { - /* disable lplu d3 during driver init */ - ret_val = e1000_set_d3_lplu_state(hw, FALSE); - if (ret_val) { - DEBUGOUT("Error Disabling LPLU D3\n"); - return ret_val; - } - } - - /* disable lplu d0 during driver init */ - ret_val = e1000_set_d0_lplu_state(hw, FALSE); - if (ret_val) { - DEBUGOUT("Error Disabling LPLU D0\n"); - return ret_val; - } - /* Configure mdi-mdix settings */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - return ret_val; - - if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - hw->dsp_config_state = e1000_dsp_config_disabled; - /* Force MDI for earlier revs of the IGP PHY */ - phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); - hw->mdix = 1; - - } else { - hw->dsp_config_state = e1000_dsp_config_enabled; - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - - switch (hw->mdix) { - case 1: - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 2: - phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 0: - default: - phy_data |= IGP01E1000_PSCR_AUTO_MDIX; - break; - } - } - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* set auto-master slave resolution settings */ - if (hw->autoneg) { - e1000_ms_type phy_ms_setting = hw->master_slave; - - if (hw->ffe_config_state == e1000_ffe_config_active) - hw->ffe_config_state = e1000_ffe_config_enabled; - - if (hw->dsp_config_state == e1000_dsp_config_activated) - hw->dsp_config_state = e1000_dsp_config_enabled; - - /* when autonegotiation advertisment is only 1000Mbps then we - * should disable SmartSpeed and enable Auto MasterSlave - * resolution as hardware default. */ - if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { - /* Disable SmartSpeed */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - /* Set auto Master/Slave resolution process */ - ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if (ret_val) - return ret_val; - phy_data &= ~CR_1000T_MS_ENABLE; - ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* load defaults for future use */ - hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? - ((phy_data & CR_1000T_MS_VALUE) ? - e1000_ms_force_master : - e1000_ms_force_slave) : - e1000_ms_auto; - - switch (phy_ms_setting) { - case e1000_ms_force_master: - phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); - break; - case e1000_ms_force_slave: - phy_data |= CR_1000T_MS_ENABLE; - phy_data &= ~(CR_1000T_MS_VALUE); - break; - case e1000_ms_auto: - phy_data &= ~CR_1000T_MS_ENABLE; - default: - break; - } - ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; -} - -/******************************************************************** -* Copper link setup for e1000_phy_gg82563 series. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ -static int32_t -e1000_copper_link_ggp_setup(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t phy_data; - uint32_t reg_data; - - DEBUGFUNC("e1000_copper_link_ggp_setup"); - - if (!hw->phy_reset_disable) { - - /* Enable CRS on TX for half-duplex operation. */ - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, - &phy_data); - if (ret_val) - return ret_val; - - phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; - /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ - phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; - - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, - phy_data); - if (ret_val) - return ret_val; - - /* Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; - - switch (hw->mdix) { - case 1: - phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI; - break; - case 2: - phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; - break; - case 0: - default: - phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; - break; - } - - /* Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; - if (hw->disable_polarity_correction == 1) - phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); - - if (ret_val) - return ret_val; - - /* SW Reset the PHY so all changes take effect */ - ret_val = e1000_phy_reset(hw); - if (ret_val) { - DEBUGOUT("Error Resetting the PHY\n"); - return ret_val; - } - } /* phy_reset_disable */ - - if (hw->mac_type == e1000_80003es2lan) { - /* Bypass RX and TX FIFO's */ - ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, - E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS | - E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data); - - if (ret_val) - return ret_val; - - reg_data = E1000_READ_REG(hw, CTRL_EXT); - reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); - E1000_WRITE_REG(hw, CTRL_EXT, reg_data); - - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, - &phy_data); - if (ret_val) - return ret_val; - - /* Do not init these registers when the HW is in IAMT mode, since the - * firmware will have already initialized them. We only initialize - * them if the HW is not in IAMT mode. - */ - if (e1000_check_mng_mode(hw) == FALSE) { - /* Enable Electrical Idle on the PHY */ - phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, - phy_data); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - phy_data); - - if (ret_val) - return ret_val; - } - - /* Workaround: Disable padding in Kumeran interface in the MAC - * and in the PHY to avoid CRC errors. - */ - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, - &phy_data); - if (ret_val) - return ret_val; - phy_data |= GG82563_ICR_DIS_PADDING; - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, - phy_data); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; -} - -/******************************************************************** -* Copper link setup for e1000_phy_m88 series. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ -static int32_t -e1000_copper_link_mgp_setup(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("e1000_copper_link_mgp_setup"); - - if (hw->phy_reset_disable) - return E1000_SUCCESS; - - /* Enable CRS on TX. This must be set for half-duplex operation. */ - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - - /* Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - - switch (hw->mdix) { - case 1: - phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; - break; - case 2: - phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; - break; - case 3: - phy_data |= M88E1000_PSCR_AUTO_X_1000T; - break; - case 0: - default: - phy_data |= M88E1000_PSCR_AUTO_X_MODE; - break; - } - - /* Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (hw->disable_polarity_correction == 1) - phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - if (hw->phy_revision < M88E1011_I_REV_4) { - /* Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - - if ((hw->phy_revision == E1000_REVISION_2) && - (hw->phy_id == M88E1111_I_PHY_ID)) { - /* Vidalia Phy, set the downshift counter to 5x */ - phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); - phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; - ret_val = e1000_write_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } else { - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - ret_val = e1000_write_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } - } - - /* SW Reset the PHY so all changes take effect */ - ret_val = e1000_phy_reset(hw); - if (ret_val) { - DEBUGOUT("Error Resetting the PHY\n"); - return ret_val; - } - - return E1000_SUCCESS; -} - -/******************************************************************** -* Setup auto-negotiation and flow control advertisements, -* and then perform auto-negotiation. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ -static int32_t -e1000_copper_link_autoneg(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("e1000_copper_link_autoneg"); - - /* Perform some bounds checking on the hw->autoneg_advertised - * parameter. If this variable is zero, then set it to the default. - */ - hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; - - /* If autoneg_advertised is zero, we assume it was not defaulted - * by the calling code so we set to advertise full capability. - */ - if (hw->autoneg_advertised == 0) - hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; - - /* IFE phy only supports 10/100 */ - if (hw->phy_type == e1000_phy_ife) - hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; - - DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); - ret_val = e1000_phy_setup_autoneg(hw); - if (ret_val) { - DEBUGOUT("Error Setting up Auto-Negotiation\n"); - return ret_val; - } - DEBUGOUT("Restarting Auto-Neg\n"); - - /* Restart auto-negotiation by setting the Auto Neg Enable bit and - * the Auto Neg Restart bit in the PHY control register. - */ - ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); - ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* Does the user want to wait for Auto-Neg to complete here, or - * check at a later time (for example, callback routine). - */ - if (hw->wait_autoneg_complete) { - ret_val = e1000_wait_autoneg(hw); - if (ret_val) { - DEBUGOUT("Error while waiting for autoneg to complete\n"); - return ret_val; - } - } - - hw->get_link_status = TRUE; - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Config the MAC and the PHY after link is up. -* 1) Set up the MAC to the current PHY speed/duplex -* if we are on 82543. If we -* are on newer silicon, we only need to configure -* collision distance in the Transmit Control Register. -* 2) Set up flow control on the MAC to that established with -* the link partner. -* 3) Config DSP to improve Gigabit link quality for some PHY revisions. -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int32_t -e1000_copper_link_postconfig(struct e1000_hw *hw) -{ - int32_t ret_val; - DEBUGFUNC("e1000_copper_link_postconfig"); - - if (hw->mac_type >= e1000_82544) { - e1000_config_collision_dist(hw); - } else { - ret_val = e1000_config_mac_to_phy(hw); - if (ret_val) { - DEBUGOUT("Error configuring MAC to PHY settings\n"); - return ret_val; - } - } - ret_val = e1000_config_fc_after_link_up(hw); - if (ret_val) { - DEBUGOUT("Error Configuring Flow Control\n"); - return ret_val; - } - - /* Config DSP to improve Giga link quality */ - if (hw->phy_type == e1000_phy_igp) { - ret_val = e1000_config_dsp_after_link_change(hw, TRUE); - if (ret_val) { - DEBUGOUT("Error Configuring DSP after link up\n"); - return ret_val; - } - } - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Detects which PHY is present and setup the speed and duplex -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int32_t -e1000_setup_copper_link(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t i; - uint16_t phy_data; - uint16_t reg_data; - - DEBUGFUNC("e1000_setup_copper_link"); - - switch (hw->mac_type) { - case e1000_80003es2lan: - case e1000_ich8lan: - /* Set the mac to wait the maximum time between each - * iteration and increase the max iterations when - * polling the phy; this fixes erroneous timeouts at 10Mbps. */ - ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); - if (ret_val) - return ret_val; - ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); - if (ret_val) - return ret_val; - reg_data |= 0x3F; - ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); - if (ret_val) - return ret_val; - default: - break; - } - - /* Check if it is a valid PHY and set PHY mode if necessary. */ - ret_val = e1000_copper_link_preconfig(hw); - if (ret_val) - return ret_val; - - switch (hw->mac_type) { - case e1000_80003es2lan: - /* Kumeran registers are written-only */ - reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; - reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; - ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, - reg_data); - if (ret_val) - return ret_val; - break; - default: - break; - } - - if (hw->phy_type == e1000_phy_igp || - hw->phy_type == e1000_phy_igp_3 || - hw->phy_type == e1000_phy_igp_2) { - ret_val = e1000_copper_link_igp_setup(hw); - if (ret_val) - return ret_val; - } else if (hw->phy_type == e1000_phy_m88) { - ret_val = e1000_copper_link_mgp_setup(hw); - if (ret_val) - return ret_val; - } else if (hw->phy_type == e1000_phy_gg82563) { - ret_val = e1000_copper_link_ggp_setup(hw); - if (ret_val) - return ret_val; - } - - if (hw->autoneg) { - /* Setup autoneg and flow control advertisement - * and perform autonegotiation */ - ret_val = e1000_copper_link_autoneg(hw); - if (ret_val) - return ret_val; - } else { - /* PHY will be set to 10H, 10F, 100H,or 100F - * depending on value from forced_speed_duplex. */ - DEBUGOUT("Forcing speed and duplex\n"); - ret_val = e1000_phy_force_speed_duplex(hw); - if (ret_val) { - DEBUGOUT("Error Forcing Speed and Duplex\n"); - return ret_val; - } - } - - /* Check link status. Wait up to 100 microseconds for link to become - * valid. - */ - for (i = 0; i < 10; i++) { - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - if (phy_data & MII_SR_LINK_STATUS) { - /* Config the MAC and PHY after link is up */ - ret_val = e1000_copper_link_postconfig(hw); - if (ret_val) - return ret_val; - - DEBUGOUT("Valid link established!!!\n"); - return E1000_SUCCESS; - } - udelay(10); - } - - DEBUGOUT("Unable to establish link!!!\n"); - return E1000_SUCCESS; -} - -/****************************************************************************** -* Configure the MAC-to-PHY interface for 10/100Mbps -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int32_t -e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex) -{ - int32_t ret_val = E1000_SUCCESS; - uint32_t tipg; - uint16_t reg_data; - - DEBUGFUNC("e1000_configure_kmrn_for_10_100"); - - reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; - ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, - reg_data); - if (ret_val) - return ret_val; - - /* Configure Transmit Inter-Packet Gap */ - tipg = E1000_READ_REG(hw, TIPG); - tipg &= ~E1000_TIPG_IPGT_MASK; - tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; - E1000_WRITE_REG(hw, TIPG, tipg); - - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); - - if (ret_val) - return ret_val; - - if (duplex == HALF_DUPLEX) - reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; - else - reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); - - return ret_val; -} - -static int32_t -e1000_configure_kmrn_for_1000(struct e1000_hw *hw) -{ - int32_t ret_val = E1000_SUCCESS; - uint16_t reg_data; - uint32_t tipg; - - DEBUGFUNC("e1000_configure_kmrn_for_1000"); - - reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; - ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, - reg_data); - if (ret_val) - return ret_val; - - /* Configure Transmit Inter-Packet Gap */ - tipg = E1000_READ_REG(hw, TIPG); - tipg &= ~E1000_TIPG_IPGT_MASK; - tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; - E1000_WRITE_REG(hw, TIPG, tipg); - - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); - - if (ret_val) - return ret_val; - - reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); - - return ret_val; -} - -/****************************************************************************** -* Configures PHY autoneg and flow control advertisement settings -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -int32_t -e1000_phy_setup_autoneg(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t mii_autoneg_adv_reg; - uint16_t mii_1000t_ctrl_reg; - - DEBUGFUNC("e1000_phy_setup_autoneg"); - - /* Read the MII Auto-Neg Advertisement Register (Address 4). */ - ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - if (hw->phy_type != e1000_phy_ife) { - /* Read the MII 1000Base-T Control Register (Address 9). */ - ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - } else - mii_1000t_ctrl_reg=0; - - /* Need to parse both autoneg_advertised and fc and set up - * the appropriate PHY registers. First we will parse for - * autoneg_advertised software override. Since we can advertise - * a plethora of combinations, we need to check each bit - * individually. - */ - - /* First we clear all the 10/100 mb speed bits in the Auto-Neg - * Advertisement Register (Address 4) and the 1000 mb speed bits in - * the 1000Base-T Control Register (Address 9). - */ - mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; - mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; - - DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); - - /* Do we want to advertise 10 Mb Half Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_10_HALF) { - DEBUGOUT("Advertise 10mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; - } - - /* Do we want to advertise 10 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_10_FULL) { - DEBUGOUT("Advertise 10mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; - } - - /* Do we want to advertise 100 Mb Half Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_100_HALF) { - DEBUGOUT("Advertise 100mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; - } - - /* Do we want to advertise 100 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_100_FULL) { - DEBUGOUT("Advertise 100mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; - } - - /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { - DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); - } - - /* Do we want to advertise 1000 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { - DEBUGOUT("Advertise 1000mb Full duplex\n"); - mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; - if (hw->phy_type == e1000_phy_ife) { - DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n"); - } - } - - /* Check for a software override of the flow control settings, and - * setup the PHY advertisement registers accordingly. If - * auto-negotiation is enabled, then software will have to set the - * "PAUSE" bits to the correct value in the Auto-Negotiation - * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * but we do not support receiving pause frames). - * 3: Both Rx and TX flow control (symmetric) are enabled. - * other: No software override. The flow control configuration - * in the EEPROM is used. - */ - switch (hw->fc) { - case E1000_FC_NONE: /* 0 */ - /* Flow control (RX & TX) is completely disabled by a - * software over-ride. - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case E1000_FC_RX_PAUSE: /* 1 */ - /* RX Flow control is enabled, and TX Flow control is - * disabled, by a software over-ride. - */ - /* Since there really isn't a way to advertise that we are - * capable of RX Pause ONLY, we will advertise that we - * support both symmetric and asymmetric RX PAUSE. Later - * (in e1000_config_fc_after_link_up) we will disable the - *hw's ability to send PAUSE frames. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case E1000_FC_TX_PAUSE: /* 2 */ - /* TX Flow control is enabled, and RX Flow control is - * disabled, by a software over-ride. - */ - mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; - mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; - break; - case E1000_FC_FULL: /* 3 */ - /* Flow control (both RX and TX) is enabled by a software - * over-ride. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - - if (hw->phy_type != e1000_phy_ife) { - ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Force PHY speed and duplex settings to hw->forced_speed_duplex -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int32_t -e1000_phy_force_speed_duplex(struct e1000_hw *hw) -{ - uint32_t ctrl; - int32_t ret_val; - uint16_t mii_ctrl_reg; - uint16_t mii_status_reg; - uint16_t phy_data; - uint16_t i; - - DEBUGFUNC("e1000_phy_force_speed_duplex"); - - /* Turn off Flow control if we are forcing speed and duplex. */ - hw->fc = E1000_FC_NONE; - - DEBUGOUT1("hw->fc = %d\n", hw->fc); - - /* Read the Device Control Register. */ - ctrl = E1000_READ_REG(hw, CTRL); - - /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~(DEVICE_SPEED_MASK); - - /* Clear the Auto Speed Detect Enable bit. */ - ctrl &= ~E1000_CTRL_ASDE; - - /* Read the MII Control Register. */ - ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); - if (ret_val) - return ret_val; - - /* We need to disable autoneg in order to force link and duplex. */ - - mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; - - /* Are we forcing Full or Half Duplex? */ - if (hw->forced_speed_duplex == e1000_100_full || - hw->forced_speed_duplex == e1000_10_full) { - /* We want to force full duplex so we SET the full duplex bits in the - * Device and MII Control Registers. - */ - ctrl |= E1000_CTRL_FD; - mii_ctrl_reg |= MII_CR_FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } else { - /* We want to force half duplex so we CLEAR the full duplex bits in - * the Device and MII Control Registers. - */ - ctrl &= ~E1000_CTRL_FD; - mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; - DEBUGOUT("Half Duplex\n"); - } - - /* Are we forcing 100Mbps??? */ - if (hw->forced_speed_duplex == e1000_100_full || - hw->forced_speed_duplex == e1000_100_half) { - /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ - ctrl |= E1000_CTRL_SPD_100; - mii_ctrl_reg |= MII_CR_SPEED_100; - mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); - DEBUGOUT("Forcing 100mb "); - } else { - /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ - ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - mii_ctrl_reg |= MII_CR_SPEED_10; - mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); - DEBUGOUT("Forcing 10mb "); - } - - e1000_config_collision_dist(hw); - - /* Write the configured values back to the Device Control Reg. */ - E1000_WRITE_REG(hw, CTRL, ctrl); - - if ((hw->phy_type == e1000_phy_m88) || - (hw->phy_type == e1000_phy_gg82563)) { - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI - * forced whenever speed are duplex are forced. - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); - - /* Need to reset the PHY or these changes will be ignored */ - mii_ctrl_reg |= MII_CR_RESET; - - /* Disable MDI-X support for 10/100 */ - } else if (hw->phy_type == e1000_phy_ife) { - ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IFE_PMC_AUTO_MDIX; - phy_data &= ~IFE_PMC_FORCE_MDIX; - - ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); - if (ret_val) - return ret_val; - - } else { - /* Clear Auto-Crossover to force MDI manually. IGP requires MDI - * forced whenever speed or duplex are forced. - */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - /* Write back the modified PHY MII control register. */ - ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); - if (ret_val) - return ret_val; - - udelay(1); - - /* The wait_autoneg_complete flag may be a little misleading here. - * Since we are forcing speed and duplex, Auto-Neg is not enabled. - * But we do want to delay for a period while forcing only so we - * don't generate false No Link messages. So we will wait here - * only if the user has set wait_autoneg_complete to 1, which is - * the default. - */ - if (hw->wait_autoneg_complete) { - /* We will wait for autoneg to complete. */ - DEBUGOUT("Waiting for forced speed/duplex link.\n"); - mii_status_reg = 0; - - /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Auto-Neg Complete bit - * to be set. - */ - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (mii_status_reg & MII_SR_LINK_STATUS) break; - msleep(100); - } - if ((i == 0) && - ((hw->phy_type == e1000_phy_m88) || - (hw->phy_type == e1000_phy_gg82563))) { - /* We didn't get link. Reset the DSP and wait again for link. */ - ret_val = e1000_phy_reset_dsp(hw); - if (ret_val) { - DEBUGOUT("Error Resetting PHY DSP\n"); - return ret_val; - } - } - /* This loop will early-out if the link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - if (mii_status_reg & MII_SR_LINK_STATUS) break; - msleep(100); - /* Read the MII Status Register and wait for Auto-Neg Complete bit - * to be set. - */ - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - } - } - - if (hw->phy_type == e1000_phy_m88) { - /* Because we reset the PHY above, we need to re-force TX_CLK in the - * Extended PHY Specific Control Register to 25MHz clock. This value - * defaults back to a 2.5MHz clock when the PHY is reset. - */ - ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* In addition, because of the s/w reset above, we need to enable CRS on - * TX. This must be set for both full and half duplex operation. - */ - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && - (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full || - hw->forced_speed_duplex == e1000_10_half)) { - ret_val = e1000_polarity_reversal_workaround(hw); - if (ret_val) - return ret_val; - } - } else if (hw->phy_type == e1000_phy_gg82563) { - /* The TX_CLK of the Extended PHY Specific Control Register defaults - * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if - * we're not in a forced 10/duplex configuration. */ - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~GG82563_MSCR_TX_CLK_MASK; - if ((hw->forced_speed_duplex == e1000_10_full) || - (hw->forced_speed_duplex == e1000_10_half)) - phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ; - else - phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ; - - /* Also due to the reset, we need to enable CRS on Tx. */ - phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; - - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } - return E1000_SUCCESS; -} - -/****************************************************************************** -* Sets the collision distance in the Transmit Control register -* -* hw - Struct containing variables accessed by shared code -* -* Link should have been established previously. Reads the speed and duplex -* information from the Device Status register. -******************************************************************************/ -void -e1000_config_collision_dist(struct e1000_hw *hw) -{ - uint32_t tctl, coll_dist; - - DEBUGFUNC("e1000_config_collision_dist"); - - if (hw->mac_type < e1000_82543) - coll_dist = E1000_COLLISION_DISTANCE_82542; - else - coll_dist = E1000_COLLISION_DISTANCE; - - tctl = E1000_READ_REG(hw, TCTL); - - tctl &= ~E1000_TCTL_COLD; - tctl |= coll_dist << E1000_COLD_SHIFT; - - E1000_WRITE_REG(hw, TCTL, tctl); - E1000_WRITE_FLUSH(hw); -} - -/****************************************************************************** -* Sets MAC speed and duplex settings to reflect the those in the PHY -* -* hw - Struct containing variables accessed by shared code -* mii_reg - data to write to the MII control register -* -* The contents of the PHY register containing the needed information need to -* be passed in. -******************************************************************************/ -static int32_t -e1000_config_mac_to_phy(struct e1000_hw *hw) -{ - uint32_t ctrl; - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("e1000_config_mac_to_phy"); - - /* 82544 or newer MAC, Auto Speed Detection takes care of - * MAC speed/duplex configuration.*/ - if (hw->mac_type >= e1000_82544) - return E1000_SUCCESS; - - /* Read the Device Control Register and set the bits to Force Speed - * and Duplex. - */ - ctrl = E1000_READ_REG(hw, CTRL); - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); - - /* Set up duplex in the Device Control and Transmit Control - * registers depending on negotiated values. - */ - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - return ret_val; - - if (phy_data & M88E1000_PSSR_DPLX) - ctrl |= E1000_CTRL_FD; - else - ctrl &= ~E1000_CTRL_FD; - - e1000_config_collision_dist(hw); - - /* Set up speed in the Device Control register depending on - * negotiated values. - */ - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) - ctrl |= E1000_CTRL_SPD_1000; - else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) - ctrl |= E1000_CTRL_SPD_100; - - /* Write the configured values back to the Device Control Reg. */ - E1000_WRITE_REG(hw, CTRL, ctrl); - return E1000_SUCCESS; -} - -/****************************************************************************** - * Forces the MAC's flow control settings. - * - * hw - Struct containing variables accessed by shared code - * - * Sets the TFCE and RFCE bits in the device control register to reflect - * the adapter settings. TFCE and RFCE need to be explicitly set by - * software when a Copper PHY is used because autonegotiation is managed - * by the PHY rather than the MAC. Software must also configure these - * bits when link is forced on a fiber connection. - *****************************************************************************/ -int32_t -e1000_force_mac_fc(struct e1000_hw *hw) -{ - uint32_t ctrl; - - DEBUGFUNC("e1000_force_mac_fc"); - - /* Get the current configuration of the Device Control Register */ - ctrl = E1000_READ_REG(hw, CTRL); - - /* Because we didn't get link via the internal auto-negotiation - * mechanism (we either forced link or we got link via PHY - * auto-neg), we have to manually enable/disable transmit an - * receive flow control. - * - * The "Case" statement below enables/disable flow control - * according to the "hw->fc" parameter. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause - * frames but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * frames but we do not receive pause frames). - * 3: Both Rx and TX flow control (symmetric) is enabled. - * other: No other values should be possible at this point. - */ - - switch (hw->fc) { - case E1000_FC_NONE: - ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); - break; - case E1000_FC_RX_PAUSE: - ctrl &= (~E1000_CTRL_TFCE); - ctrl |= E1000_CTRL_RFCE; - break; - case E1000_FC_TX_PAUSE: - ctrl &= (~E1000_CTRL_RFCE); - ctrl |= E1000_CTRL_TFCE; - break; - case E1000_FC_FULL: - ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - /* Disable TX Flow Control for 82542 (rev 2.0) */ - if (hw->mac_type == e1000_82542_rev2_0) - ctrl &= (~E1000_CTRL_TFCE); - - E1000_WRITE_REG(hw, CTRL, ctrl); - return E1000_SUCCESS; -} - -/****************************************************************************** - * Configures flow control settings after link is established - * - * hw - Struct containing variables accessed by shared code - * - * Should be called immediately after a valid link has been established. - * Forces MAC flow control settings if link was forced. When in MII/GMII mode - * and autonegotiation is enabled, the MAC flow control settings will be set - * based on the flow control negotiated by the PHY. In TBI mode, the TFCE - * and RFCE bits will be automaticaly set to the negotiated flow control mode. - *****************************************************************************/ -static int32_t -e1000_config_fc_after_link_up(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t mii_status_reg; - uint16_t mii_nway_adv_reg; - uint16_t mii_nway_lp_ability_reg; - uint16_t speed; - uint16_t duplex; - - DEBUGFUNC("e1000_config_fc_after_link_up"); - - /* Check for the case where we have fiber media and auto-neg failed - * so we had to force link. In this case, we need to force the - * configuration of the MAC to match the "fc" parameter. - */ - if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || - ((hw->media_type == e1000_media_type_internal_serdes) && - (hw->autoneg_failed)) || - ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { - ret_val = e1000_force_mac_fc(hw); - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - } - - /* Check for the case where we have copper media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg - * has completed, and if so, how the PHY and link partner has - * flow control configured. - */ - if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { - /* Read the MII Status Register and check to see if AutoNeg - * has completed. We read this twice because this reg has - * some "sticky" (latched) bits. - */ - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { - /* The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement Register - * (Address 4) and the Auto_Negotiation Base Page Ability - * Register (Address 5) to determine how flow control was - * negotiated. - */ - ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, - &mii_nway_adv_reg); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, - &mii_nway_lp_ability_reg); - if (ret_val) - return ret_val; - - /* Two bits in the Auto Negotiation Advertisement Register - * (Address 4) and two bits in the Auto Negotiation Base - * Page Ability Register (Address 5) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | E1000_FC_NONE - * 0 | 1 | 0 | DC | E1000_FC_NONE - * 0 | 1 | 1 | 0 | E1000_FC_NONE - * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE - * 1 | 0 | 0 | DC | E1000_FC_NONE - * 1 | DC | 1 | DC | E1000_FC_FULL - * 1 | 1 | 0 | 0 | E1000_FC_NONE - * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE - * - */ - /* Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | E1000_FC_FULL - * - */ - if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* Now we need to check if the user selected RX ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise RX - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->original_fc == E1000_FC_FULL) { - hw->fc = E1000_FC_FULL; - DEBUGOUT("Flow Control = FULL.\n"); - } else { - hw->fc = E1000_FC_RX_PAUSE; - DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); - } - } - /* For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE - * - */ - else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc = E1000_FC_TX_PAUSE; - DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); - } - /* For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE - * - */ - else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc = E1000_FC_RX_PAUSE; - DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); - } - /* Per the IEEE spec, at this point flow control should be - * disabled. However, we want to consider that we could - * be connected to a legacy switch that doesn't advertise - * desired flow control, but can be forced on the link - * partner. So if we advertised no flow control, that is - * what we will resolve to. If we advertised some kind of - * receive capability (Rx Pause Only or Full Flow Control) - * and the link partner advertised none, we will configure - * ourselves to enable Rx Flow Control only. We can do - * this safely for two reasons: If the link partner really - * didn't want flow control enabled, and we enable Rx, no - * harm done since we won't be receiving any PAUSE frames - * anyway. If the intent on the link partner was to have - * flow control enabled, then by us enabling RX only, we - * can at least receive pause frames and process them. - * This is a good idea because in most cases, since we are - * predominantly a server NIC, more times than not we will - * be asked to delay transmission of packets than asking - * our link partner to pause transmission of frames. - */ - else if ((hw->original_fc == E1000_FC_NONE || - hw->original_fc == E1000_FC_TX_PAUSE) || - hw->fc_strict_ieee) { - hw->fc = E1000_FC_NONE; - DEBUGOUT("Flow Control = NONE.\n"); - } else { - hw->fc = E1000_FC_RX_PAUSE; - DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); - } - - /* Now we need to do one last check... If we auto- - * negotiated to HALF DUPLEX, flow control should not be - * enabled per IEEE 802.3 spec. - */ - ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - return ret_val; - } - - if (duplex == HALF_DUPLEX) - hw->fc = E1000_FC_NONE; - - /* Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - ret_val = e1000_force_mac_fc(hw); - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - } else { - DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); - } - } - return E1000_SUCCESS; -} - -/****************************************************************************** - * Checks to see if the link status of the hardware has changed. - * - * hw - Struct containing variables accessed by shared code - * - * Called by any function that needs to check the link status of the adapter. - *****************************************************************************/ -int32_t -e1000_check_for_link(struct e1000_hw *hw) -{ - uint32_t rxcw = 0; - uint32_t ctrl; - uint32_t status; - uint32_t rctl; - uint32_t icr; - uint32_t signal = 0; - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("e1000_check_for_link"); - - ctrl = E1000_READ_REG(hw, CTRL); - status = E1000_READ_REG(hw, STATUS); - - /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be - * set when the optics detect a signal. On older adapters, it will be - * cleared when there is a signal. This applies to fiber media only. - */ - if ((hw->media_type == e1000_media_type_fiber) || - (hw->media_type == e1000_media_type_internal_serdes)) { - rxcw = E1000_READ_REG(hw, RXCW); - - if (hw->media_type == e1000_media_type_fiber) { - signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; - if (status & E1000_STATUS_LU) - hw->get_link_status = FALSE; - } - } - - /* If we have a copper PHY then we only want to go out to the PHY - * registers to see if Auto-Neg has completed and/or if our link - * status has changed. The get_link_status flag will be set if we - * receive a Link Status Change interrupt or we have Rx Sequence - * Errors. - */ - if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { - /* First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - * Read the register twice since the link bit is sticky. - */ - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - if (phy_data & MII_SR_LINK_STATUS) { - hw->get_link_status = FALSE; - /* Check if there was DownShift, must be checked immediately after - * link-up */ - e1000_check_downshift(hw); - - /* If we are on 82544 or 82543 silicon and speed/duplex - * are forced to 10H or 10F, then we will implement the polarity - * reversal workaround. We disable interrupts first, and upon - * returning, place the devices interrupt state to its previous - * value except for the link status change interrupt which will - * happen due to the execution of this workaround. - */ - - if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && - (!hw->autoneg) && - (hw->forced_speed_duplex == e1000_10_full || - hw->forced_speed_duplex == e1000_10_half)) { - E1000_WRITE_REG(hw, IMC, 0xffffffff); - ret_val = e1000_polarity_reversal_workaround(hw); - icr = E1000_READ_REG(hw, ICR); - E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC)); - E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK); - } - - } else { - /* No link detected */ - e1000_config_dsp_after_link_change(hw, FALSE); - return 0; - } - - /* If we are forcing speed/duplex, then we simply return since - * we have already determined whether we have link or not. - */ - if (!hw->autoneg) return -E1000_ERR_CONFIG; - - /* optimize the dsp settings for the igp phy */ - e1000_config_dsp_after_link_change(hw, TRUE); - - /* We have a M88E1000 PHY and Auto-Neg is enabled. If we - * have Si on board that is 82544 or newer, Auto - * Speed Detection takes care of MAC speed/duplex - * configuration. So we only need to configure Collision - * Distance in the MAC. Otherwise, we need to force - * speed/duplex on the MAC to the current PHY speed/duplex - * settings. - */ - if (hw->mac_type >= e1000_82544) - e1000_config_collision_dist(hw); - else { - ret_val = e1000_config_mac_to_phy(hw); - if (ret_val) { - DEBUGOUT("Error configuring MAC to PHY settings\n"); - return ret_val; - } - } - - /* Configure Flow Control now that Auto-Neg has completed. First, we - * need to restore the desired flow control settings because we may - * have had to re-autoneg with a different link partner. - */ - ret_val = e1000_config_fc_after_link_up(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - return ret_val; - } - - /* At this point we know that we are on copper and we have - * auto-negotiated link. These are conditions for checking the link - * partner capability register. We use the link speed to determine if - * TBI compatibility needs to be turned on or off. If the link is not - * at gigabit speed, then TBI compatibility is not needed. If we are - * at gigabit speed, we turn on TBI compatibility. - */ - if (hw->tbi_compatibility_en) { - uint16_t speed, duplex; - ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - return ret_val; - } - if (speed != SPEED_1000) { - /* If link speed is not set to gigabit speed, we do not need - * to enable TBI compatibility. - */ - if (hw->tbi_compatibility_on) { - /* If we previously were in the mode, turn it off. */ - rctl = E1000_READ_REG(hw, RCTL); - rctl &= ~E1000_RCTL_SBP; - E1000_WRITE_REG(hw, RCTL, rctl); - hw->tbi_compatibility_on = FALSE; - } - } else { - /* If TBI compatibility is was previously off, turn it on. For - * compatibility with a TBI link partner, we will store bad - * packets. Some frames have an additional byte on the end and - * will look like CRC errors to to the hardware. - */ - if (!hw->tbi_compatibility_on) { - hw->tbi_compatibility_on = TRUE; - rctl = E1000_READ_REG(hw, RCTL); - rctl |= E1000_RCTL_SBP; - E1000_WRITE_REG(hw, RCTL, rctl); - } - } - } - } - /* If we don't have link (auto-negotiation failed or link partner cannot - * auto-negotiate), the cable is plugged in (we have signal), and our - * link partner is not trying to auto-negotiate with us (we are receiving - * idles or data), we need to force link up. We also need to give - * auto-negotiation time to complete, in case the cable was just plugged - * in. The autoneg_failed flag does this. - */ - else if ((((hw->media_type == e1000_media_type_fiber) && - ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || - (hw->media_type == e1000_media_type_internal_serdes)) && - (!(status & E1000_STATUS_LU)) && - (!(rxcw & E1000_RXCW_C))) { - if (hw->autoneg_failed == 0) { - hw->autoneg_failed = 1; - return 0; - } - DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = E1000_READ_REG(hw, CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000_config_fc_after_link_up(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - return ret_val; - } - } - /* If we are forcing link and we are receiving /C/ ordered sets, re-enable - * auto-negotiation in the TXCW register and disable forced link in the - * Device Control register in an attempt to auto-negotiate with our link - * partner. - */ - else if (((hw->media_type == e1000_media_type_fiber) || - (hw->media_type == e1000_media_type_internal_serdes)) && - (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); - E1000_WRITE_REG(hw, TXCW, hw->txcw); - E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); - - hw->serdes_link_down = FALSE; - } - /* If we force link for non-auto-negotiation switch, check link status - * based on MAC synchronization for internal serdes media type. - */ - else if ((hw->media_type == e1000_media_type_internal_serdes) && - !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { - /* SYNCH bit and IV bit are sticky. */ - udelay(10); - if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { - if (!(rxcw & E1000_RXCW_IV)) { - hw->serdes_link_down = FALSE; - DEBUGOUT("SERDES: Link is up.\n"); - } - } else { - hw->serdes_link_down = TRUE; - DEBUGOUT("SERDES: Link is down.\n"); - } - } - if ((hw->media_type == e1000_media_type_internal_serdes) && - (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { - hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS)); - } - return E1000_SUCCESS; -} - -/****************************************************************************** - * Detects the current speed and duplex settings of the hardware. - * - * hw - Struct containing variables accessed by shared code - * speed - Speed of the connection - * duplex - Duplex setting of the connection - *****************************************************************************/ -int32_t -e1000_get_speed_and_duplex(struct e1000_hw *hw, - uint16_t *speed, - uint16_t *duplex) -{ - uint32_t status; - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("e1000_get_speed_and_duplex"); - - if (hw->mac_type >= e1000_82543) { - status = E1000_READ_REG(hw, STATUS); - if (status & E1000_STATUS_SPEED_1000) { - *speed = SPEED_1000; - DEBUGOUT("1000 Mbs, "); - } else if (status & E1000_STATUS_SPEED_100) { - *speed = SPEED_100; - DEBUGOUT("100 Mbs, "); - } else { - *speed = SPEED_10; - DEBUGOUT("10 Mbs, "); - } - - if (status & E1000_STATUS_FD) { - *duplex = FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } else { - *duplex = HALF_DUPLEX; - DEBUGOUT(" Half Duplex\n"); - } - } else { - DEBUGOUT("1000 Mbs, Full Duplex\n"); - *speed = SPEED_1000; - *duplex = FULL_DUPLEX; - } - - /* IGP01 PHY may advertise full duplex operation after speed downgrade even - * if it is operating at half duplex. Here we set the duplex settings to - * match the duplex in the link partner's capabilities. - */ - if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { - ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); - if (ret_val) - return ret_val; - - if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) - *duplex = HALF_DUPLEX; - else { - ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); - if (ret_val) - return ret_val; - if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || - (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) - *duplex = HALF_DUPLEX; - } - } - - if ((hw->mac_type == e1000_80003es2lan) && - (hw->media_type == e1000_media_type_copper)) { - if (*speed == SPEED_1000) - ret_val = e1000_configure_kmrn_for_1000(hw); - else - ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); - if (ret_val) - return ret_val; - } - - if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { - ret_val = e1000_kumeran_lock_loss_workaround(hw); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Blocks until autoneg completes or times out (~4.5 seconds) -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int32_t -e1000_wait_autoneg(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t i; - uint16_t phy_data; - - DEBUGFUNC("e1000_wait_autoneg"); - DEBUGOUT("Waiting for Auto-Neg to complete.\n"); - - /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Auto-Neg - * Complete bit to be set. - */ - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - if (phy_data & MII_SR_AUTONEG_COMPLETE) { - return E1000_SUCCESS; - } - msleep(100); - } - return E1000_SUCCESS; -} - -/****************************************************************************** -* Raises the Management Data Clock -* -* hw - Struct containing variables accessed by shared code -* ctrl - Device control register's current value -******************************************************************************/ -static void -e1000_raise_mdi_clk(struct e1000_hw *hw, - uint32_t *ctrl) -{ - /* Raise the clock input to the Management Data Clock (by setting the MDC - * bit), and then delay 10 microseconds. - */ - E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); - E1000_WRITE_FLUSH(hw); - udelay(10); -} - -/****************************************************************************** -* Lowers the Management Data Clock -* -* hw - Struct containing variables accessed by shared code -* ctrl - Device control register's current value -******************************************************************************/ -static void -e1000_lower_mdi_clk(struct e1000_hw *hw, - uint32_t *ctrl) -{ - /* Lower the clock input to the Management Data Clock (by clearing the MDC - * bit), and then delay 10 microseconds. - */ - E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); - E1000_WRITE_FLUSH(hw); - udelay(10); -} - -/****************************************************************************** -* Shifts data bits out to the PHY -* -* hw - Struct containing variables accessed by shared code -* data - Data to send out to the PHY -* count - Number of bits to shift out -* -* Bits are shifted out in MSB to LSB order. -******************************************************************************/ -static void -e1000_shift_out_mdi_bits(struct e1000_hw *hw, - uint32_t data, - uint16_t count) -{ - uint32_t ctrl; - uint32_t mask; - - /* We need to shift "count" number of bits out to the PHY. So, the value - * in the "data" parameter will be shifted out to the PHY one bit at a - * time. In order to do this, "data" must be broken down into bits. - */ - mask = 0x01; - mask <<= (count - 1); - - ctrl = E1000_READ_REG(hw, CTRL); - - /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ - ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); - - while (mask) { - /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and - * then raising and lowering the Management Data Clock. A "0" is - * shifted out to the PHY by setting the MDIO bit to "0" and then - * raising and lowering the clock. - */ - if (data & mask) - ctrl |= E1000_CTRL_MDIO; - else - ctrl &= ~E1000_CTRL_MDIO; - - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - udelay(10); - - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - mask = mask >> 1; - } -} - -/****************************************************************************** -* Shifts data bits in from the PHY -* -* hw - Struct containing variables accessed by shared code -* -* Bits are shifted in in MSB to LSB order. -******************************************************************************/ -static uint16_t -e1000_shift_in_mdi_bits(struct e1000_hw *hw) -{ - uint32_t ctrl; - uint16_t data = 0; - uint8_t i; - - /* In order to read a register from the PHY, we need to shift in a total - * of 18 bits from the PHY. The first two bit (turnaround) times are used - * to avoid contention on the MDIO pin when a read operation is performed. - * These two bits are ignored by us and thrown away. Bits are "shifted in" - * by raising the input to the Management Data Clock (setting the MDC bit), - * and then reading the value of the MDIO bit. - */ - ctrl = E1000_READ_REG(hw, CTRL); - - /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ - ctrl &= ~E1000_CTRL_MDIO_DIR; - ctrl &= ~E1000_CTRL_MDIO; - - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - /* Raise and Lower the clock before reading in the data. This accounts for - * the turnaround bits. The first clock occurred when we clocked out the - * last bit of the Register Address. - */ - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - for (data = 0, i = 0; i < 16; i++) { - data = data << 1; - e1000_raise_mdi_clk(hw, &ctrl); - ctrl = E1000_READ_REG(hw, CTRL); - /* Check to see if we shifted in a "1". */ - if (ctrl & E1000_CTRL_MDIO) - data |= 1; - e1000_lower_mdi_clk(hw, &ctrl); - } - - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - return data; -} - -static int32_t -e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) -{ - uint32_t swfw_sync = 0; - uint32_t swmask = mask; - uint32_t fwmask = mask << 16; - int32_t timeout = 200; - - DEBUGFUNC("e1000_swfw_sync_acquire"); - - if (hw->swfwhw_semaphore_present) - return e1000_get_software_flag(hw); - - if (!hw->swfw_sync_present) - return e1000_get_hw_eeprom_semaphore(hw); - - while (timeout) { - if (e1000_get_hw_eeprom_semaphore(hw)) - return -E1000_ERR_SWFW_SYNC; - - swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); - if (!(swfw_sync & (fwmask | swmask))) { - break; - } - - /* firmware currently using resource (fwmask) */ - /* or other software thread currently using resource (swmask) */ - e1000_put_hw_eeprom_semaphore(hw); - mdelay(5); - timeout--; - } - - if (!timeout) { - DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); - return -E1000_ERR_SWFW_SYNC; - } - - swfw_sync |= swmask; - E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); - - e1000_put_hw_eeprom_semaphore(hw); - return E1000_SUCCESS; -} - -static void -e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask) -{ - uint32_t swfw_sync; - uint32_t swmask = mask; - - DEBUGFUNC("e1000_swfw_sync_release"); - - if (hw->swfwhw_semaphore_present) { - e1000_release_software_flag(hw); - return; - } - - if (!hw->swfw_sync_present) { - e1000_put_hw_eeprom_semaphore(hw); - return; - } - - /* if (e1000_get_hw_eeprom_semaphore(hw)) - * return -E1000_ERR_SWFW_SYNC; */ - while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS); - /* empty */ - - swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); - swfw_sync &= ~swmask; - E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); - - e1000_put_hw_eeprom_semaphore(hw); -} - -/***************************************************************************** -* Reads the value from a PHY register, if the value is on a specific non zero -* page, sets the page first. -* hw - Struct containing variables accessed by shared code -* reg_addr - address of the PHY register to read -******************************************************************************/ -int32_t -e1000_read_phy_reg(struct e1000_hw *hw, - uint32_t reg_addr, - uint16_t *phy_data) -{ - uint32_t ret_val; - uint16_t swfw; - - DEBUGFUNC("e1000_read_phy_reg"); - - if ((hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_82576) && - (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { - swfw = E1000_SWFW_PHY1_SM; - } else { - swfw = E1000_SWFW_PHY0_SM; - } - if (e1000_swfw_sync_acquire(hw, swfw)) - return -E1000_ERR_SWFW_SYNC; - - if ((hw->phy_type == e1000_phy_igp || - hw->phy_type == e1000_phy_igp_3 || - hw->phy_type == e1000_phy_igp_2) && - (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { - ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, - (uint16_t)reg_addr); - if (ret_val) { - e1000_swfw_sync_release(hw, swfw); - return ret_val; - } - } else if (hw->phy_type == e1000_phy_gg82563) { - if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || - (hw->mac_type == e1000_80003es2lan)) { - /* Select Configuration Page */ - if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { - ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, - (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); - } else { - /* Use Alternative Page Select register to access - * registers 30 and 31 - */ - ret_val = e1000_write_phy_reg_ex(hw, - GG82563_PHY_PAGE_SELECT_ALT, - (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); - } - - if (ret_val) { - e1000_swfw_sync_release(hw, swfw); - return ret_val; - } - } - } - - ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, - phy_data); - - e1000_swfw_sync_release(hw, swfw); - return ret_val; -} - -static int32_t -e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, - uint16_t *phy_data) -{ - uint32_t i; - uint32_t mdic = 0; - const uint32_t phy_addr = 1; - - DEBUGFUNC("e1000_read_phy_reg_ex"); - - if (reg_addr > MAX_PHY_REG_ADDRESS) { - DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); - return -E1000_ERR_PARAM; - } - - if (hw->mac_type > e1000_82543) { - /* Set up Op-code, Phy Address, and register address in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | - (phy_addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_READ)); - - E1000_WRITE_REG(hw, MDIC, mdic); - - /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < 64; i++) { - udelay(50); - mdic = E1000_READ_REG(hw, MDIC); - if (mdic & E1000_MDIC_READY) break; - } - if (!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Read did not complete\n"); - return -E1000_ERR_PHY; - } - if (mdic & E1000_MDIC_ERROR) { - DEBUGOUT("MDI Error\n"); - return -E1000_ERR_PHY; - } - *phy_data = (uint16_t) mdic; - } else { - /* We must first send a preamble through the MDIO pin to signal the - * beginning of an MII instruction. This is done by sending 32 - * consecutive "1" bits. - */ - e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - - /* Now combine the next few fields that are required for a read - * operation. We use this method instead of calling the - * e1000_shift_out_mdi_bits routine five different times. The format of - * a MII read instruction consists of a shift out of 14 bits and is - * defined as follows: - * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> - * followed by a shift in of 18 bits. This first two bits shifted in - * are TurnAround bits used to avoid contention on the MDIO pin when a - * READ operation is performed. These two bits are thrown away - * followed by a shift in of 16 bits which contains the desired data. - */ - mdic = ((reg_addr) | (phy_addr << 5) | - (PHY_OP_READ << 10) | (PHY_SOF << 12)); - - e1000_shift_out_mdi_bits(hw, mdic, 14); - - /* Now that we've shifted out the read command to the MII, we need to - * "shift in" the 16-bit value (18 total bits) of the requested PHY - * register address. - */ - *phy_data = e1000_shift_in_mdi_bits(hw); - } - return E1000_SUCCESS; -} - -/****************************************************************************** -* Writes a value to a PHY register -* -* hw - Struct containing variables accessed by shared code -* reg_addr - address of the PHY register to write -* data - data to write to the PHY -******************************************************************************/ -int32_t -e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, - uint16_t phy_data) -{ - uint32_t ret_val; - uint16_t swfw; - - DEBUGFUNC("e1000_write_phy_reg"); - - if ((hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_82576) && - (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { - swfw = E1000_SWFW_PHY1_SM; - } else { - swfw = E1000_SWFW_PHY0_SM; - } - if (e1000_swfw_sync_acquire(hw, swfw)) - return -E1000_ERR_SWFW_SYNC; - - if ((hw->phy_type == e1000_phy_igp || - hw->phy_type == e1000_phy_igp_3 || - hw->phy_type == e1000_phy_igp_2) && - (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { - ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, - (uint16_t)reg_addr); - if (ret_val) { - e1000_swfw_sync_release(hw, swfw); - return ret_val; - } - } else if (hw->phy_type == e1000_phy_gg82563) { - if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || - (hw->mac_type == e1000_80003es2lan)) { - /* Select Configuration Page */ - if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { - ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, - (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); - } else { - /* Use Alternative Page Select register to access - * registers 30 and 31 - */ - ret_val = e1000_write_phy_reg_ex(hw, - GG82563_PHY_PAGE_SELECT_ALT, - (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); - } - - if (ret_val) { - e1000_swfw_sync_release(hw, swfw); - return ret_val; - } - } - } - - ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, - phy_data); - - e1000_swfw_sync_release(hw, swfw); - return ret_val; -} - -static int32_t -e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, - uint16_t phy_data) -{ - uint32_t i; - uint32_t mdic = 0; - const uint32_t phy_addr = 1; - - DEBUGFUNC("e1000_write_phy_reg_ex"); - - if (reg_addr > MAX_PHY_REG_ADDRESS) { - DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); - return -E1000_ERR_PARAM; - } - - if (hw->mac_type > e1000_82543) { - /* Set up Op-code, Phy Address, register address, and data intended - * for the PHY register in the MDI Control register. The MAC will take - * care of interfacing with the PHY to send the desired data. - */ - mdic = (((uint32_t) phy_data) | - (reg_addr << E1000_MDIC_REG_SHIFT) | - (phy_addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_WRITE)); - - E1000_WRITE_REG(hw, MDIC, mdic); - - /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < 641; i++) { - udelay(5); - mdic = E1000_READ_REG(hw, MDIC); - if (mdic & E1000_MDIC_READY) break; - } - if (!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Write did not complete\n"); - return -E1000_ERR_PHY; - } - } else { - /* We'll need to use the SW defined pins to shift the write command - * out to the PHY. We first send a preamble to the PHY to signal the - * beginning of the MII instruction. This is done by sending 32 - * consecutive "1" bits. - */ - e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - - /* Now combine the remaining required fields that will indicate a - * write operation. We use this method instead of calling the - * e1000_shift_out_mdi_bits routine for each field in the command. The - * format of a MII write instruction is as follows: - * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. - */ - mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | - (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); - mdic <<= 16; - mdic |= (uint32_t) phy_data; - - e1000_shift_out_mdi_bits(hw, mdic, 32); - } - - return E1000_SUCCESS; -} - -static int32_t -e1000_read_kmrn_reg(struct e1000_hw *hw, - uint32_t reg_addr, - uint16_t *data) -{ - uint32_t reg_val; - uint16_t swfw; - DEBUGFUNC("e1000_read_kmrn_reg"); - - if ((hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_82576) && - (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { - swfw = E1000_SWFW_PHY1_SM; - } else { - swfw = E1000_SWFW_PHY0_SM; - } - if (e1000_swfw_sync_acquire(hw, swfw)) - return -E1000_ERR_SWFW_SYNC; - - /* Write register address */ - reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & - E1000_KUMCTRLSTA_OFFSET) | - E1000_KUMCTRLSTA_REN; - E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); - udelay(2); - - /* Read the data returned */ - reg_val = E1000_READ_REG(hw, KUMCTRLSTA); - *data = (uint16_t)reg_val; - - e1000_swfw_sync_release(hw, swfw); - return E1000_SUCCESS; -} - -static int32_t -e1000_write_kmrn_reg(struct e1000_hw *hw, - uint32_t reg_addr, - uint16_t data) -{ - uint32_t reg_val; - uint16_t swfw; - DEBUGFUNC("e1000_write_kmrn_reg"); - - if ((hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_82576) && - (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { - swfw = E1000_SWFW_PHY1_SM; - } else { - swfw = E1000_SWFW_PHY0_SM; - } - if (e1000_swfw_sync_acquire(hw, swfw)) - return -E1000_ERR_SWFW_SYNC; - - reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & - E1000_KUMCTRLSTA_OFFSET) | data; - E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); - udelay(2); - - e1000_swfw_sync_release(hw, swfw); - return E1000_SUCCESS; -} - -/****************************************************************************** -* Returns the PHY to the power-on reset state -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -int32_t -e1000_phy_hw_reset(struct e1000_hw *hw) -{ - uint32_t ctrl, ctrl_ext; - uint32_t led_ctrl; - int32_t ret_val; - uint16_t swfw; - - DEBUGFUNC("e1000_phy_hw_reset"); - - /* In the case of the phy reset being blocked, it's not an error, we - * simply return success without performing the reset. */ - ret_val = e1000_check_phy_reset_block(hw); - if (ret_val) - return E1000_SUCCESS; - - DEBUGOUT("Resetting Phy...\n"); - - if (hw->mac_type > e1000_82543) { - if ((hw->mac_type == e1000_80003es2lan || - hw->mac_type == e1000_82576) && - (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { - swfw = E1000_SWFW_PHY1_SM; - } else { - swfw = E1000_SWFW_PHY0_SM; - } - if (e1000_swfw_sync_acquire(hw, swfw)) { - DEBUGOUT("Unable to acquire swfw sync\n"); - return -E1000_ERR_SWFW_SYNC; - } - /* Read the device control register and assert the E1000_CTRL_PHY_RST - * bit. Then, take it out of reset. - * For pre-e1000_82571 hardware, we delay for 10ms between the assert - * and deassert. For e1000_82571 hardware and later, we instead delay - * for 50us between and 10ms after the deassertion. - */ - ctrl = E1000_READ_REG(hw, CTRL); - E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); - E1000_WRITE_FLUSH(hw); - - if (hw->mac_type < e1000_82571) - msleep(10); - else - udelay(100); - - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - if (hw->mac_type >= e1000_82571) - mdelay(10); - - e1000_swfw_sync_release(hw, swfw); - } else { - /* Read the Extended Device Control Register, assert the PHY_RESET_DIR - * bit to put the PHY into reset. Then, take it out of reset. - */ - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; - ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - msleep(10); - ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - } - udelay(150); - - if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - /* Configure activity LED after PHY reset */ - led_ctrl = E1000_READ_REG(hw, LEDCTL); - led_ctrl &= IGP_ACTIVITY_LED_MASK; - led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - E1000_WRITE_REG(hw, LEDCTL, led_ctrl); - } - - /* Wait for FW to finish PHY configuration. */ - ret_val = e1000_get_phy_cfg_done(hw); - if (ret_val != E1000_SUCCESS) - return ret_val; - e1000_release_software_semaphore(hw); - - if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3)) - ret_val = e1000_init_lcd_from_nvm(hw); - - return ret_val; -} - -/****************************************************************************** -* Resets the PHY -* -* hw - Struct containing variables accessed by shared code -* -* Sets bit 15 of the MII Control register -******************************************************************************/ -int32_t -e1000_phy_reset(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("e1000_phy_reset"); - - /* In the case of the phy reset being blocked, it's not an error, we - * simply return success without performing the reset. */ - ret_val = e1000_check_phy_reset_block(hw); - if (ret_val) - return E1000_SUCCESS; - - switch (hw->phy_type) { - case e1000_phy_igp: - case e1000_phy_igp_2: - case e1000_phy_igp_3: - case e1000_phy_ife: - ret_val = e1000_phy_hw_reset(hw); - if (ret_val) - return ret_val; - break; - default: - ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= MII_CR_RESET; - ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); - if (ret_val) - return ret_val; - - udelay(1); - break; - } - - if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) - e1000_phy_init_script(hw); - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Work-around for 82566 power-down: on D3 entry- -* 1) disable gigabit link -* 2) write VR power-down enable -* 3) read it back -* if successful continue, else issue LCD reset and repeat -* -* hw - struct containing variables accessed by shared code -******************************************************************************/ -void -e1000_phy_powerdown_workaround(struct e1000_hw *hw) -{ - int32_t reg; - uint16_t phy_data; - int32_t retry = 0; - - DEBUGFUNC("e1000_phy_powerdown_workaround"); - - if (hw->phy_type != e1000_phy_igp_3) - return; - - do { - /* Disable link */ - reg = E1000_READ_REG(hw, PHY_CTRL); - E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | - E1000_PHY_CTRL_NOND0A_GBE_DISABLE); - - /* Write VR power-down enable - bits 9:8 should be 10b */ - e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); - phy_data |= (1 << 9); - phy_data &= ~(1 << 8); - e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data); - - /* Read it back and test */ - e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); - if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry) - break; - - /* Issue PHY reset and repeat at most one more time */ - reg = E1000_READ_REG(hw, CTRL); - E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST); - retry++; - } while (retry); - - return; - -} - -/****************************************************************************** -* Work-around for 82566 Kumeran PCS lock loss: -* On link status change (i.e. PCI reset, speed change) and link is up and -* speed is gigabit- -* 0) if workaround is optionally disabled do nothing -* 1) wait 1ms for Kumeran link to come up -* 2) check Kumeran Diagnostic register PCS lock loss bit -* 3) if not set the link is locked (all is good), otherwise... -* 4) reset the PHY -* 5) repeat up to 10 times -* Note: this is only called for IGP3 copper when speed is 1gb. -* -* hw - struct containing variables accessed by shared code -******************************************************************************/ -static int32_t -e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw) -{ - int32_t ret_val; - int32_t reg; - int32_t cnt; - uint16_t phy_data; - - if (hw->kmrn_lock_loss_workaround_disabled) - return E1000_SUCCESS; - - /* Make sure link is up before proceeding. If not just return. - * Attempting this while link is negotiating fouled up link - * stability */ - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - - if (phy_data & MII_SR_LINK_STATUS) { - for (cnt = 0; cnt < 10; cnt++) { - /* read once to clear */ - ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); - if (ret_val) - return ret_val; - /* and again to get new status */ - ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); - if (ret_val) - return ret_val; - - /* check for PCS lock */ - if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) - return E1000_SUCCESS; - - /* Issue PHY reset */ - e1000_phy_hw_reset(hw); - mdelay(5); - } - /* Disable GigE link negotiation */ - reg = E1000_READ_REG(hw, PHY_CTRL); - E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | - E1000_PHY_CTRL_NOND0A_GBE_DISABLE); - - /* unable to acquire PCS lock */ - return E1000_ERR_PHY; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Probes the expected PHY address for known PHY IDs -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int32_t -e1000_detect_gig_phy(struct e1000_hw *hw) -{ - int32_t phy_init_status, ret_val; - uint16_t phy_id_high, phy_id_low; - boolean_t match = FALSE; - - DEBUGFUNC("e1000_detect_gig_phy"); - - if (hw->phy_id != 0) - return E1000_SUCCESS; - - /* The 82571 firmware may still be configuring the PHY. In this - * case, we cannot access the PHY until the configuration is done. So - * we explicitly set the PHY values. */ - if (hw->mac_type == e1000_82571 || - hw->mac_type == e1000_82572) { - hw->phy_id = IGP01E1000_I_PHY_ID; - hw->phy_type = e1000_phy_igp_2; - return E1000_SUCCESS; - } - - /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work- - * around that forces PHY page 0 to be set or the reads fail. The rest of - * the code in this routine uses e1000_read_phy_reg to read the PHY ID. - * So for ESB-2 we need to have this set so our reads won't fail. If the - * attached PHY is not a e1000_phy_gg82563, the routines below will figure - * this out as well. */ - if (hw->mac_type == e1000_80003es2lan) - hw->phy_type = e1000_phy_gg82563; - - /* Read the PHY ID Registers to identify which PHY is onboard. */ - ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); - if (ret_val) - return ret_val; - - hw->phy_id = (uint32_t) (phy_id_high << 16); - udelay(20); - ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); - if (ret_val) - return ret_val; - - hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); - hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; - - switch (hw->mac_type) { - case e1000_82543: - if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; - break; - case e1000_82544: - if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; - break; - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; - break; - case e1000_82573: - if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; - break; - case e1000_80003es2lan: - if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; - break; - case e1000_ich8lan: - if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE; - if (hw->phy_id == IFE_E_PHY_ID) match = TRUE; - if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE; - if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE; - break; - case e1000_82576: - match = TRUE; - break; - default: - DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); - return -E1000_ERR_CONFIG; - } - phy_init_status = e1000_set_phy_type(hw); - - if ((match) && (phy_init_status == E1000_SUCCESS)) { - DEBUGOUT1("PHY ID %#08x detected\n", hw->phy_id); - return E1000_SUCCESS; - } - DEBUGOUT1("Invalid PHY ID %#08x\n", hw->phy_id); - return -E1000_ERR_PHY; -} - -/****************************************************************************** -* Resets the PHY's DSP -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ -static int32_t -e1000_phy_reset_dsp(struct e1000_hw *hw) -{ - int32_t ret_val; - DEBUGFUNC("e1000_phy_reset_dsp"); - - do { - if (hw->phy_type != e1000_phy_gg82563) { - ret_val = e1000_write_phy_reg(hw, 29, 0x001d); - if (ret_val) break; - } - ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); - if (ret_val) break; - ret_val = e1000_write_phy_reg(hw, 30, 0x0000); - if (ret_val) break; - ret_val = E1000_SUCCESS; - } while (0); - - return ret_val; -} - -/****************************************************************************** -* Get PHY information from various PHY registers for igp PHY only. -* -* hw - Struct containing variables accessed by shared code -* phy_info - PHY information structure -******************************************************************************/ -static int32_t -e1000_phy_igp_get_info(struct e1000_hw *hw, - struct e1000_phy_info *phy_info) -{ - int32_t ret_val; - uint16_t phy_data, min_length, max_length, average; - e1000_rev_polarity polarity; - - DEBUGFUNC("e1000_phy_igp_get_info"); - - /* The downshift status is checked only once, after link is established, - * and it stored in the hw->speed_downgraded parameter. */ - phy_info->downshift = (e1000_downshift)hw->speed_downgraded; - - /* IGP01E1000 does not need to support it. */ - phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; - - /* IGP01E1000 always correct polarity reversal */ - phy_info->polarity_correction = e1000_polarity_reversal_enabled; - - /* Check polarity status */ - ret_val = e1000_check_polarity(hw, &polarity); - if (ret_val) - return ret_val; - - phy_info->cable_polarity = polarity; - - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >> - IGP01E1000_PSSR_MDIX_SHIFT); - - if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - /* Local/Remote Receiver Information are only valid at 1000 Mbps */ - ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> - SR_1000T_LOCAL_RX_STATUS_SHIFT) ? - e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; - phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> - SR_1000T_REMOTE_RX_STATUS_SHIFT) ? - e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; - - /* Get cable length */ - ret_val = e1000_get_cable_length(hw, &min_length, &max_length); - if (ret_val) - return ret_val; - - /* Translate to old method */ - average = (max_length + min_length) / 2; - - if (average <= e1000_igp_cable_length_50) - phy_info->cable_length = e1000_cable_length_50; - else if (average <= e1000_igp_cable_length_80) - phy_info->cable_length = e1000_cable_length_50_80; - else if (average <= e1000_igp_cable_length_110) - phy_info->cable_length = e1000_cable_length_80_110; - else if (average <= e1000_igp_cable_length_140) - phy_info->cable_length = e1000_cable_length_110_140; - else - phy_info->cable_length = e1000_cable_length_140; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Get PHY information from various PHY registers for ife PHY only. -* -* hw - Struct containing variables accessed by shared code -* phy_info - PHY information structure -******************************************************************************/ -static int32_t -e1000_phy_ife_get_info(struct e1000_hw *hw, - struct e1000_phy_info *phy_info) -{ - int32_t ret_val; - uint16_t phy_data; - e1000_rev_polarity polarity; - - DEBUGFUNC("e1000_phy_ife_get_info"); - - phy_info->downshift = (e1000_downshift)hw->speed_downgraded; - phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; - - ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); - if (ret_val) - return ret_val; - phy_info->polarity_correction = - ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >> - IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ? - e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; - - if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) { - ret_val = e1000_check_polarity(hw, &polarity); - if (ret_val) - return ret_val; - } else { - /* Polarity is forced. */ - polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >> - IFE_PSC_FORCE_POLARITY_SHIFT) ? - e1000_rev_polarity_reversed : e1000_rev_polarity_normal; - } - phy_info->cable_polarity = polarity; - - ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - phy_info->mdix_mode = (e1000_auto_x_mode) - ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >> - IFE_PMC_MDIX_MODE_SHIFT); - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Get PHY information from various PHY registers fot m88 PHY only. -* -* hw - Struct containing variables accessed by shared code -* phy_info - PHY information structure -******************************************************************************/ -static int32_t -e1000_phy_m88_get_info(struct e1000_hw *hw, - struct e1000_phy_info *phy_info) -{ - int32_t ret_val; - uint16_t phy_data; - e1000_rev_polarity polarity; - - DEBUGFUNC("e1000_phy_m88_get_info"); - - /* The downshift status is checked only once, after link is established, - * and it stored in the hw->speed_downgraded parameter. */ - phy_info->downshift = (e1000_downshift)hw->speed_downgraded; - - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_info->extended_10bt_distance = - ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> - M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? - e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal; - - phy_info->polarity_correction = - ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> - M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? - e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; - - /* Check polarity status */ - ret_val = e1000_check_polarity(hw, &polarity); - if (ret_val) - return ret_val; - phy_info->cable_polarity = polarity; - - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >> - M88E1000_PSSR_MDIX_SHIFT); - - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { - /* Cable Length Estimation and Local/Remote Receiver Information - * are only valid at 1000 Mbps. - */ - if (hw->phy_type != e1000_phy_gg82563) { - phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT); - } else { - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, - &phy_data); - if (ret_val) - return ret_val; - - phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH); - } - - ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> - SR_1000T_LOCAL_RX_STATUS_SHIFT) ? - e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; - phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> - SR_1000T_REMOTE_RX_STATUS_SHIFT) ? - e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; - - } - - return E1000_SUCCESS; -} - -/****************************************************************************** -* Get PHY information from various PHY registers -* -* hw - Struct containing variables accessed by shared code -* phy_info - PHY information structure -******************************************************************************/ -int32_t -e1000_phy_get_info(struct e1000_hw *hw, - struct e1000_phy_info *phy_info) -{ - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("e1000_phy_get_info"); - - phy_info->cable_length = e1000_cable_length_undefined; - phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; - phy_info->cable_polarity = e1000_rev_polarity_undefined; - phy_info->downshift = e1000_downshift_undefined; - phy_info->polarity_correction = e1000_polarity_reversal_undefined; - phy_info->mdix_mode = e1000_auto_x_mode_undefined; - phy_info->local_rx = e1000_1000t_rx_status_undefined; - phy_info->remote_rx = e1000_1000t_rx_status_undefined; - - if (hw->media_type != e1000_media_type_copper) { - DEBUGOUT("PHY info is only valid for copper media\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { - DEBUGOUT("PHY info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - if (hw->phy_type == e1000_phy_igp || - hw->phy_type == e1000_phy_igp_3 || - hw->phy_type == e1000_phy_igp_2) - return e1000_phy_igp_get_info(hw, phy_info); - else if (hw->phy_type == e1000_phy_ife) - return e1000_phy_ife_get_info(hw, phy_info); - else - return e1000_phy_m88_get_info(hw, phy_info); -} - -int32_t -e1000_validate_mdi_setting(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_validate_mdi_settings"); - - if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { - DEBUGOUT("Invalid MDI setting detected\n"); - hw->mdix = 1; - return -E1000_ERR_CONFIG; - } - return E1000_SUCCESS; -} - - -/****************************************************************************** - * Sets up eeprom variables in the hw struct. Must be called after mac_type - * is configured. Additionally, if this is ICH8, the flash controller GbE - * registers must be mapped, or this will crash. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -int32_t -e1000_init_eeprom_params(struct e1000_hw *hw) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd = E1000_READ_REG(hw, EECD); - int32_t ret_val = E1000_SUCCESS; - uint16_t eeprom_size; - - DEBUGFUNC("e1000_init_eeprom_params"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - eeprom->type = e1000_eeprom_microwire; - eeprom->word_size = 64; - eeprom->opcode_bits = 3; - eeprom->address_bits = 6; - eeprom->delay_usec = 50; - eeprom->use_eerd = FALSE; - eeprom->use_eewr = FALSE; - break; - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - eeprom->type = e1000_eeprom_microwire; - eeprom->opcode_bits = 3; - eeprom->delay_usec = 50; - if (eecd & E1000_EECD_SIZE) { - eeprom->word_size = 256; - eeprom->address_bits = 8; - } else { - eeprom->word_size = 64; - eeprom->address_bits = 6; - } - eeprom->use_eerd = FALSE; - eeprom->use_eewr = FALSE; - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - if (eecd & E1000_EECD_TYPE) { - eeprom->type = e1000_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - } else { - eeprom->type = e1000_eeprom_microwire; - eeprom->opcode_bits = 3; - eeprom->delay_usec = 50; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->word_size = 256; - eeprom->address_bits = 8; - } else { - eeprom->word_size = 64; - eeprom->address_bits = 6; - } - } - eeprom->use_eerd = FALSE; - eeprom->use_eewr = FALSE; - break; - case e1000_82571: - case e1000_82572: - eeprom->type = e1000_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - eeprom->use_eerd = FALSE; - eeprom->use_eewr = FALSE; - break; - case e1000_82573: - eeprom->type = e1000_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - eeprom->use_eerd = TRUE; - eeprom->use_eewr = TRUE; - if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) { - eeprom->type = e1000_eeprom_flash; - eeprom->word_size = 2048; - - /* Ensure that the Autonomous FLASH update bit is cleared due to - * Flash update issue on parts which use a FLASH for NVM. */ - eecd &= ~E1000_EECD_AUPDEN; - E1000_WRITE_REG(hw, EECD, eecd); - } - break; - case e1000_80003es2lan: - eeprom->type = e1000_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - eeprom->use_eerd = TRUE; - eeprom->use_eewr = FALSE; - break; - case e1000_ich8lan: - { - int32_t i = 0; - uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG); - - eeprom->type = e1000_eeprom_ich8; - eeprom->use_eerd = FALSE; - eeprom->use_eewr = FALSE; - eeprom->word_size = E1000_SHADOW_RAM_WORDS; - - /* Zero the shadow RAM structure. But don't load it from NVM - * so as to save time for driver init */ - if (hw->eeprom_shadow_ram != NULL) { - for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { - hw->eeprom_shadow_ram[i].modified = FALSE; - hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; - } - } - - hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) * - ICH_FLASH_SECTOR_SIZE; - - hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1; - hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK); - - hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE; - - hw->flash_bank_size /= 2 * sizeof(uint16_t); - - break; - } - case e1000_82576: - { - uint16_t size; - - eeprom->type = e1000_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - eeprom->use_eerd = TRUE; - eeprom->use_eewr = FALSE; - - size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> - E1000_EECD_SIZE_EX_SHIFT); - /* - * Added to a constant, "size" becomes the left-shift value - * for setting word_size. - */ - size += EEPROM_WORD_SIZE_SHIFT; - - /* EEPROM access above 16k is unsupported */ - if (size > 14) - size = 14; - eeprom->word_size = 1 << size; - - break; - } - default: - break; - } - - if (eeprom->type == e1000_eeprom_spi) { - /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to - * 32KB (incremented by powers of 2). - */ - if (hw->mac_type <= e1000_82547_rev_2) { - /* Set to default value for initial eeprom read. */ - eeprom->word_size = 64; - ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); - if (ret_val) - return ret_val; - eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; - /* 256B eeprom size was not supported in earlier hardware, so we - * bump eeprom_size up one to ensure that "1" (which maps to 256B) - * is never the result used in the shifting logic below. */ - if (eeprom_size) - eeprom_size++; - } else { - eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> - E1000_EECD_SIZE_EX_SHIFT); - } - - eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); - } - return ret_val; -} - -/****************************************************************************** - * Raises the EEPROM's clock input. - * - * hw - Struct containing variables accessed by shared code - * eecd - EECD's current value - *****************************************************************************/ -static void -e1000_raise_ee_clk(struct e1000_hw *hw, - uint32_t *eecd) -{ - /* Raise the clock input to the EEPROM (by setting the SK bit), and then - * wait <delay> microseconds. - */ - *eecd = *eecd | E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, *eecd); - E1000_WRITE_FLUSH(hw); - udelay(hw->eeprom.delay_usec); -} - -/****************************************************************************** - * Lowers the EEPROM's clock input. - * - * hw - Struct containing variables accessed by shared code - * eecd - EECD's current value - *****************************************************************************/ -static void -e1000_lower_ee_clk(struct e1000_hw *hw, - uint32_t *eecd) -{ - /* Lower the clock input to the EEPROM (by clearing the SK bit), and then - * wait 50 microseconds. - */ - *eecd = *eecd & ~E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, *eecd); - E1000_WRITE_FLUSH(hw); - udelay(hw->eeprom.delay_usec); -} - -/****************************************************************************** - * Shift data bits out to the EEPROM. - * - * hw - Struct containing variables accessed by shared code - * data - data to send to the EEPROM - * count - number of bits to shift out - *****************************************************************************/ -static void -e1000_shift_out_ee_bits(struct e1000_hw *hw, - uint16_t data, - uint16_t count) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd; - uint32_t mask; - - /* We need to shift "count" bits out to the EEPROM. So, value in the - * "data" parameter will be shifted out to the EEPROM one bit at a time. - * In order to do this, "data" must be broken down into bits. - */ - mask = 0x01 << (count - 1); - eecd = E1000_READ_REG(hw, EECD); - if (eeprom->type == e1000_eeprom_microwire) { - eecd &= ~E1000_EECD_DO; - } else if (eeprom->type == e1000_eeprom_spi) { - eecd |= E1000_EECD_DO; - } - do { - /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", - * and then raising and then lowering the clock (the SK bit controls - * the clock input to the EEPROM). A "0" is shifted out to the EEPROM - * by setting "DI" to "0" and then raising and then lowering the clock. - */ - eecd &= ~E1000_EECD_DI; - - if (data & mask) - eecd |= E1000_EECD_DI; - - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - - udelay(eeprom->delay_usec); - - e1000_raise_ee_clk(hw, &eecd); - e1000_lower_ee_clk(hw, &eecd); - - mask = mask >> 1; - - } while (mask); - - /* We leave the "DI" bit set to "0" when we leave this routine. */ - eecd &= ~E1000_EECD_DI; - E1000_WRITE_REG(hw, EECD, eecd); -} - -/****************************************************************************** - * Shift data bits in from the EEPROM - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static uint16_t -e1000_shift_in_ee_bits(struct e1000_hw *hw, - uint16_t count) -{ - uint32_t eecd; - uint32_t i; - uint16_t data; - - /* In order to read a register from the EEPROM, we need to shift 'count' - * bits in from the EEPROM. Bits are "shifted in" by raising the clock - * input to the EEPROM (setting the SK bit), and then reading the value of - * the "DO" bit. During this "shifting in" process the "DI" bit should - * always be clear. - */ - - eecd = E1000_READ_REG(hw, EECD); - - eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); - data = 0; - - for (i = 0; i < count; i++) { - data = data << 1; - e1000_raise_ee_clk(hw, &eecd); - - eecd = E1000_READ_REG(hw, EECD); - - eecd &= ~(E1000_EECD_DI); - if (eecd & E1000_EECD_DO) - data |= 1; - - e1000_lower_ee_clk(hw, &eecd); - } - - return data; -} - -/****************************************************************************** - * Prepares EEPROM for access - * - * hw - Struct containing variables accessed by shared code - * - * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This - * function should be called before issuing a command to the EEPROM. - *****************************************************************************/ -static int32_t -e1000_acquire_eeprom(struct e1000_hw *hw) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd, i=0; - - DEBUGFUNC("e1000_acquire_eeprom"); - - if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) - return -E1000_ERR_SWFW_SYNC; - eecd = E1000_READ_REG(hw, EECD); - - if (hw->mac_type != e1000_82573) { - /* Request EEPROM Access */ - if (hw->mac_type > e1000_82544) { - eecd |= E1000_EECD_REQ; - E1000_WRITE_REG(hw, EECD, eecd); - eecd = E1000_READ_REG(hw, EECD); - while ((!(eecd & E1000_EECD_GNT)) && - (i < E1000_EEPROM_GRANT_ATTEMPTS)) { - i++; - udelay(5); - eecd = E1000_READ_REG(hw, EECD); - } - if (!(eecd & E1000_EECD_GNT)) { - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, EECD, eecd); - DEBUGOUT("Could not acquire EEPROM grant\n"); - e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); - return -E1000_ERR_EEPROM; - } - } - } - - /* Setup EEPROM for Read/Write */ - - if (eeprom->type == e1000_eeprom_microwire) { - /* Clear SK and DI */ - eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); - E1000_WRITE_REG(hw, EECD, eecd); - - /* Set CS */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - } else if (eeprom->type == e1000_eeprom_spi) { - /* Clear SK and CS */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, EECD, eecd); - udelay(1); - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Returns EEPROM to a "standby" state - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void -e1000_standby_eeprom(struct e1000_hw *hw) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd; - - eecd = E1000_READ_REG(hw, EECD); - - if (eeprom->type == e1000_eeprom_microwire) { - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - - /* Clock high */ - eecd |= E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - - /* Select EEPROM */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - - /* Clock low */ - eecd &= ~E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - } else if (eeprom->type == e1000_eeprom_spi) { - /* Toggle CS to flush commands */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - eecd &= ~E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(eeprom->delay_usec); - } -} - -/****************************************************************************** - * Terminates a command by inverting the EEPROM's chip select pin - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void -e1000_release_eeprom(struct e1000_hw *hw) -{ - uint32_t eecd; - - DEBUGFUNC("e1000_release_eeprom"); - - eecd = E1000_READ_REG(hw, EECD); - - if (hw->eeprom.type == e1000_eeprom_spi) { - eecd |= E1000_EECD_CS; /* Pull CS high */ - eecd &= ~E1000_EECD_SK; /* Lower SCK */ - - E1000_WRITE_REG(hw, EECD, eecd); - - udelay(hw->eeprom.delay_usec); - } else if (hw->eeprom.type == e1000_eeprom_microwire) { - /* cleanup eeprom */ - - /* CS on Microwire is active-high */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); - - E1000_WRITE_REG(hw, EECD, eecd); - - /* Rising edge of clock */ - eecd |= E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(hw->eeprom.delay_usec); - - /* Falling edge of clock */ - eecd &= ~E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - udelay(hw->eeprom.delay_usec); - } - - /* Stop requesting EEPROM access */ - if (hw->mac_type > e1000_82544) { - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, EECD, eecd); - } - - e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); -} - -/****************************************************************************** - * Reads a 16 bit word from the EEPROM. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static int32_t -e1000_spi_eeprom_ready(struct e1000_hw *hw) -{ - uint16_t retry_count = 0; - uint8_t spi_stat_reg; - - DEBUGFUNC("e1000_spi_eeprom_ready"); - - /* Read "Status Register" repeatedly until the LSB is cleared. The - * EEPROM will signal that the command has been completed by clearing - * bit 0 of the internal status register. If it's not cleared within - * 5 milliseconds, then error out. - */ - retry_count = 0; - do { - e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, - hw->eeprom.opcode_bits); - spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); - if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) - break; - - udelay(5); - retry_count += 5; - - e1000_standby_eeprom(hw); - } while (retry_count < EEPROM_MAX_RETRY_SPI); - - /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and - * only 0-5mSec on 5V devices) - */ - if (retry_count >= EEPROM_MAX_RETRY_SPI) { - DEBUGOUT("SPI EEPROM Status error\n"); - return -E1000_ERR_EEPROM; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Reads a 16 bit word from the EEPROM. - * - * hw - Struct containing variables accessed by shared code - * offset - offset of word in the EEPROM to read - * data - word read from the EEPROM - * words - number of words to read - *****************************************************************************/ -int32_t -e1000_read_eeprom(struct e1000_hw *hw, - uint16_t offset, - uint16_t words, - uint16_t *data) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t i = 0; - - DEBUGFUNC("e1000_read_eeprom"); - - /* If eeprom is not yet detected, do so now */ - if (eeprom->word_size == 0) - e1000_init_eeprom_params(hw); - - /* A check for invalid values: offset too large, too many words, and not - * enough words. - */ - if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || - (words == 0)) { - DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size); - return -E1000_ERR_EEPROM; - } - - /* EEPROM's that don't use EERD to read require us to bit-bang the SPI - * directly. In this case, we need to acquire the EEPROM so that - * FW or other port software does not interrupt. - */ - if (hw->eeprom.use_eerd == FALSE && e1000_is_onboard_nvm_eeprom(hw)) { - /* Prepare the EEPROM for bit-bang reading */ - if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) - return -E1000_ERR_EEPROM; - } - - /* Eerd register EEPROM access requires no eeprom aquire/release */ - if (eeprom->use_eerd == TRUE) - return e1000_read_eeprom_eerd(hw, offset, words, data); - - /* ICH EEPROM access is done via the ICH flash controller */ - if (eeprom->type == e1000_eeprom_ich8) - return e1000_read_eeprom_ich8(hw, offset, words, data); - - /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have - * acquired the EEPROM at this point, so any returns should relase it */ - if (eeprom->type == e1000_eeprom_spi) { - uint16_t word_in; - uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; - - if (e1000_spi_eeprom_ready(hw)) { - e1000_release_eeprom(hw); - return -E1000_ERR_EEPROM; - } - - e1000_standby_eeprom(hw); - - /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if ((eeprom->address_bits == 8) && (offset >= 128)) - read_opcode |= EEPROM_A8_OPCODE_SPI; - - /* Send the READ command (opcode + addr) */ - e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); - e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits); - - /* Read the data. The address of the eeprom internally increments with - * each byte (spi) being read, saving on the overhead of eeprom setup - * and tear-down. The address counter will roll over if reading beyond - * the size of the eeprom, thus allowing the entire memory to be read - * starting from any offset. */ - for (i = 0; i < words; i++) { - word_in = e1000_shift_in_ee_bits(hw, 16); - data[i] = (word_in >> 8) | (word_in << 8); - } - } else if (eeprom->type == e1000_eeprom_microwire) { - for (i = 0; i < words; i++) { - /* Send the READ command (opcode + addr) */ - e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, - eeprom->opcode_bits); - e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), - eeprom->address_bits); - - /* Read the data. For microwire, each word requires the overhead - * of eeprom setup and tear-down. */ - data[i] = e1000_shift_in_ee_bits(hw, 16); - e1000_standby_eeprom(hw); - } - } - - /* End this read operation */ - e1000_release_eeprom(hw); - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Reads a 16 bit word from the EEPROM using the EERD register. - * - * hw - Struct containing variables accessed by shared code - * offset - offset of word in the EEPROM to read - * data - word read from the EEPROM - * words - number of words to read - *****************************************************************************/ -static int32_t -e1000_read_eeprom_eerd(struct e1000_hw *hw, - uint16_t offset, - uint16_t words, - uint16_t *data) -{ - uint32_t i, eerd = 0; - int32_t error = 0; - - for (i = 0; i < words; i++) { - eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + - E1000_EEPROM_RW_REG_START; - - E1000_WRITE_REG(hw, EERD, eerd); - error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); - - if (error) { - break; - } - data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); - - } - - return error; -} - -/****************************************************************************** - * Writes a 16 bit word from the EEPROM using the EEWR register. - * - * hw - Struct containing variables accessed by shared code - * offset - offset of word in the EEPROM to read - * data - word read from the EEPROM - * words - number of words to read - *****************************************************************************/ -static int32_t -e1000_write_eeprom_eewr(struct e1000_hw *hw, - uint16_t offset, - uint16_t words, - uint16_t *data) -{ - uint32_t register_value = 0; - uint32_t i = 0; - int32_t error = 0; - - if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) - return -E1000_ERR_SWFW_SYNC; - - for (i = 0; i < words; i++) { - register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | - ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | - E1000_EEPROM_RW_REG_START; - - error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); - if (error) { - break; - } - - E1000_WRITE_REG(hw, EEWR, register_value); - - error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); - - if (error) { - break; - } - } - - e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); - return error; -} - -/****************************************************************************** - * Polls the status bit (bit 1) of the EERD to determine when the read is done. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static int32_t -e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) -{ - uint32_t attempts = 100000; - uint32_t i, reg = 0; - int32_t done = E1000_ERR_EEPROM; - - for (i = 0; i < attempts; i++) { - if (eerd == E1000_EEPROM_POLL_READ) - reg = E1000_READ_REG(hw, EERD); - else - reg = E1000_READ_REG(hw, EEWR); - - if (reg & E1000_EEPROM_RW_REG_DONE) { - done = E1000_SUCCESS; - break; - } - udelay(5); - } - - return done; -} - -/*************************************************************************** -* Description: Determines if the onboard NVM is FLASH or EEPROM. -* -* hw - Struct containing variables accessed by shared code -****************************************************************************/ -static boolean_t -e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) -{ - uint32_t eecd = 0; - - DEBUGFUNC("e1000_is_onboard_nvm_eeprom"); - - assert(hw->mac_type != e1000_82576); - - if (hw->mac_type == e1000_ich8lan) - return FALSE; - - if (hw->mac_type == e1000_82573) { - eecd = E1000_READ_REG(hw, EECD); - - /* Isolate bits 15 & 16 */ - eecd = ((eecd >> 15) & 0x03); - - /* If both bits are set, device is Flash type */ - if (eecd == 0x03) { - return FALSE; - } - } - return TRUE; -} - -/****************************************************************************** - * Verifies that the EEPROM has a valid checksum - * - * hw - Struct containing variables accessed by shared code - * - * Reads the first 64 16 bit words of the EEPROM and sums the values read. - * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is - * valid. - *****************************************************************************/ -int32_t -e1000_validate_eeprom_checksum(struct e1000_hw *hw) -{ - uint16_t checksum = 0; - uint16_t i, eeprom_data; - - DEBUGFUNC("e1000_validate_eeprom_checksum"); - - if ((hw->mac_type == e1000_82573) && - (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) { - /* Check bit 4 of word 10h. If it is 0, firmware is done updating - * 10h-12h. Checksum may need to be fixed. */ - e1000_read_eeprom(hw, 0x10, 1, &eeprom_data); - if ((eeprom_data & 0x10) == 0) { - /* Read 0x23 and check bit 15. This bit is a 1 when the checksum - * has already been fixed. If the checksum is still wrong and this - * bit is a 1, we need to return bad checksum. Otherwise, we need - * to set this bit to a 1 and update the checksum. */ - e1000_read_eeprom(hw, 0x23, 1, &eeprom_data); - if ((eeprom_data & 0x8000) == 0) { - eeprom_data |= 0x8000; - e1000_write_eeprom(hw, 0x23, 1, &eeprom_data); - e1000_update_eeprom_checksum(hw); - } - } - } - - if (hw->mac_type == e1000_ich8lan) { - /* Drivers must allocate the shadow ram structure for the - * EEPROM checksum to be updated. Otherwise, this bit as well - * as the checksum must both be set correctly for this - * validation to pass. - */ - e1000_read_eeprom(hw, 0x19, 1, &eeprom_data); - if ((eeprom_data & 0x40) == 0) { - eeprom_data |= 0x40; - e1000_write_eeprom(hw, 0x19, 1, &eeprom_data); - e1000_update_eeprom_checksum(hw); - } - } - - for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { - if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - checksum += eeprom_data; - } - - if (checksum == (uint16_t) EEPROM_SUM) - return E1000_SUCCESS; - else { - DEBUGOUT("EEPROM Checksum Invalid\n"); - return -E1000_ERR_EEPROM; - } -} - -/****************************************************************************** - * Calculates the EEPROM checksum and writes it to the EEPROM - * - * hw - Struct containing variables accessed by shared code - * - * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. - * Writes the difference to word offset 63 of the EEPROM. - *****************************************************************************/ -int32_t -e1000_update_eeprom_checksum(struct e1000_hw *hw) -{ - uint32_t ctrl_ext; - uint16_t checksum = 0; - uint16_t i, eeprom_data; - - DEBUGFUNC("e1000_update_eeprom_checksum"); - - for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { - if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - checksum += eeprom_data; - } - checksum = (uint16_t) EEPROM_SUM - checksum; - if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { - DEBUGOUT("EEPROM Write Error\n"); - return -E1000_ERR_EEPROM; - } else if (hw->eeprom.type == e1000_eeprom_flash) { - e1000_commit_shadow_ram(hw); - } else if (hw->eeprom.type == e1000_eeprom_ich8) { - e1000_commit_shadow_ram(hw); - /* Reload the EEPROM, or else modifications will not appear - * until after next adapter reset. */ - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - msleep(10); - } - return E1000_SUCCESS; -} - -/****************************************************************************** - * Parent function for writing words to the different EEPROM types. - * - * hw - Struct containing variables accessed by shared code - * offset - offset within the EEPROM to be written to - * words - number of words to write - * data - 16 bit word to be written to the EEPROM - * - * If e1000_update_eeprom_checksum is not called after this function, the - * EEPROM will most likely contain an invalid checksum. - *****************************************************************************/ -int32_t -e1000_write_eeprom(struct e1000_hw *hw, - uint16_t offset, - uint16_t words, - uint16_t *data) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - int32_t status = 0; - - DEBUGFUNC("e1000_write_eeprom"); - - /* If eeprom is not yet detected, do so now */ - if (eeprom->word_size == 0) - e1000_init_eeprom_params(hw); - - /* A check for invalid values: offset too large, too many words, and not - * enough words. - */ - if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || - (words == 0)) { - DEBUGOUT("\"words\" parameter out of bounds\n"); - return -E1000_ERR_EEPROM; - } - - /* 82573 writes only through eewr */ - if (eeprom->use_eewr == TRUE) - return e1000_write_eeprom_eewr(hw, offset, words, data); - - if (eeprom->type == e1000_eeprom_ich8) - return e1000_write_eeprom_ich8(hw, offset, words, data); - - /* Prepare the EEPROM for writing */ - if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) - return -E1000_ERR_EEPROM; - - if (eeprom->type == e1000_eeprom_microwire) { - status = e1000_write_eeprom_microwire(hw, offset, words, data); - } else { - status = e1000_write_eeprom_spi(hw, offset, words, data); - msleep(10); - } - - /* Done with writing */ - e1000_release_eeprom(hw); - - return status; -} - -/****************************************************************************** - * Writes a 16 bit word to a given offset in an SPI EEPROM. - * - * hw - Struct containing variables accessed by shared code - * offset - offset within the EEPROM to be written to - * words - number of words to write - * data - pointer to array of 8 bit words to be written to the EEPROM - * - *****************************************************************************/ -static int32_t -e1000_write_eeprom_spi(struct e1000_hw *hw, - uint16_t offset, - uint16_t words, - uint16_t *data) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint16_t widx = 0; - - DEBUGFUNC("e1000_write_eeprom_spi"); - - while (widx < words) { - uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI; - - if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; - - e1000_standby_eeprom(hw); - - /* Send the WRITE ENABLE command (8 bit opcode ) */ - e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, - eeprom->opcode_bits); - - e1000_standby_eeprom(hw); - - /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if ((eeprom->address_bits == 8) && (offset >= 128)) - write_opcode |= EEPROM_A8_OPCODE_SPI; - - /* Send the Write command (8-bit opcode + addr) */ - e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); - - e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2), - eeprom->address_bits); - - /* Send the data */ - - /* Loop to allow for up to whole page write (32 bytes) of eeprom */ - while (widx < words) { - uint16_t word_out = data[widx]; - word_out = (word_out >> 8) | (word_out << 8); - e1000_shift_out_ee_bits(hw, word_out, 16); - widx++; - - /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE - * operation, while the smaller eeproms are capable of an 8-byte - * PAGE WRITE operation. Break the inner loop to pass new address - */ - if ((((offset + widx)*2) % eeprom->page_size) == 0) { - e1000_standby_eeprom(hw); - break; - } - } - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Writes a 16 bit word to a given offset in a Microwire EEPROM. - * - * hw - Struct containing variables accessed by shared code - * offset - offset within the EEPROM to be written to - * words - number of words to write - * data - pointer to array of 16 bit words to be written to the EEPROM - * - *****************************************************************************/ -static int32_t -e1000_write_eeprom_microwire(struct e1000_hw *hw, - uint16_t offset, - uint16_t words, - uint16_t *data) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd; - uint16_t words_written = 0; - uint16_t i = 0; - - DEBUGFUNC("e1000_write_eeprom_microwire"); - - /* Send the write enable command to the EEPROM (3-bit opcode plus - * 6/8-bit dummy address beginning with 11). It's less work to include - * the 11 of the dummy address as part of the opcode than it is to shift - * it over the correct number of bits for the address. This puts the - * EEPROM into write/erase mode. - */ - e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, - (uint16_t)(eeprom->opcode_bits + 2)); - - e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); - - /* Prepare the EEPROM */ - e1000_standby_eeprom(hw); - - while (words_written < words) { - /* Send the Write command (3-bit opcode + addr) */ - e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, - eeprom->opcode_bits); - - e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written), - eeprom->address_bits); - - /* Send the data */ - e1000_shift_out_ee_bits(hw, data[words_written], 16); - - /* Toggle the CS line. This in effect tells the EEPROM to execute - * the previous command. - */ - e1000_standby_eeprom(hw); - - /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will - * signal that the command has been completed by raising the DO signal. - * If DO does not go high in 10 milliseconds, then error out. - */ - for (i = 0; i < 200; i++) { - eecd = E1000_READ_REG(hw, EECD); - if (eecd & E1000_EECD_DO) break; - udelay(50); - } - if (i == 200) { - DEBUGOUT("EEPROM Write did not complete\n"); - return -E1000_ERR_EEPROM; - } - - /* Recover from write */ - e1000_standby_eeprom(hw); - - words_written++; - } - - /* Send the write disable command to the EEPROM (3-bit opcode plus - * 6/8-bit dummy address beginning with 10). It's less work to include - * the 10 of the dummy address as part of the opcode than it is to shift - * it over the correct number of bits for the address. This takes the - * EEPROM out of write/erase mode. - */ - e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, - (uint16_t)(eeprom->opcode_bits + 2)); - - e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Flushes the cached eeprom to NVM. This is done by saving the modified values - * in the eeprom cache and the non modified values in the currently active bank - * to the new bank. - * - * hw - Struct containing variables accessed by shared code - * offset - offset of word in the EEPROM to read - * data - word read from the EEPROM - * words - number of words to read - *****************************************************************************/ -static int32_t -e1000_commit_shadow_ram(struct e1000_hw *hw) -{ - uint32_t attempts = 100000; - uint32_t eecd = 0; - uint32_t flop = 0; - uint32_t i = 0; - int32_t error = E1000_SUCCESS; - uint32_t old_bank_offset = 0; - uint32_t new_bank_offset = 0; - uint8_t low_byte = 0; - uint8_t high_byte = 0; - boolean_t sector_write_failed = FALSE; - - if (hw->mac_type == e1000_82573) { - /* The flop register will be used to determine if flash type is STM */ - flop = E1000_READ_REG(hw, FLOP); - for (i=0; i < attempts; i++) { - eecd = E1000_READ_REG(hw, EECD); - if ((eecd & E1000_EECD_FLUPD) == 0) { - break; - } - udelay(5); - } - - if (i == attempts) { - return -E1000_ERR_EEPROM; - } - - /* If STM opcode located in bits 15:8 of flop, reset firmware */ - if ((flop & 0xFF00) == E1000_STM_OPCODE) { - E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET); - } - - /* Perform the flash update */ - E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD); - - for (i=0; i < attempts; i++) { - eecd = E1000_READ_REG(hw, EECD); - if ((eecd & E1000_EECD_FLUPD) == 0) { - break; - } - udelay(5); - } - - if (i == attempts) { - return -E1000_ERR_EEPROM; - } - } - - if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) { - /* We're writing to the opposite bank so if we're on bank 1, - * write to bank 0 etc. We also need to erase the segment that - * is going to be written */ - if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) { - new_bank_offset = hw->flash_bank_size * 2; - old_bank_offset = 0; - e1000_erase_ich8_4k_segment(hw, 1); - } else { - old_bank_offset = hw->flash_bank_size * 2; - new_bank_offset = 0; - e1000_erase_ich8_4k_segment(hw, 0); - } - - sector_write_failed = FALSE; - /* Loop for every byte in the shadow RAM, - * which is in units of words. */ - for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { - /* Determine whether to write the value stored - * in the other NVM bank or a modified value stored - * in the shadow RAM */ - if (hw->eeprom_shadow_ram[i].modified == TRUE) { - low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word; - udelay(100); - error = e1000_verify_write_ich8_byte(hw, - (i << 1) + new_bank_offset, low_byte); - - if (error != E1000_SUCCESS) - sector_write_failed = TRUE; - else { - high_byte = - (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8); - udelay(100); - } - } else { - e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset, - &low_byte); - udelay(100); - error = e1000_verify_write_ich8_byte(hw, - (i << 1) + new_bank_offset, low_byte); - - if (error != E1000_SUCCESS) - sector_write_failed = TRUE; - else { - e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, - &high_byte); - udelay(100); - } - } - - /* If the write of the low byte was successful, go ahread and - * write the high byte while checking to make sure that if it - * is the signature byte, then it is handled properly */ - if (sector_write_failed == FALSE) { - /* If the word is 0x13, then make sure the signature bits - * (15:14) are 11b until the commit has completed. - * This will allow us to write 10b which indicates the - * signature is valid. We want to do this after the write - * has completed so that we don't mark the segment valid - * while the write is still in progress */ - if (i == E1000_ICH_NVM_SIG_WORD) - high_byte = E1000_ICH_NVM_SIG_MASK | high_byte; - - error = e1000_verify_write_ich8_byte(hw, - (i << 1) + new_bank_offset + 1, high_byte); - if (error != E1000_SUCCESS) - sector_write_failed = TRUE; - - } else { - /* If the write failed then break from the loop and - * return an error */ - break; - } - } - - /* Don't bother writing the segment valid bits if sector - * programming failed. */ - if (sector_write_failed == FALSE) { - /* Finally validate the new segment by setting bit 15:14 - * to 10b in word 0x13 , this can be done without an - * erase as well since these bits are 11 to start with - * and we need to change bit 14 to 0b */ - e1000_read_ich8_byte(hw, - E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, - &high_byte); - high_byte &= 0xBF; - error = e1000_verify_write_ich8_byte(hw, - E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte); - /* And invalidate the previously valid segment by setting - * its signature word (0x13) high_byte to 0b. This can be - * done without an erase because flash erase sets all bits - * to 1's. We can write 1's to 0's without an erase */ - if (error == E1000_SUCCESS) { - error = e1000_verify_write_ich8_byte(hw, - E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0); - } - - /* Clear the now not used entry in the cache */ - for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { - hw->eeprom_shadow_ram[i].modified = FALSE; - hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; - } - } - } - - return error; -} - -/****************************************************************************** - * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the - * second function of dual function devices - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -int32_t -e1000_read_mac_addr(struct e1000_hw * hw) -{ - uint16_t offset, mac_addr_offset = 0; - uint16_t eeprom_data, i; - int32_t ret_val; - - DEBUGFUNC("e1000_read_mac_addr"); - - if (hw->mac_type == e1000_82571) { - /* Check for an alternate MAC address. An alternate MAC - * address can be setup by pre-boot software and must be - * treated like a permanent address and must override the - * actual permanent MAC address.*/ - ret_val = e1000_read_eeprom(hw, EEPROM_ALT_MAC_ADDR_PTR, 1, - &mac_addr_offset); - if (ret_val) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - if (mac_addr_offset == 0xFFFF) - mac_addr_offset = 0; - - if (mac_addr_offset) { - if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) - mac_addr_offset += NODE_ADDRESS_SIZE/sizeof(u16); - - /* make sure we have a valid mac address here - * before using it */ - ret_val = e1000_read_eeprom(hw, mac_addr_offset, 1, - &eeprom_data); - if (ret_val) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - if (eeprom_data & 0x0001) - mac_addr_offset = 0; - } - - if (mac_addr_offset) - hw->laa_is_present = TRUE; - } - - for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { - offset = mac_addr_offset + (i >> 1); - if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF); - hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8); - } - - switch (hw->mac_type) { - default: - break; - case e1000_82546: - case e1000_82546_rev_3: - case e1000_82571: - case e1000_82576: - case e1000_80003es2lan: - if (!mac_addr_offset && - E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) - hw->perm_mac_addr[5] ^= 0x01; - break; - } - - for (i = 0; i < NODE_ADDRESS_SIZE; i++) - hw->mac_addr[i] = hw->perm_mac_addr[i]; - return E1000_SUCCESS; -} - -/****************************************************************************** - * Initializes receive address filters. - * - * hw - Struct containing variables accessed by shared code - * - * Places the MAC address in receive address register 0 and clears the rest - * of the receive addresss registers. Clears the multicast table. Assumes - * the receiver is in reset when the routine is called. - *****************************************************************************/ -static void -e1000_init_rx_addrs(struct e1000_hw *hw) -{ - uint32_t i; - uint32_t rar_num; - - DEBUGFUNC("e1000_init_rx_addrs"); - - /* Setup the receive address. */ - DEBUGOUT("Programming MAC Address into RAR[0]\n"); - - e1000_rar_set(hw, hw->mac_addr, 0); - - rar_num = E1000_RAR_ENTRIES; - - /* Reserve a spot for the Locally Administered Address to work around - * an 82571 issue in which a reset on one port will reload the MAC on - * the other port. */ - if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) - rar_num -= 1; - if (hw->mac_type == e1000_ich8lan) - rar_num = E1000_RAR_ENTRIES_ICH8LAN; - - /* Zero out the other 15 receive addresses. */ - DEBUGOUT("Clearing RAR[1-15]\n"); - for (i = 1; i < rar_num; i++) { - E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); - E1000_WRITE_FLUSH(hw); - } -} - -/****************************************************************************** - * Hashes an address to determine its location in the multicast table - * - * hw - Struct containing variables accessed by shared code - * mc_addr - the multicast address to hash - *****************************************************************************/ -uint32_t -e1000_hash_mc_addr(struct e1000_hw *hw, - uint8_t *mc_addr) -{ - uint32_t hash_value = 0; - - /* The portion of the address that is used for the hash table is - * determined by the mc_filter_type setting. - */ - switch (hw->mc_filter_type) { - /* [0] [1] [2] [3] [4] [5] - * 01 AA 00 12 34 56 - * LSB MSB - */ - case 0: - if (hw->mac_type == e1000_ich8lan) { - /* [47:38] i.e. 0x158 for above example address */ - hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2)); - } else { - /* [47:36] i.e. 0x563 for above example address */ - hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); - } - break; - case 1: - if (hw->mac_type == e1000_ich8lan) { - /* [46:37] i.e. 0x2B1 for above example address */ - hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3)); - } else { - /* [46:35] i.e. 0xAC6 for above example address */ - hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); - } - break; - case 2: - if (hw->mac_type == e1000_ich8lan) { - /*[45:36] i.e. 0x163 for above example address */ - hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); - } else { - /* [45:34] i.e. 0x5D8 for above example address */ - hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); - } - break; - case 3: - if (hw->mac_type == e1000_ich8lan) { - /* [43:34] i.e. 0x18D for above example address */ - hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); - } else { - /* [43:32] i.e. 0x634 for above example address */ - hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); - } - break; - } - - hash_value &= 0xFFF; - if (hw->mac_type == e1000_ich8lan) - hash_value &= 0x3FF; - - return hash_value; -} - -/****************************************************************************** - * Sets the bit in the multicast table corresponding to the hash value. - * - * hw - Struct containing variables accessed by shared code - * hash_value - Multicast address hash value - *****************************************************************************/ -void -e1000_mta_set(struct e1000_hw *hw, - uint32_t hash_value) -{ - uint32_t hash_bit, hash_reg; - uint32_t mta; - uint32_t temp; - - /* The MTA is a register array of 128 32-bit registers. - * It is treated like an array of 4096 bits. We want to set - * bit BitArray[hash_value]. So we figure out what register - * the bit is in, read it, OR in the new bit, then write - * back the new value. The register is determined by the - * upper 7 bits of the hash value and the bit within that - * register are determined by the lower 5 bits of the value. - */ - hash_reg = (hash_value >> 5) & 0x7F; - if (hw->mac_type == e1000_ich8lan) - hash_reg &= 0x1F; - - hash_bit = hash_value & 0x1F; - - mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); - - mta |= (1 << hash_bit); - - /* If we are on an 82544 and we are trying to write an odd offset - * in the MTA, save off the previous entry before writing and - * restore the old value after writing. - */ - if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { - temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); - E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); - E1000_WRITE_FLUSH(hw); - } else { - E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); - E1000_WRITE_FLUSH(hw); - } -} - -/****************************************************************************** - * Puts an ethernet address into a receive address register. - * - * hw - Struct containing variables accessed by shared code - * addr - Address to put into receive address register - * index - Receive address register to write - *****************************************************************************/ -void -e1000_rar_set(struct e1000_hw *hw, - uint8_t *addr, - uint32_t index) -{ - uint32_t rar_low, rar_high; - - /* HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((uint32_t) addr[0] | - ((uint32_t) addr[1] << 8) | - ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); - rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8)); - - /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx - * unit hang. - * - * Description: - * If there are any Rx frames queued up or otherwise present in the HW - * before RSS is enabled, and then we enable RSS, the HW Rx unit will - * hang. To work around this issue, we have to disable receives and - * flush out all Rx frames before we enable RSS. To do so, we modify we - * redirect all Rx traffic to manageability and then reset the HW. - * This flushes away Rx frames, and (since the redirections to - * manageability persists across resets) keeps new ones from coming in - * while we work. Then, we clear the Address Valid AV bit for all MAC - * addresses and undo the re-direction to manageability. - * Now, frames are coming in again, but the MAC won't accept them, so - * far so good. We now proceed to initialize RSS (if necessary) and - * configure the Rx unit. Last, we re-enable the AV bits and continue - * on our merry way. - */ - switch (hw->mac_type) { - case e1000_82571: - case e1000_82572: - case e1000_80003es2lan: - if (hw->leave_av_bit_off == TRUE) - break; - case e1000_82576: - /* If MAC address zero, no need to set the AV bit */ - if (rar_low || rar_high) - rar_high |= E1000_RAH_AV; - // Only neded when Multiple Receive Queues are enabmed in MRQC - rar_high |= E1000_RAH_POOL_1; - break; - default: - /* Indicate to hardware the Address is Valid. */ - rar_high |= E1000_RAH_AV; - break; - } - - E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); - E1000_WRITE_FLUSH(hw); -} - -/****************************************************************************** - * Writes a value to the specified offset in the VLAN filter table. - * - * hw - Struct containing variables accessed by shared code - * offset - Offset in VLAN filer table to write - * value - Value to write into VLAN filter table - *****************************************************************************/ -void -e1000_write_vfta(struct e1000_hw *hw, - uint32_t offset, - uint32_t value) -{ - uint32_t temp; - - if (hw->mac_type == e1000_ich8lan) - return; - - if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { - temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); - E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); - E1000_WRITE_FLUSH(hw); - } else { - E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); - E1000_WRITE_FLUSH(hw); - } -} - -/****************************************************************************** - * Clears the VLAN filer table - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void -e1000_clear_vfta(struct e1000_hw *hw) -{ - uint32_t offset; - uint32_t vfta_value = 0; - uint32_t vfta_offset = 0; - uint32_t vfta_bit_in_reg = 0; - - if (hw->mac_type == e1000_ich8lan) - return; - - if (hw->mac_type == e1000_82573) { - if (hw->mng_cookie.vlan_id != 0) { - /* The VFTA is a 4096b bit-field, each identifying a single VLAN - * ID. The following operations determine which 32b entry - * (i.e. offset) into the array we want to set the VLAN ID - * (i.e. bit) of the manageability unit. */ - vfta_offset = (hw->mng_cookie.vlan_id >> - E1000_VFTA_ENTRY_SHIFT) & - E1000_VFTA_ENTRY_MASK; - vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & - E1000_VFTA_ENTRY_BIT_SHIFT_MASK); - } - } - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - /* If the offset we want to clear is the same offset of the - * manageability VLAN ID, then clear all bits except that of the - * manageability unit */ - vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; - E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); - E1000_WRITE_FLUSH(hw); - } -} - -static int32_t -e1000_id_led_init(struct e1000_hw * hw) -{ - uint32_t ledctl; - const uint32_t ledctl_mask = 0x000000FF; - const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON; - const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF; - uint16_t eeprom_data, i, temp; - const uint16_t led_mask = 0x0F; - - DEBUGFUNC("e1000_id_led_init"); - - if (hw->mac_type < e1000_82540) { - /* Nothing to do */ - return E1000_SUCCESS; - } - - ledctl = E1000_READ_REG(hw, LEDCTL); - hw->ledctl_default = ledctl; - hw->ledctl_mode1 = hw->ledctl_default; - hw->ledctl_mode2 = hw->ledctl_default; - - if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - - if ((hw->mac_type == e1000_82573) && - (eeprom_data == ID_LED_RESERVED_82573)) - eeprom_data = ID_LED_DEFAULT_82573; - else if ((eeprom_data == ID_LED_RESERVED_0000) || - (eeprom_data == ID_LED_RESERVED_FFFF)) { - if (hw->mac_type == e1000_ich8lan) - eeprom_data = ID_LED_DEFAULT_ICH8LAN; - else - eeprom_data = ID_LED_DEFAULT; - } - - for (i = 0; i < 4; i++) { - temp = (eeprom_data >> (i << 2)) & led_mask; - switch (temp) { - case ID_LED_ON1_DEF2: - case ID_LED_ON1_ON2: - case ID_LED_ON1_OFF2: - hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode1 |= ledctl_on << (i << 3); - break; - case ID_LED_OFF1_DEF2: - case ID_LED_OFF1_ON2: - case ID_LED_OFF1_OFF2: - hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode1 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - switch (temp) { - case ID_LED_DEF1_ON2: - case ID_LED_ON1_ON2: - case ID_LED_OFF1_ON2: - hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode2 |= ledctl_on << (i << 3); - break; - case ID_LED_DEF1_OFF2: - case ID_LED_ON1_OFF2: - case ID_LED_OFF1_OFF2: - hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode2 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - } - return E1000_SUCCESS; -} - -/****************************************************************************** - * Prepares SW controlable LED for use and saves the current state of the LED. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -int32_t -e1000_setup_led(struct e1000_hw *hw) -{ - uint32_t ledctl; - int32_t ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_setup_led"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - /* No setup necessary */ - break; - case e1000_82541: - case e1000_82547: - case e1000_82541_rev_2: - case e1000_82547_rev_2: - /* Turn off PHY Smart Power Down (if enabled) */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, - &hw->phy_spd_default); - if (ret_val) - return ret_val; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, - (uint16_t)(hw->phy_spd_default & - ~IGP01E1000_GMII_SPD)); - if (ret_val) - return ret_val; - /* Fall Through */ - default: - if (hw->media_type == e1000_media_type_fiber) { - ledctl = E1000_READ_REG(hw, LEDCTL); - /* Save current LEDCTL settings */ - hw->ledctl_default = ledctl; - /* Turn off LED0 */ - ledctl &= ~(E1000_LEDCTL_LED0_IVRT | - E1000_LEDCTL_LED0_BLINK | - E1000_LEDCTL_LED0_MODE_MASK); - ledctl |= (E1000_LEDCTL_MODE_LED_OFF << - E1000_LEDCTL_LED0_MODE_SHIFT); - E1000_WRITE_REG(hw, LEDCTL, ledctl); - } else if (hw->media_type == e1000_media_type_copper) - E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); - break; - } - - return E1000_SUCCESS; -} - - -/****************************************************************************** - * Used on 82571 and later Si that has LED blink bits. - * Callers must use their own timer and should have already called - * e1000_id_led_init() - * Call e1000_cleanup led() to stop blinking - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -int32_t -e1000_blink_led_start(struct e1000_hw *hw) -{ - int16_t i; - uint32_t ledctl_blink = 0; - - DEBUGFUNC("e1000_id_led_blink_on"); - - if (hw->mac_type < e1000_82571) { - /* Nothing to do */ - return E1000_SUCCESS; - } - if (hw->media_type == e1000_media_type_fiber) { - /* always blink LED0 for PCI-E fiber */ - ledctl_blink = E1000_LEDCTL_LED0_BLINK | - (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); - } else { - /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */ - ledctl_blink = hw->ledctl_mode2; - for (i=0; i < 4; i++) - if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) == - E1000_LEDCTL_MODE_LED_ON) - ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); - } - - E1000_WRITE_REG(hw, LEDCTL, ledctl_blink); - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Restores the saved state of the SW controlable LED. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -int32_t -e1000_cleanup_led(struct e1000_hw *hw) -{ - int32_t ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_cleanup_led"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - /* No cleanup necessary */ - break; - case e1000_82541: - case e1000_82547: - case e1000_82541_rev_2: - case e1000_82547_rev_2: - /* Turn on PHY Smart Power Down (if previously enabled) */ - ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, - hw->phy_spd_default); - if (ret_val) - return ret_val; - /* Fall Through */ - default: - if (hw->phy_type == e1000_phy_ife) { - e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); - break; - } - /* Restore LEDCTL settings */ - E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); - break; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Turns on the software controllable LED - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -int32_t -e1000_led_on(struct e1000_hw *hw) -{ - uint32_t ctrl = E1000_READ_REG(hw, CTRL); - - DEBUGFUNC("e1000_led_on"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - /* Set SW Defineable Pin 0 to turn on the LED */ - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - break; - case e1000_82544: - if (hw->media_type == e1000_media_type_fiber) { - /* Set SW Defineable Pin 0 to turn on the LED */ - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } else { - /* Clear SW Defineable Pin 0 to turn on the LED */ - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } - break; - default: - if (hw->media_type == e1000_media_type_fiber) { - /* Clear SW Defineable Pin 0 to turn on the LED */ - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } else if (hw->phy_type == e1000_phy_ife) { - e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, - (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); - } else if (hw->media_type == e1000_media_type_copper) { - E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); - return E1000_SUCCESS; - } - break; - } - - E1000_WRITE_REG(hw, CTRL, ctrl); - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Turns off the software controllable LED - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -int32_t -e1000_led_off(struct e1000_hw *hw) -{ - uint32_t ctrl = E1000_READ_REG(hw, CTRL); - - DEBUGFUNC("e1000_led_off"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - /* Clear SW Defineable Pin 0 to turn off the LED */ - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - break; - case e1000_82544: - if (hw->media_type == e1000_media_type_fiber) { - /* Clear SW Defineable Pin 0 to turn off the LED */ - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } else { - /* Set SW Defineable Pin 0 to turn off the LED */ - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } - break; - default: - if (hw->media_type == e1000_media_type_fiber) { - /* Set SW Defineable Pin 0 to turn off the LED */ - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } else if (hw->phy_type == e1000_phy_ife) { - e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, - (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); - } else if (hw->media_type == e1000_media_type_copper) { - E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); - return E1000_SUCCESS; - } - break; - } - - E1000_WRITE_REG(hw, CTRL, ctrl); - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Clears all hardware statistics counters. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void -e1000_clear_hw_cntrs(struct e1000_hw *hw) -{ - volatile uint32_t temp; - - temp = E1000_READ_REG(hw, CRCERRS); - temp = E1000_READ_REG(hw, SYMERRS); - temp = E1000_READ_REG(hw, MPC); - temp = E1000_READ_REG(hw, SCC); - temp = E1000_READ_REG(hw, ECOL); - temp = E1000_READ_REG(hw, MCC); - temp = E1000_READ_REG(hw, LATECOL); - temp = E1000_READ_REG(hw, COLC); - temp = E1000_READ_REG(hw, DC); - temp = E1000_READ_REG(hw, SEC); - temp = E1000_READ_REG(hw, RLEC); - temp = E1000_READ_REG(hw, XONRXC); - temp = E1000_READ_REG(hw, XONTXC); - temp = E1000_READ_REG(hw, XOFFRXC); - temp = E1000_READ_REG(hw, XOFFTXC); - temp = E1000_READ_REG(hw, FCRUC); - - if (hw->mac_type != e1000_ich8lan) { - temp = E1000_READ_REG(hw, PRC64); - temp = E1000_READ_REG(hw, PRC127); - temp = E1000_READ_REG(hw, PRC255); - temp = E1000_READ_REG(hw, PRC511); - temp = E1000_READ_REG(hw, PRC1023); - temp = E1000_READ_REG(hw, PRC1522); - } - - temp = E1000_READ_REG(hw, GPRC); - temp = E1000_READ_REG(hw, BPRC); - temp = E1000_READ_REG(hw, MPRC); - temp = E1000_READ_REG(hw, GPTC); - temp = E1000_READ_REG(hw, GORCL); - temp = E1000_READ_REG(hw, GORCH); - temp = E1000_READ_REG(hw, GOTCL); - temp = E1000_READ_REG(hw, GOTCH); - temp = E1000_READ_REG(hw, RNBC); - temp = E1000_READ_REG(hw, RUC); - temp = E1000_READ_REG(hw, RFC); - temp = E1000_READ_REG(hw, ROC); - temp = E1000_READ_REG(hw, RJC); - temp = E1000_READ_REG(hw, TORL); - temp = E1000_READ_REG(hw, TORH); - temp = E1000_READ_REG(hw, TOTL); - temp = E1000_READ_REG(hw, TOTH); - temp = E1000_READ_REG(hw, TPR); - temp = E1000_READ_REG(hw, TPT); - - if (hw->mac_type != e1000_ich8lan) { - temp = E1000_READ_REG(hw, PTC64); - temp = E1000_READ_REG(hw, PTC127); - temp = E1000_READ_REG(hw, PTC255); - temp = E1000_READ_REG(hw, PTC511); - temp = E1000_READ_REG(hw, PTC1023); - temp = E1000_READ_REG(hw, PTC1522); - } - - temp = E1000_READ_REG(hw, MPTC); - temp = E1000_READ_REG(hw, BPTC); - - if (hw->mac_type < e1000_82543) return; - - temp = E1000_READ_REG(hw, ALGNERRC); - temp = E1000_READ_REG(hw, RXERRC); - temp = E1000_READ_REG(hw, TNCRS); - temp = E1000_READ_REG(hw, CEXTERR); - temp = E1000_READ_REG(hw, TSCTC); - temp = E1000_READ_REG(hw, TSCTFC); - - if (hw->mac_type <= e1000_82544) return; - - temp = E1000_READ_REG(hw, MGTPRC); - temp = E1000_READ_REG(hw, MGTPDC); - temp = E1000_READ_REG(hw, MGTPTC); - - if (hw->mac_type <= e1000_82547_rev_2) return; - - temp = E1000_READ_REG(hw, IAC); - temp = E1000_READ_REG(hw, ICRXOC); - - if (hw->mac_type == e1000_ich8lan) return; - - temp = E1000_READ_REG(hw, ICRXPTC); - temp = E1000_READ_REG(hw, ICRXATC); - temp = E1000_READ_REG(hw, ICTXPTC); - temp = E1000_READ_REG(hw, ICTXATC); - temp = E1000_READ_REG(hw, ICTXQEC); - temp = E1000_READ_REG(hw, ICTXQMTC); - temp = E1000_READ_REG(hw, ICRXDMTC); -} - -/****************************************************************************** - * Resets Adaptive IFS to its default state. - * - * hw - Struct containing variables accessed by shared code - * - * Call this after e1000_init_hw. You may override the IFS defaults by setting - * hw->ifs_params_forced to TRUE. However, you must initialize hw-> - * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio - * before calling this function. - *****************************************************************************/ -void -e1000_reset_adaptive(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_reset_adaptive"); - - if (hw->adaptive_ifs) { - if (!hw->ifs_params_forced) { - hw->current_ifs_val = 0; - hw->ifs_min_val = IFS_MIN; - hw->ifs_max_val = IFS_MAX; - hw->ifs_step_size = IFS_STEP; - hw->ifs_ratio = IFS_RATIO; - } - hw->in_ifs_mode = FALSE; - E1000_WRITE_REG(hw, AIT, 0); - } else { - DEBUGOUT("Not in Adaptive IFS mode!\n"); - } -} - -/****************************************************************************** - * Called during the callback/watchdog routine to update IFS value based on - * the ratio of transmits to collisions. - * - * hw - Struct containing variables accessed by shared code - * tx_packets - Number of transmits since last callback - * total_collisions - Number of collisions since last callback - *****************************************************************************/ -void -e1000_update_adaptive(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_update_adaptive"); - - if (hw->adaptive_ifs) { - if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { - if (hw->tx_packet_delta > MIN_NUM_XMITS) { - hw->in_ifs_mode = TRUE; - if (hw->current_ifs_val < hw->ifs_max_val) { - if (hw->current_ifs_val == 0) - hw->current_ifs_val = hw->ifs_min_val; - else - hw->current_ifs_val += hw->ifs_step_size; - E1000_WRITE_REG(hw, AIT, hw->current_ifs_val); - } - } - } else { - if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { - hw->current_ifs_val = 0; - hw->in_ifs_mode = FALSE; - E1000_WRITE_REG(hw, AIT, 0); - } - } - } else { - DEBUGOUT("Not in Adaptive IFS mode!\n"); - } -} - -/****************************************************************************** - * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT - * - * hw - Struct containing variables accessed by shared code - * frame_len - The length of the frame in question - * mac_addr - The Ethernet destination address of the frame in question - *****************************************************************************/ -void -e1000_tbi_adjust_stats(struct e1000_hw *hw, - struct e1000_hw_stats *stats, - uint32_t frame_len, - uint8_t *mac_addr) -{ - uint64_t carry_bit; - - /* First adjust the frame length. */ - frame_len--; - /* We need to adjust the statistics counters, since the hardware - * counters overcount this packet as a CRC error and undercount - * the packet as a good packet - */ - /* This packet should not be counted as a CRC error. */ - stats->crcerrs--; - /* This packet does count as a Good Packet Received. */ - stats->gprc++; - - /* Adjust the Good Octets received counters */ - carry_bit = 0x80000000 & stats->gorcl; - stats->gorcl += frame_len; - /* If the high bit of Gorcl (the low 32 bits of the Good Octets - * Received Count) was one before the addition, - * AND it is zero after, then we lost the carry out, - * need to add one to Gorch (Good Octets Received Count High). - * This could be simplified if all environments supported - * 64-bit integers. - */ - if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) - stats->gorch++; - /* Is this a broadcast or multicast? Check broadcast first, - * since the test for a multicast frame will test positive on - * a broadcast frame. - */ - if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) - /* Broadcast packet */ - stats->bprc++; - else if (*mac_addr & 0x01) - /* Multicast packet */ - stats->mprc++; - - if (frame_len == hw->max_frame_size) { - /* In this case, the hardware has overcounted the number of - * oversize frames. - */ - if (stats->roc > 0) - stats->roc--; - } - - /* Adjust the bin counters when the extra byte put the frame in the - * wrong bin. Remember that the frame_len was adjusted above. - */ - if (frame_len == 64) { - stats->prc64++; - stats->prc127--; - } else if (frame_len == 127) { - stats->prc127++; - stats->prc255--; - } else if (frame_len == 255) { - stats->prc255++; - stats->prc511--; - } else if (frame_len == 511) { - stats->prc511++; - stats->prc1023--; - } else if (frame_len == 1023) { - stats->prc1023++; - stats->prc1522--; - } else if (frame_len == 1522) { - stats->prc1522++; - } -} - -/****************************************************************************** - * Gets the current PCI bus type, speed, and width of the hardware - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -void -e1000_get_bus_info(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t pci_ex_link_status; - uint32_t status; - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - hw->bus_type = e1000_bus_type_pci; - hw->bus_speed = e1000_bus_speed_unknown; - hw->bus_width = e1000_bus_width_unknown; - break; - case e1000_82571: - case e1000_82572: - case e1000_82573: - case e1000_80003es2lan: - case e1000_82576: - hw->bus_type = e1000_bus_type_pci_express; - hw->bus_speed = e1000_bus_speed_2500; - ret_val = e1000_read_pcie_cap_reg(hw, - PCI_EX_LINK_STATUS, - &pci_ex_link_status); - if (ret_val) - hw->bus_width = e1000_bus_width_unknown; - else - hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >> - PCI_EX_LINK_WIDTH_SHIFT; - break; - case e1000_ich8lan: - hw->bus_type = e1000_bus_type_pci_express; - hw->bus_speed = e1000_bus_speed_2500; - hw->bus_width = e1000_bus_width_pciex_1; - break; - default: - status = E1000_READ_REG(hw, STATUS); - hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? - e1000_bus_type_pcix : e1000_bus_type_pci; - - if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { - hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? - e1000_bus_speed_66 : e1000_bus_speed_120; - } else if (hw->bus_type == e1000_bus_type_pci) { - hw->bus_speed = (status & E1000_STATUS_PCI66) ? - e1000_bus_speed_66 : e1000_bus_speed_33; - } else { - switch (status & E1000_STATUS_PCIX_SPEED) { - case E1000_STATUS_PCIX_SPEED_66: - hw->bus_speed = e1000_bus_speed_66; - break; - case E1000_STATUS_PCIX_SPEED_100: - hw->bus_speed = e1000_bus_speed_100; - break; - case E1000_STATUS_PCIX_SPEED_133: - hw->bus_speed = e1000_bus_speed_133; - break; - default: - hw->bus_speed = e1000_bus_speed_reserved; - break; - } - } - hw->bus_width = (status & E1000_STATUS_BUS64) ? - e1000_bus_width_64 : e1000_bus_width_32; - break; - } -} - -/****************************************************************************** - * Writes a value to one of the devices registers using port I/O (as opposed to - * memory mapped I/O). Only 82544 and newer devices support port I/O. - * - * hw - Struct containing variables accessed by shared code - * offset - offset to write to - * value - value to write - *****************************************************************************/ -static void -e1000_write_reg_io(struct e1000_hw *hw, - uint32_t offset, - uint32_t value) -{ - unsigned long io_addr = hw->io_base; - unsigned long io_data = hw->io_base + 4; - - e1000_io_write(hw, io_addr, offset); - e1000_io_write(hw, io_data, value); -} - -/****************************************************************************** - * Estimates the cable length. - * - * hw - Struct containing variables accessed by shared code - * min_length - The estimated minimum length - * max_length - The estimated maximum length - * - * returns: - E1000_ERR_XXX - * E1000_SUCCESS - * - * This function always returns a ranged length (minimum & maximum). - * So for M88 phy's, this function interprets the one value returned from the - * register to the minimum and maximum range. - * For IGP phy's, the function calculates the range by the AGC registers. - *****************************************************************************/ -static int32_t -e1000_get_cable_length(struct e1000_hw *hw, - uint16_t *min_length, - uint16_t *max_length) -{ - int32_t ret_val; - uint16_t agc_value = 0; - uint16_t i, phy_data; - uint16_t cable_length; - - DEBUGFUNC("e1000_get_cable_length"); - - *min_length = *max_length = 0; - - /* Use old method for Phy older than IGP */ - if (hw->phy_type == e1000_phy_m88) { - - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, - &phy_data); - if (ret_val) - return ret_val; - cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT; - - /* Convert the enum value to ranged values */ - switch (cable_length) { - case e1000_cable_length_50: - *min_length = 0; - *max_length = e1000_igp_cable_length_50; - break; - case e1000_cable_length_50_80: - *min_length = e1000_igp_cable_length_50; - *max_length = e1000_igp_cable_length_80; - break; - case e1000_cable_length_80_110: - *min_length = e1000_igp_cable_length_80; - *max_length = e1000_igp_cable_length_110; - break; - case e1000_cable_length_110_140: - *min_length = e1000_igp_cable_length_110; - *max_length = e1000_igp_cable_length_140; - break; - case e1000_cable_length_140: - *min_length = e1000_igp_cable_length_140; - *max_length = e1000_igp_cable_length_170; - break; - default: - return -E1000_ERR_PHY; - break; - } - } else if (hw->phy_type == e1000_phy_gg82563) { - ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, - &phy_data); - if (ret_val) - return ret_val; - cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH; - - switch (cable_length) { - case e1000_gg_cable_length_60: - *min_length = 0; - *max_length = e1000_igp_cable_length_60; - break; - case e1000_gg_cable_length_60_115: - *min_length = e1000_igp_cable_length_60; - *max_length = e1000_igp_cable_length_115; - break; - case e1000_gg_cable_length_115_150: - *min_length = e1000_igp_cable_length_115; - *max_length = e1000_igp_cable_length_150; - break; - case e1000_gg_cable_length_150: - *min_length = e1000_igp_cable_length_150; - *max_length = e1000_igp_cable_length_180; - break; - default: - return -E1000_ERR_PHY; - break; - } - } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ - uint16_t cur_agc_value; - uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; - uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = - {IGP01E1000_PHY_AGC_A, - IGP01E1000_PHY_AGC_B, - IGP01E1000_PHY_AGC_C, - IGP01E1000_PHY_AGC_D}; - /* Read the AGC registers for all channels */ - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - - ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); - if (ret_val) - return ret_val; - - cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; - - /* Value bound check. */ - if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || - (cur_agc_value == 0)) - return -E1000_ERR_PHY; - - agc_value += cur_agc_value; - - /* Update minimal AGC value. */ - if (min_agc_value > cur_agc_value) - min_agc_value = cur_agc_value; - } - - /* Remove the minimal AGC result for length < 50m */ - if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { - agc_value -= min_agc_value; - - /* Get the average length of the remaining 3 channels */ - agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); - } else { - /* Get the average length of all the 4 channels. */ - agc_value /= IGP01E1000_PHY_CHANNEL_NUM; - } - - /* Set the range of the calculated length. */ - *min_length = ((e1000_igp_cable_length_table[agc_value] - - IGP01E1000_AGC_RANGE) > 0) ? - (e1000_igp_cable_length_table[agc_value] - - IGP01E1000_AGC_RANGE) : 0; - *max_length = e1000_igp_cable_length_table[agc_value] + - IGP01E1000_AGC_RANGE; - } else if (hw->phy_type == e1000_phy_igp_2 || - hw->phy_type == e1000_phy_igp_3) { - uint16_t cur_agc_index, max_agc_index = 0; - uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; - uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = - {IGP02E1000_PHY_AGC_A, - IGP02E1000_PHY_AGC_B, - IGP02E1000_PHY_AGC_C, - IGP02E1000_PHY_AGC_D}; - /* Read the AGC registers for all channels */ - for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { - ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); - if (ret_val) - return ret_val; - - /* Getting bits 15:9, which represent the combination of course and - * fine gain values. The result is a number that can be put into - * the lookup table to obtain the approximate cable length. */ - cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & - IGP02E1000_AGC_LENGTH_MASK; - - /* Array index bound check. */ - if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) || - (cur_agc_index == 0)) - return -E1000_ERR_PHY; - - /* Remove min & max AGC values from calculation. */ - if (e1000_igp_2_cable_length_table[min_agc_index] > - e1000_igp_2_cable_length_table[cur_agc_index]) - min_agc_index = cur_agc_index; - if (e1000_igp_2_cable_length_table[max_agc_index] < - e1000_igp_2_cable_length_table[cur_agc_index]) - max_agc_index = cur_agc_index; - - agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; - } - - agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + - e1000_igp_2_cable_length_table[max_agc_index]); - agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); - - /* Calculate cable length with the error range of +/- 10 meters. */ - *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? - (agc_value - IGP02E1000_AGC_RANGE) : 0; - *max_length = agc_value + IGP02E1000_AGC_RANGE; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * Check the cable polarity - * - * hw - Struct containing variables accessed by shared code - * polarity - output parameter : 0 - Polarity is not reversed - * 1 - Polarity is reversed. - * - * returns: - E1000_ERR_XXX - * E1000_SUCCESS - * - * For phy's older then IGP, this function simply reads the polarity bit in the - * Phy Status register. For IGP phy's, this bit is valid only if link speed is - * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will - * return 0. If the link speed is 1000 Mbps the polarity status is in the - * IGP01E1000_PHY_PCS_INIT_REG. - *****************************************************************************/ -static int32_t -e1000_check_polarity(struct e1000_hw *hw, - e1000_rev_polarity *polarity) -{ - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("e1000_check_polarity"); - - if ((hw->phy_type == e1000_phy_m88) || - (hw->phy_type == e1000_phy_gg82563)) { - /* return the Polarity bit in the Status register. */ - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, - &phy_data); - if (ret_val) - return ret_val; - *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> - M88E1000_PSSR_REV_POLARITY_SHIFT) ? - e1000_rev_polarity_reversed : e1000_rev_polarity_normal; - - } else if (hw->phy_type == e1000_phy_igp || - hw->phy_type == e1000_phy_igp_3 || - hw->phy_type == e1000_phy_igp_2) { - /* Read the Status register to check the speed */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to - * find the polarity status */ - if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - - /* Read the GIG initialization PCS register (0x00B4) */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, - &phy_data); - if (ret_val) - return ret_val; - - /* Check the polarity bits */ - *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? - e1000_rev_polarity_reversed : e1000_rev_polarity_normal; - } else { - /* For 10 Mbps, read the polarity bit in the status register. (for - * 100 Mbps this bit is always 0) */ - *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? - e1000_rev_polarity_reversed : e1000_rev_polarity_normal; - } - } else if (hw->phy_type == e1000_phy_ife) { - ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL, - &phy_data); - if (ret_val) - return ret_val; - *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >> - IFE_PESC_POLARITY_REVERSED_SHIFT) ? - e1000_rev_polarity_reversed : e1000_rev_polarity_normal; - } - return E1000_SUCCESS; -} - -/****************************************************************************** - * Check if Downshift occured - * - * hw - Struct containing variables accessed by shared code - * downshift - output parameter : 0 - No Downshift ocured. - * 1 - Downshift ocured. - * - * returns: - E1000_ERR_XXX - * E1000_SUCCESS - * - * For phy's older then IGP, this function reads the Downshift bit in the Phy - * Specific Status register. For IGP phy's, it reads the Downgrade bit in the - * Link Health register. In IGP this bit is latched high, so the driver must - * read it immediately after link is established. - *****************************************************************************/ -static int32_t -e1000_check_downshift(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("e1000_check_downshift"); - - if (hw->phy_type == e1000_phy_igp || - hw->phy_type == e1000_phy_igp_3 || - hw->phy_type == e1000_phy_igp_2) { - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, - &phy_data); - if (ret_val) - return ret_val; - - hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; - } else if ((hw->phy_type == e1000_phy_m88) || - (hw->phy_type == e1000_phy_gg82563)) { - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> - M88E1000_PSSR_DOWNSHIFT_SHIFT; - } else if (hw->phy_type == e1000_phy_ife) { - /* e1000_phy_ife supports 10/100 speed only */ - hw->speed_downgraded = FALSE; - } - - return E1000_SUCCESS; -} - -/***************************************************************************** - * - * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a - * gigabit link is achieved to improve link quality. - * - * hw: Struct containing variables accessed by shared code - * - * returns: - E1000_ERR_PHY if fail to read/write the PHY - * E1000_SUCCESS at any other case. - * - ****************************************************************************/ - -static int32_t -e1000_config_dsp_after_link_change(struct e1000_hw *hw, - boolean_t link_up) -{ - int32_t ret_val; - uint16_t phy_data, phy_saved_data, speed, duplex, i; - uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = - {IGP01E1000_PHY_AGC_PARAM_A, - IGP01E1000_PHY_AGC_PARAM_B, - IGP01E1000_PHY_AGC_PARAM_C, - IGP01E1000_PHY_AGC_PARAM_D}; - uint16_t min_length, max_length; - - DEBUGFUNC("e1000_config_dsp_after_link_change"); - - if (hw->phy_type != e1000_phy_igp) - return E1000_SUCCESS; - - if (link_up) { - ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - return ret_val; - } - - if (speed == SPEED_1000) { - - ret_val = e1000_get_cable_length(hw, &min_length, &max_length); - if (ret_val) - return ret_val; - - if ((hw->dsp_config_state == e1000_dsp_config_enabled) && - min_length >= e1000_igp_cable_length_50) { - - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; - - ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], - phy_data); - if (ret_val) - return ret_val; - } - hw->dsp_config_state = e1000_dsp_config_activated; - } - - if ((hw->ffe_config_state == e1000_ffe_config_enabled) && - (min_length < e1000_igp_cable_length_50)) { - - uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; - uint32_t idle_errs = 0; - - /* clear previous idle error counts */ - ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - for (i = 0; i < ffe_idle_err_timeout; i++) { - udelay(1000); - ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); - if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { - hw->ffe_config_state = e1000_ffe_config_active; - - ret_val = e1000_write_phy_reg(hw, - IGP01E1000_PHY_DSP_FFE, - IGP01E1000_PHY_DSP_FFE_CM_CP); - if (ret_val) - return ret_val; - break; - } - - if (idle_errs) - ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; - } - } - } - } else { - if (hw->dsp_config_state == e1000_dsp_config_activated) { - /* Save off the current value of register 0x2F5B to be restored at - * the end of the routines. */ - ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - - if (ret_val) - return ret_val; - - /* Disable the PHY transmitter */ - ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); - - if (ret_val) - return ret_val; - - mdelay(20); - - ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_FORCE_GIGA); - if (ret_val) - return ret_val; - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; - phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; - - ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data); - if (ret_val) - return ret_val; - } - - ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_RESTART_AUTONEG); - if (ret_val) - return ret_val; - - mdelay(20); - - /* Now enable the transmitter */ - ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); - - if (ret_val) - return ret_val; - - hw->dsp_config_state = e1000_dsp_config_enabled; - } - - if (hw->ffe_config_state == e1000_ffe_config_active) { - /* Save off the current value of register 0x2F5B to be restored at - * the end of the routines. */ - ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - - if (ret_val) - return ret_val; - - /* Disable the PHY transmitter */ - ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); - - if (ret_val) - return ret_val; - - mdelay(20); - - ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_FORCE_GIGA); - if (ret_val) - return ret_val; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, - IGP01E1000_PHY_DSP_FFE_DEFAULT); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_RESTART_AUTONEG); - if (ret_val) - return ret_val; - - mdelay(20); - - /* Now enable the transmitter */ - ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); - - if (ret_val) - return ret_val; - - hw->ffe_config_state = e1000_ffe_config_enabled; - } - } - return E1000_SUCCESS; -} - -/***************************************************************************** - * Set PHY to class A mode - * Assumes the following operations will follow to enable the new class mode. - * 1. Do a PHY soft reset - * 2. Restart auto-negotiation or force link. - * - * hw - Struct containing variables accessed by shared code - ****************************************************************************/ -static int32_t -e1000_set_phy_mode(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t eeprom_data; - - DEBUGFUNC("e1000_set_phy_mode"); - - if ((hw->mac_type == e1000_82545_rev_3) && - (hw->media_type == e1000_media_type_copper)) { - ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); - if (ret_val) { - return ret_val; - } - - if ((eeprom_data != EEPROM_RESERVED_WORD) && - (eeprom_data & EEPROM_PHY_CLASS_A)) { - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); - if (ret_val) - return ret_val; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); - if (ret_val) - return ret_val; - - hw->phy_reset_disable = FALSE; - } - } - - return E1000_SUCCESS; -} - -/***************************************************************************** - * - * This function sets the lplu state according to the active flag. When - * activating lplu this function also disables smart speed and vise versa. - * lplu will not be activated unless the device autonegotiation advertisment - * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. - * hw: Struct containing variables accessed by shared code - * active - true to enable lplu false to disable lplu. - * - * returns: - E1000_ERR_PHY if fail to read/write the PHY - * E1000_SUCCESS at any other case. - * - ****************************************************************************/ - -static int32_t -e1000_set_d3_lplu_state(struct e1000_hw *hw, - boolean_t active) -{ - uint32_t phy_ctrl = 0; - int32_t ret_val; - uint16_t phy_data; - DEBUGFUNC("e1000_set_d3_lplu_state"); - - if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2 - && hw->phy_type != e1000_phy_igp_3) - return E1000_SUCCESS; - - /* During driver activity LPLU should not be used or it will attain link - * from the lowest speeds starting from 10Mbps. The capability is used for - * Dx transitions and states */ - if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { - ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); - if (ret_val) - return ret_val; - } else if (hw->mac_type == e1000_ich8lan) { - /* MAC writes into PHY register based on the state transition - * and start auto-negotiation. SW driver can overwrite the settings - * in CSR PHY power control E1000_PHY_CTRL register. */ - phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); - } else { - ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); - if (ret_val) - return ret_val; - } - - if (!active) { - if (hw->mac_type == e1000_82541_rev_2 || - hw->mac_type == e1000_82547_rev_2) { - phy_data &= ~IGP01E1000_GMII_FLEX_SPD; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); - if (ret_val) - return ret_val; - } else { - if (hw->mac_type == e1000_ich8lan) { - phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; - E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); - } else { - phy_data &= ~IGP02E1000_PM_D3_LPLU; - ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, - phy_data); - if (ret_val) - return ret_val; - } - } - - /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during - * Dx states where the power conservation is most important. During - * driver activity we should enable SmartSpeed, so performance is - * maintained. */ - if (hw->smart_speed == e1000_smart_speed_on) { - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - - phy_data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - } else if (hw->smart_speed == e1000_smart_speed_off) { - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - } - - } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || - (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || - (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { - - if (hw->mac_type == e1000_82541_rev_2 || - hw->mac_type == e1000_82547_rev_2) { - phy_data |= IGP01E1000_GMII_FLEX_SPD; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); - if (ret_val) - return ret_val; - } else { - if (hw->mac_type == e1000_ich8lan) { - phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; - E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); - } else { - phy_data |= IGP02E1000_PM_D3_LPLU; - ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, - phy_data); - if (ret_val) - return ret_val; - } - } - - /* When LPLU is enabled we should disable SmartSpeed */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if (ret_val) - return ret_val; - - } - return E1000_SUCCESS; -} - -/***************************************************************************** - * - * This function sets the lplu d0 state according to the active flag. When - * activating lplu this function also disables smart speed and vise versa. - * lplu will not be activated unless the device autonegotiation advertisment - * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. - * hw: Struct containing variables accessed by shared code - * active - true to enable lplu false to disable lplu. - * - * returns: - E1000_ERR_PHY if fail to read/write the PHY - * E1000_SUCCESS at any other case. - * - ****************************************************************************/ - -static int32_t -e1000_set_d0_lplu_state(struct e1000_hw *hw, - boolean_t active) -{ - uint32_t phy_ctrl = 0; - int32_t ret_val; - uint16_t phy_data; - DEBUGFUNC("e1000_set_d0_lplu_state"); - - if (hw->mac_type <= e1000_82547_rev_2) - return E1000_SUCCESS; - - if (hw->mac_type == e1000_ich8lan) { - phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); - } else { - ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); - if (ret_val) - return ret_val; - } - - if (!active) { - if (hw->mac_type == e1000_ich8lan) { - phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; - E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); - } else { - phy_data &= ~IGP02E1000_PM_D0_LPLU; - ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); - if (ret_val) - return ret_val; - } - - /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during - * Dx states where the power conservation is most important. During - * driver activity we should enable SmartSpeed, so performance is - * maintained. */ - if (hw->smart_speed == e1000_smart_speed_on) { - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - - phy_data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - } else if (hw->smart_speed == e1000_smart_speed_off) { - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - } - - - } else { - - if (hw->mac_type == e1000_ich8lan) { - phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; - E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); - } else { - phy_data |= IGP02E1000_PM_D0_LPLU; - ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); - if (ret_val) - return ret_val; - } - - /* When LPLU is enabled we should disable SmartSpeed */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if (ret_val) - return ret_val; - - } - return E1000_SUCCESS; -} - -/****************************************************************************** - * Change VCO speed register to improve Bit Error Rate performance of SERDES. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static int32_t -e1000_set_vco_speed(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t default_page = 0; - uint16_t phy_data; - - DEBUGFUNC("e1000_set_vco_speed"); - - switch (hw->mac_type) { - case e1000_82545_rev_3: - case e1000_82546_rev_3: - break; - default: - return E1000_SUCCESS; - } - - /* Set PHY register 30, page 5, bit 8 to 0 */ - - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if (ret_val) - return ret_val; - - /* Set PHY register 30, page 4, bit 11 to 1 */ - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PHY_VCO_REG_BIT11; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); - if (ret_val) - return ret_val; - - return E1000_SUCCESS; -} - - -/***************************************************************************** - * This function reads the cookie from ARC ram. - * - * returns: - E1000_SUCCESS . - ****************************************************************************/ -static int32_t -e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer) -{ - uint8_t i; - uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; - uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH; - - length = (length >> 2); - offset = (offset >> 2); - - for (i = 0; i < length; i++) { - *((uint32_t *) buffer + i) = - E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); - } - return E1000_SUCCESS; -} - - -/***************************************************************************** - * This function checks whether the HOST IF is enabled for command operaton - * and also checks whether the previous command is completed. - * It busy waits in case of previous command is not completed. - * - * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or - * timeout - * - E1000_SUCCESS for success. - ****************************************************************************/ -static int32_t -e1000_mng_enable_host_if(struct e1000_hw * hw) -{ - uint32_t hicr; - uint8_t i; - - /* Check that the host interface is enabled. */ - hicr = E1000_READ_REG(hw, HICR); - if ((hicr & E1000_HICR_EN) == 0) { - DEBUGOUT("E1000_HOST_EN bit disabled.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - /* check the previous command is completed */ - for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { - hicr = E1000_READ_REG(hw, HICR); - if (!(hicr & E1000_HICR_C)) - break; - mdelay(1); - } - - if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { - DEBUGOUT("Previous command timeout failed .\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - return E1000_SUCCESS; -} - -/***************************************************************************** - * This function writes the buffer content at the offset given on the host if. - * It also does alignment considerations to do the writes in most efficient way. - * Also fills up the sum of the buffer in *buffer parameter. - * - * returns - E1000_SUCCESS for success. - ****************************************************************************/ -static int32_t -e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer, - uint16_t length, uint16_t offset, uint8_t *sum) -{ - uint8_t *tmp; - uint8_t *bufptr = buffer; - uint32_t data = 0; - uint16_t remaining, i, j, prev_bytes; - - /* sum = only sum of the data and it is not checksum */ - - if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { - return -E1000_ERR_PARAM; - } - - tmp = (uint8_t *)&data; - prev_bytes = offset & 0x3; - offset &= 0xFFFC; - offset >>= 2; - - if (prev_bytes) { - data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset); - for (j = prev_bytes; j < sizeof(uint32_t); j++) { - *(tmp + j) = *bufptr++; - *sum += *(tmp + j); - } - E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data); - length -= j - prev_bytes; - offset++; - } - - remaining = length & 0x3; - length -= remaining; - - /* Calculate length in DWORDs */ - length >>= 2; - - /* The device driver writes the relevant command block into the - * ram area. */ - for (i = 0; i < length; i++) { - for (j = 0; j < sizeof(uint32_t); j++) { - *(tmp + j) = *bufptr++; - *sum += *(tmp + j); - } - - E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); - } - if (remaining) { - for (j = 0; j < sizeof(uint32_t); j++) { - if (j < remaining) - *(tmp + j) = *bufptr++; - else - *(tmp + j) = 0; - - *sum += *(tmp + j); - } - E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); - } - - return E1000_SUCCESS; -} - - -/***************************************************************************** - * This function writes the command header after does the checksum calculation. - * - * returns - E1000_SUCCESS for success. - ****************************************************************************/ -static int32_t -e1000_mng_write_cmd_header(struct e1000_hw * hw, - struct e1000_host_mng_command_header * hdr) -{ - uint16_t i; - uint8_t sum; - uint8_t *buffer; - - /* Write the whole command header structure which includes sum of - * the buffer */ - - uint16_t length = sizeof(struct e1000_host_mng_command_header); - - sum = hdr->checksum; - hdr->checksum = 0; - - buffer = (uint8_t *) hdr; - i = length; - while (i--) - sum += buffer[i]; - - hdr->checksum = 0 - sum; - - length >>= 2; - /* The device driver writes the relevant command block into the ram area. */ - for (i = 0; i < length; i++) { - E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); - E1000_WRITE_FLUSH(hw); - } - - return E1000_SUCCESS; -} - - -/***************************************************************************** - * This function indicates to ARC that a new command is pending which completes - * one write operation by the driver. - * - * returns - E1000_SUCCESS for success. - ****************************************************************************/ -static int32_t -e1000_mng_write_commit(struct e1000_hw * hw) -{ - uint32_t hicr; - - hicr = E1000_READ_REG(hw, HICR); - /* Setting this bit tells the ARC that a new command is pending. */ - E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C); - - return E1000_SUCCESS; -} - - -/***************************************************************************** - * This function checks the mode of the firmware. - * - * returns - TRUE when the mode is IAMT or FALSE. - ****************************************************************************/ -boolean_t -e1000_check_mng_mode(struct e1000_hw *hw) -{ - uint32_t fwsm; - - fwsm = E1000_READ_REG(hw, FWSM); - - if (hw->mac_type == e1000_ich8lan) { - if ((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) - return TRUE; - } else if ((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) - return TRUE; - - return FALSE; -} - - -/***************************************************************************** - * This function writes the dhcp info . - ****************************************************************************/ -int32_t -e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer, - uint16_t length) -{ - int32_t ret_val; - struct e1000_host_mng_command_header hdr; - - hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; - hdr.command_length = length; - hdr.reserved1 = 0; - hdr.reserved2 = 0; - hdr.checksum = 0; - - ret_val = e1000_mng_enable_host_if(hw); - if (ret_val == E1000_SUCCESS) { - ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr), - &(hdr.checksum)); - if (ret_val == E1000_SUCCESS) { - ret_val = e1000_mng_write_cmd_header(hw, &hdr); - if (ret_val == E1000_SUCCESS) - ret_val = e1000_mng_write_commit(hw); - } - } - return ret_val; -} - - -/***************************************************************************** - * This function calculates the checksum. - * - * returns - checksum of buffer contents. - ****************************************************************************/ -static uint8_t -e1000_calculate_mng_checksum(char *buffer, uint32_t length) -{ - uint8_t sum = 0; - uint32_t i; - - if (!buffer) - return 0; - - for (i=0; i < length; i++) - sum += buffer[i]; - - return (uint8_t) (0 - sum); -} - -/***************************************************************************** - * This function checks whether tx pkt filtering needs to be enabled or not. - * - * returns - TRUE for packet filtering or FALSE. - ****************************************************************************/ -boolean_t -e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) -{ - /* called in init as well as watchdog timer functions */ - - int32_t ret_val, checksum; - boolean_t tx_filter = FALSE; - struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); - uint8_t *buffer = (uint8_t *) &(hw->mng_cookie); - - if (e1000_check_mng_mode(hw)) { - ret_val = e1000_mng_enable_host_if(hw); - if (ret_val == E1000_SUCCESS) { - ret_val = e1000_host_if_read_cookie(hw, buffer); - if (ret_val == E1000_SUCCESS) { - checksum = hdr->checksum; - hdr->checksum = 0; - if ((hdr->signature == E1000_IAMT_SIGNATURE) && - checksum == e1000_calculate_mng_checksum((char *)buffer, - E1000_MNG_DHCP_COOKIE_LENGTH)) { - if (hdr->status & - E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) - tx_filter = TRUE; - } else - tx_filter = TRUE; - } else - tx_filter = TRUE; - } - } - - hw->tx_pkt_filtering = tx_filter; - return tx_filter; -} - -/****************************************************************************** - * Verifies the hardware needs to allow ARPs to be processed by the host - * - * hw - Struct containing variables accessed by shared code - * - * returns: - TRUE/FALSE - * - *****************************************************************************/ -uint32_t -e1000_enable_mng_pass_thru(struct e1000_hw *hw) -{ - uint32_t manc; - uint32_t fwsm, factps; - - if (hw->asf_firmware_present) { - manc = E1000_READ_REG(hw, MANC); - - if (!(manc & E1000_MANC_RCV_TCO_EN) || - !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) - return FALSE; - if (e1000_arc_subsystem_valid(hw) == TRUE) { - fwsm = E1000_READ_REG(hw, FWSM); - factps = E1000_READ_REG(hw, FACTPS); - - if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) == - e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG)) - return TRUE; - } else - if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) - return TRUE; - } - return FALSE; -} - -static int32_t -e1000_polarity_reversal_workaround(struct e1000_hw *hw) -{ - int32_t ret_val; - uint16_t mii_status_reg; - uint16_t i; - - /* Polarity reversal workaround for forced 10F/10H links. */ - - /* Disable the transmitter on the PHY */ - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if (ret_val) - return ret_val; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if (ret_val) - return ret_val; - - /* This loop will early-out if the NO link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Link Status bit - * to be clear. - */ - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; - mdelay(100); - } - - /* Recommended delay time after link has been lost */ - mdelay(1000); - - /* Now we will re-enable th transmitter on the PHY */ - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if (ret_val) - return ret_val; - mdelay(50); - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); - if (ret_val) - return ret_val; - mdelay(50); - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); - if (ret_val) - return ret_val; - mdelay(50); - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if (ret_val) - return ret_val; - - /* This loop will early-out if the link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Link Status bit - * to be set. - */ - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (mii_status_reg & MII_SR_LINK_STATUS) break; - mdelay(100); - } - return E1000_SUCCESS; -} - -/*************************************************************************** - * - * Disables PCI-Express master access. - * - * hw: Struct containing variables accessed by shared code - * - * returns: - none. - * - ***************************************************************************/ -static void -e1000_set_pci_express_master_disable(struct e1000_hw *hw) -{ - uint32_t ctrl; - - DEBUGFUNC("e1000_set_pci_express_master_disable"); - - if (hw->bus_type != e1000_bus_type_pci_express) - return; - - ctrl = E1000_READ_REG(hw, CTRL); - ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; - E1000_WRITE_REG(hw, CTRL, ctrl); -} - -/******************************************************************************* - * - * Disables PCI-Express master access and verifies there are no pending requests - * - * hw: Struct containing variables accessed by shared code - * - * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't - * caused the master requests to be disabled. - * E1000_SUCCESS master requests disabled. - * - ******************************************************************************/ -int32_t -e1000_disable_pciex_master(struct e1000_hw *hw) -{ - int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */ - - DEBUGFUNC("e1000_disable_pciex_master"); - - if (hw->bus_type != e1000_bus_type_pci_express) - return E1000_SUCCESS; - - e1000_set_pci_express_master_disable(hw); - - while (timeout) { - if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) - break; - else - udelay(100); - timeout--; - } - - if (!timeout) { - DEBUGOUT("Master requests are pending.\n"); - return -E1000_ERR_MASTER_REQUESTS_PENDING; - } - - return E1000_SUCCESS; -} - -/******************************************************************************* - * - * Check for EEPROM Auto Read bit done. - * - * hw: Struct containing variables accessed by shared code - * - * returns: - E1000_ERR_RESET if fail to reset MAC - * E1000_SUCCESS at any other case. - * - ******************************************************************************/ -static int32_t -e1000_get_auto_rd_done(struct e1000_hw *hw) -{ - int32_t timeout = AUTO_READ_DONE_TIMEOUT; - - DEBUGFUNC("e1000_get_auto_rd_done"); - - switch (hw->mac_type) { - default: - msleep(5); - break; - case e1000_82571: - case e1000_82572: - case e1000_82573: - case e1000_80003es2lan: - case e1000_ich8lan: - case e1000_82576: - while (timeout) { - if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) - break; - else msleep(1); - timeout--; - } - - if (!timeout) { - DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); - return -E1000_ERR_RESET; - } - break; - } - - /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high. - * Need to wait for PHY configuration completion before accessing NVM - * and PHY. */ - if (hw->mac_type == e1000_82573) - msleep(25); - - return E1000_SUCCESS; -} - -/*************************************************************************** - * Checks if the PHY configuration is done - * - * hw: Struct containing variables accessed by shared code - * - * returns: - E1000_ERR_RESET if fail to reset MAC - * E1000_SUCCESS at any other case. - * - ***************************************************************************/ -static int32_t -e1000_get_phy_cfg_done(struct e1000_hw *hw) -{ - int32_t timeout = PHY_CFG_TIMEOUT; - uint32_t cfg_mask = E1000_EEPROM_CFG_DONE; - - DEBUGFUNC("e1000_get_phy_cfg_done"); - - switch (hw->mac_type) { - default: - mdelay(10); - break; - case e1000_80003es2lan: - case e1000_82576: - /* Separate *_CFG_DONE_* bit for each port */ - if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) - cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; - /* Fall Through */ - case e1000_82571: - case e1000_82572: - while (timeout) { - if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) - break; - else - msleep(1); - timeout--; - } - if (!timeout) { - DEBUGOUT("MNG configuration cycle has not completed.\n"); - return -E1000_ERR_RESET; - } - break; - } - - return E1000_SUCCESS; -} - -/*************************************************************************** - * - * Using the combination of SMBI and SWESMBI semaphore bits when resetting - * adapter or Eeprom access. - * - * hw: Struct containing variables accessed by shared code - * - * returns: - E1000_ERR_EEPROM if fail to access EEPROM. - * E1000_SUCCESS at any other case. - * - ***************************************************************************/ -static int32_t -e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) -{ - int32_t timeout; - uint32_t swsm; - - DEBUGFUNC("e1000_get_hw_eeprom_semaphore"); - - if (!hw->eeprom_semaphore_present) - return E1000_SUCCESS; - - if (hw->mac_type == e1000_80003es2lan) { - /* Get the SW semaphore. */ - if (e1000_get_software_semaphore(hw) != E1000_SUCCESS) - return -E1000_ERR_EEPROM; - } - - /* Get the FW semaphore. */ - timeout = hw->eeprom.word_size + 1; - while (timeout) { - swsm = E1000_READ_REG(hw, SWSM); - swsm |= E1000_SWSM_SWESMBI; - E1000_WRITE_REG(hw, SWSM, swsm); - /* if we managed to set the bit we got the semaphore. */ - swsm = E1000_READ_REG(hw, SWSM); - if (swsm & E1000_SWSM_SWESMBI) - break; - - udelay(50); - timeout--; - } - - if (!timeout) { - /* Release semaphores */ - e1000_put_hw_eeprom_semaphore(hw); - DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); - return -E1000_ERR_EEPROM; - } - - return E1000_SUCCESS; -} - -/*************************************************************************** - * This function clears HW semaphore bits. - * - * hw: Struct containing variables accessed by shared code - * - * returns: - None. - * - ***************************************************************************/ -static void -e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) -{ - uint32_t swsm; - - DEBUGFUNC("e1000_put_hw_eeprom_semaphore"); - - if (!hw->eeprom_semaphore_present) - return; - - swsm = E1000_READ_REG(hw, SWSM); - if (hw->mac_type == e1000_80003es2lan) { - /* Release both semaphores. */ - swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); - } else - swsm &= ~(E1000_SWSM_SWESMBI); - E1000_WRITE_REG(hw, SWSM, swsm); -} - -/*************************************************************************** - * - * Obtaining software semaphore bit (SMBI) before resetting PHY. - * - * hw: Struct containing variables accessed by shared code - * - * returns: - E1000_ERR_RESET if fail to obtain semaphore. - * E1000_SUCCESS at any other case. - * - ***************************************************************************/ -static int32_t -e1000_get_software_semaphore(struct e1000_hw *hw) -{ - int32_t timeout = hw->eeprom.word_size + 1; - uint32_t swsm; - - DEBUGFUNC("e1000_get_software_semaphore"); - - if (hw->mac_type != e1000_80003es2lan) { - return E1000_SUCCESS; - } - - while (timeout) { - swsm = E1000_READ_REG(hw, SWSM); - /* If SMBI bit cleared, it is now set and we hold the semaphore */ - if (!(swsm & E1000_SWSM_SMBI)) - break; - mdelay(1); - timeout--; - } - - if (!timeout) { - DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); - return -E1000_ERR_RESET; - } - - return E1000_SUCCESS; -} - -/*************************************************************************** - * - * Release semaphore bit (SMBI). - * - * hw: Struct containing variables accessed by shared code - * - ***************************************************************************/ -static void -e1000_release_software_semaphore(struct e1000_hw *hw) -{ - uint32_t swsm; - - DEBUGFUNC("e1000_release_software_semaphore"); - - if (hw->mac_type != e1000_80003es2lan) { - return; - } - - swsm = E1000_READ_REG(hw, SWSM); - /* Release the SW semaphores.*/ - swsm &= ~E1000_SWSM_SMBI; - E1000_WRITE_REG(hw, SWSM, swsm); -} - -/****************************************************************************** - * Checks if PHY reset is blocked due to SOL/IDER session, for example. - * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to - * the caller to figure out how to deal with it. - * - * hw - Struct containing variables accessed by shared code - * - * returns: - E1000_BLK_PHY_RESET - * E1000_SUCCESS - * - *****************************************************************************/ -int32_t -e1000_check_phy_reset_block(struct e1000_hw *hw) -{ - uint32_t manc = 0; - uint32_t fwsm = 0; - - if (hw->mac_type == e1000_ich8lan) { - fwsm = E1000_READ_REG(hw, FWSM); - return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS - : E1000_BLK_PHY_RESET; - } - - if (hw->mac_type > e1000_82547_rev_2) - manc = E1000_READ_REG(hw, MANC); - return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? - E1000_BLK_PHY_RESET : E1000_SUCCESS; -} - -static uint8_t -e1000_arc_subsystem_valid(struct e1000_hw *hw) -{ - uint32_t fwsm; - - /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC - * may not be provided a DMA clock when no manageability features are - * enabled. We do not want to perform any reads/writes to these registers - * if this is the case. We read FWSM to determine the manageability mode. - */ - switch (hw->mac_type) { - case e1000_82571: - case e1000_82572: - case e1000_82573: - case e1000_80003es2lan: - case e1000_82576: - fwsm = E1000_READ_REG(hw, FWSM); - if ((fwsm & E1000_FWSM_MODE_MASK) != 0) - return TRUE; - break; - case e1000_ich8lan: - return TRUE; - default: - break; - } - return FALSE; -} - - -/****************************************************************************** - * Configure PCI-Ex no-snoop - * - * hw - Struct containing variables accessed by shared code. - * no_snoop - Bitmap of no-snoop events. - * - * returns: E1000_SUCCESS - * - *****************************************************************************/ -static int32_t -e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop) -{ - uint32_t gcr_reg = 0; - - DEBUGFUNC("e1000_set_pci_ex_no_snoop"); - - if (hw->bus_type == e1000_bus_type_unknown) - e1000_get_bus_info(hw); - - if (hw->bus_type != e1000_bus_type_pci_express) - return E1000_SUCCESS; - - if (no_snoop) { - gcr_reg = E1000_READ_REG(hw, GCR); - gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); - gcr_reg |= no_snoop; - E1000_WRITE_REG(hw, GCR, gcr_reg); - } - if (hw->mac_type == e1000_ich8lan) { - uint32_t ctrl_ext; - - E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL); - - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_RO_DIS; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - } - - return E1000_SUCCESS; -} - -/*************************************************************************** - * - * Get software semaphore FLAG bit (SWFLAG). - * SWFLAG is used to synchronize the access to all shared resource between - * SW, FW and HW. - * - * hw: Struct containing variables accessed by shared code - * - ***************************************************************************/ -static int32_t -e1000_get_software_flag(struct e1000_hw *hw) -{ - int32_t timeout = PHY_CFG_TIMEOUT; - uint32_t extcnf_ctrl; - - DEBUGFUNC("e1000_get_software_flag"); - - if (hw->mac_type == e1000_ich8lan) { - while (timeout) { - extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); - extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; - E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); - - extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); - if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) - break; - mdelay(1); - timeout--; - } - - if (!timeout) { - DEBUGOUT("FW or HW locks the resource too long.\n"); - return -E1000_ERR_CONFIG; - } - } - - return E1000_SUCCESS; -} - -/*************************************************************************** - * - * Release software semaphore FLAG bit (SWFLAG). - * SWFLAG is used to synchronize the access to all shared resource between - * SW, FW and HW. - * - * hw: Struct containing variables accessed by shared code - * - ***************************************************************************/ -static void -e1000_release_software_flag(struct e1000_hw *hw) -{ - uint32_t extcnf_ctrl; - - DEBUGFUNC("e1000_release_software_flag"); - - if (hw->mac_type == e1000_ich8lan) { - extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL); - extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; - E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); - } - - return; -} - -/****************************************************************************** - * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access - * register. - * - * hw - Struct containing variables accessed by shared code - * offset - offset of word in the EEPROM to read - * data - word read from the EEPROM - * words - number of words to read - *****************************************************************************/ -static int32_t -e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, - uint16_t *data) -{ - int32_t error = E1000_SUCCESS; - uint32_t flash_bank = 0; - uint32_t act_offset = 0; - uint32_t bank_offset = 0; - uint16_t word = 0; - uint16_t i = 0; - - /* We need to know which is the valid flash bank. In the event - * that we didn't allocate eeprom_shadow_ram, we may not be - * managing flash_bank. So it cannot be trusted and needs - * to be updated with each read. - */ - /* Value of bit 22 corresponds to the flash bank we're on. */ - flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; - - /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ - bank_offset = flash_bank * (hw->flash_bank_size * 2); - - error = e1000_get_software_flag(hw); - if (error != E1000_SUCCESS) - return error; - - for (i = 0; i < words; i++) { - if (hw->eeprom_shadow_ram != NULL && - hw->eeprom_shadow_ram[offset+i].modified == TRUE) { - data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; - } else { - /* The NVM part needs a byte offset, hence * 2 */ - act_offset = bank_offset + ((offset + i) * 2); - error = e1000_read_ich8_word(hw, act_offset, &word); - if (error != E1000_SUCCESS) - break; - data[i] = word; - } - } - - e1000_release_software_flag(hw); - - return error; -} - -/****************************************************************************** - * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access - * register. Actually, writes are written to the shadow ram cache in the hw - * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to - * the NVM, which occurs when the NVM checksum is updated. - * - * hw - Struct containing variables accessed by shared code - * offset - offset of word in the EEPROM to write - * words - number of words to write - * data - words to write to the EEPROM - *****************************************************************************/ -static int32_t -e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, - uint16_t *data) -{ - uint32_t i = 0; - int32_t error = E1000_SUCCESS; - - error = e1000_get_software_flag(hw); - if (error != E1000_SUCCESS) - return error; - - /* A driver can write to the NVM only if it has eeprom_shadow_ram - * allocated. Subsequent reads to the modified words are read from - * this cached structure as well. Writes will only go into this - * cached structure unless it's followed by a call to - * e1000_update_eeprom_checksum() where it will commit the changes - * and clear the "modified" field. - */ - if (hw->eeprom_shadow_ram != NULL) { - for (i = 0; i < words; i++) { - if ((offset + i) < E1000_SHADOW_RAM_WORDS) { - hw->eeprom_shadow_ram[offset+i].modified = TRUE; - hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; - } else { - error = -E1000_ERR_EEPROM; - break; - } - } - } else { - /* Drivers have the option to not allocate eeprom_shadow_ram as long - * as they don't perform any NVM writes. An attempt in doing so - * will result in this error. - */ - error = -E1000_ERR_EEPROM; - } - - e1000_release_software_flag(hw); - - return error; -} - -/****************************************************************************** - * This function does initial flash setup so that a new read/write/erase cycle - * can be started. - * - * hw - The pointer to the hw structure - ****************************************************************************/ -static int32_t -e1000_ich8_cycle_init(struct e1000_hw *hw) -{ - union ich8_hws_flash_status hsfsts; - int32_t error = E1000_ERR_EEPROM; - int32_t i = 0; - - DEBUGFUNC("e1000_ich8_cycle_init"); - - hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - - /* May be check the Flash Des Valid bit in Hw status */ - if (hsfsts.hsf_status.fldesvalid == 0) { - DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used."); - return error; - } - - /* Clear FCERR in Hw status by writing 1 */ - /* Clear DAEL in Hw status by writing a 1 */ - hsfsts.hsf_status.flcerr = 1; - hsfsts.hsf_status.dael = 1; - - E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); - - /* Either we should have a hardware SPI cycle in progress bit to check - * against, in order to start a new cycle or FDONE bit should be changed - * in the hardware so that it is 1 after harware reset, which can then be - * used as an indication whether a cycle is in progress or has been - * completed .. we should also have some software semaphore mechanism to - * guard FDONE or the cycle in progress bit so that two threads access to - * those bits can be sequentiallized or a way so that 2 threads dont - * start the cycle at the same time */ - - if (hsfsts.hsf_status.flcinprog == 0) { - /* There is no cycle running at present, so we can start a cycle */ - /* Begin by setting Flash Cycle Done. */ - hsfsts.hsf_status.flcdone = 1; - E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); - error = E1000_SUCCESS; - } else { - /* otherwise poll for sometime so the current cycle has a chance - * to end before giving up. */ - for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) { - hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcinprog == 0) { - error = E1000_SUCCESS; - break; - } - udelay(1); - } - if (error == E1000_SUCCESS) { - /* Successful in waiting for previous cycle to timeout, - * now set the Flash Cycle Done. */ - hsfsts.hsf_status.flcdone = 1; - E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); - } else { - DEBUGOUT("Flash controller busy, cannot get access"); - } - } - return error; -} - -/****************************************************************************** - * This function starts a flash cycle and waits for its completion - * - * hw - The pointer to the hw structure - ****************************************************************************/ -static int32_t -e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout) -{ - union ich8_hws_flash_ctrl hsflctl; - union ich8_hws_flash_status hsfsts; - int32_t error = E1000_ERR_EEPROM; - uint32_t i = 0; - - /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ - hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - hsflctl.hsf_ctrl.flcgo = 1; - E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); - - /* wait till FDONE bit is set to 1 */ - do { - hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcdone == 1) - break; - udelay(1); - i++; - } while (i < timeout); - if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { - error = E1000_SUCCESS; - } - return error; -} - -/****************************************************************************** - * Reads a byte or word from the NVM using the ICH8 flash access registers. - * - * hw - The pointer to the hw structure - * index - The index of the byte or word to read. - * size - Size of data to read, 1=byte 2=word - * data - Pointer to the word to store the value read. - *****************************************************************************/ -static int32_t -e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, - uint32_t size, uint16_t* data) -{ - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - uint32_t flash_linear_address; - uint32_t flash_data = 0; - int32_t error = -E1000_ERR_EEPROM; - int32_t count = 0; - - DEBUGFUNC("e1000_read_ich8_data"); - - if (size < 1 || size > 2 || data == 0x0 || - index > ICH_FLASH_LINEAR_ADDR_MASK) - return error; - - flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + - hw->flash_base_addr; - - do { - udelay(1); - /* Steps */ - error = e1000_ich8_cycle_init(hw); - if (error != E1000_SUCCESS) - break; - - hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ - hsflctl.hsf_ctrl.fldbcount = size - 1; - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; - E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); - - /* Write the last 24 bits of index into Flash Linear address field in - * Flash Address */ - /* TODO: TBD maybe check the index against the size of flash */ - - E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); - - error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); - - /* Check if FCERR is set to 1, if set to 1, clear it and try the whole - * sequence a few more times, else read in (shift in) the Flash Data0, - * the order is least significant byte first msb to lsb */ - if (error == E1000_SUCCESS) { - flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0); - if (size == 1) { - *data = (uint8_t)(flash_data & 0x000000FF); - } else if (size == 2) { - *data = (uint16_t)(flash_data & 0x0000FFFF); - } - break; - } else { - /* If we've gotten here, then things are probably completely hosed, - * but if the error condition is detected, it won't hurt to give - * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. - */ - hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) { - /* Repeat for some time before giving up. */ - continue; - } else if (hsfsts.hsf_status.flcdone == 0) { - DEBUGOUT("Timeout error - flash cycle did not complete."); - break; - } - } - } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); - - return error; -} - -/****************************************************************************** - * Writes One /two bytes to the NVM using the ICH8 flash access registers. - * - * hw - The pointer to the hw structure - * index - The index of the byte/word to read. - * size - Size of data to read, 1=byte 2=word - * data - The byte(s) to write to the NVM. - *****************************************************************************/ -static int32_t -e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, - uint16_t data) -{ - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - uint32_t flash_linear_address; - uint32_t flash_data = 0; - int32_t error = -E1000_ERR_EEPROM; - int32_t count = 0; - - DEBUGFUNC("e1000_write_ich8_data"); - - if (size < 1 || size > 2 || data > size * 0xff || - index > ICH_FLASH_LINEAR_ADDR_MASK) - return error; - - flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + - hw->flash_base_addr; - - do { - udelay(1); - /* Steps */ - error = e1000_ich8_cycle_init(hw); - if (error != E1000_SUCCESS) - break; - - hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ - hsflctl.hsf_ctrl.fldbcount = size -1; - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; - E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); - - /* Write the last 24 bits of index into Flash Linear address field in - * Flash Address */ - E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); - - if (size == 1) - flash_data = (uint32_t)data & 0x00FF; - else - flash_data = (uint32_t)data; - - E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); - - /* check if FCERR is set to 1 , if set to 1, clear it and try the whole - * sequence a few more times else done */ - error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); - if (error == E1000_SUCCESS) { - break; - } else { - /* If we're here, then things are most likely completely hosed, - * but if the error condition is detected, it won't hurt to give - * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. - */ - hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) { - /* Repeat for some time before giving up. */ - continue; - } else if (hsfsts.hsf_status.flcdone == 0) { - DEBUGOUT("Timeout error - flash cycle did not complete."); - break; - } - } - } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); - - return error; -} - -/****************************************************************************** - * Reads a single byte from the NVM using the ICH8 flash access registers. - * - * hw - pointer to e1000_hw structure - * index - The index of the byte to read. - * data - Pointer to a byte to store the value read. - *****************************************************************************/ -static int32_t -e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data) -{ - int32_t status = E1000_SUCCESS; - uint16_t word = 0; - - status = e1000_read_ich8_data(hw, index, 1, &word); - if (status == E1000_SUCCESS) { - *data = (uint8_t)word; - } - - return status; -} - -/****************************************************************************** - * Writes a single byte to the NVM using the ICH8 flash access registers. - * Performs verification by reading back the value and then going through - * a retry algorithm before giving up. - * - * hw - pointer to e1000_hw structure - * index - The index of the byte to write. - * byte - The byte to write to the NVM. - *****************************************************************************/ -static int32_t -e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte) -{ - int32_t error = E1000_SUCCESS; - int32_t program_retries = 0; - - DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index); - - error = e1000_write_ich8_byte(hw, index, byte); - - if (error != E1000_SUCCESS) { - for (program_retries = 0; program_retries < 100; program_retries++) { - DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index); - error = e1000_write_ich8_byte(hw, index, byte); - udelay(100); - if (error == E1000_SUCCESS) - break; - } - } - - if (program_retries == 100) - error = E1000_ERR_EEPROM; - - return error; -} - -/****************************************************************************** - * Writes a single byte to the NVM using the ICH8 flash access registers. - * - * hw - pointer to e1000_hw structure - * index - The index of the byte to read. - * data - The byte to write to the NVM. - *****************************************************************************/ -static int32_t -e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data) -{ - int32_t status = E1000_SUCCESS; - uint16_t word = (uint16_t)data; - - status = e1000_write_ich8_data(hw, index, 1, word); - - return status; -} - -/****************************************************************************** - * Reads a word from the NVM using the ICH8 flash access registers. - * - * hw - pointer to e1000_hw structure - * index - The starting byte index of the word to read. - * data - Pointer to a word to store the value read. - *****************************************************************************/ -static int32_t -e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data) -{ - int32_t status = E1000_SUCCESS; - status = e1000_read_ich8_data(hw, index, 2, data); - return status; -} - -/****************************************************************************** - * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0 - * based. - * - * hw - pointer to e1000_hw structure - * bank - 0 for first bank, 1 for second bank - * - * Note that this function may actually erase as much as 8 or 64 KBytes. The - * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the - * bank size may be 4, 8 or 64 KBytes - *****************************************************************************/ -int32_t -e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank) -{ - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - uint32_t flash_linear_address; - int32_t count = 0; - int32_t error = E1000_ERR_EEPROM; - int32_t iteration; - int32_t sub_sector_size = 0; - int32_t bank_size; - int32_t j = 0; - int32_t error_flag = 0; - - hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - - /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ - /* 00: The Hw sector is 256 bytes, hence we need to erase 16 - * consecutive sectors. The start index for the nth Hw sector can be - * calculated as bank * 4096 + n * 256 - * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. - * The start index for the nth Hw sector can be calculated - * as bank * 4096 - * 10: The HW sector is 8K bytes - * 11: The Hw sector size is 64K bytes */ - if (hsfsts.hsf_status.berasesz == 0x0) { - /* Hw sector size 256 */ - sub_sector_size = ICH_FLASH_SEG_SIZE_256; - bank_size = ICH_FLASH_SECTOR_SIZE; - iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256; - } else if (hsfsts.hsf_status.berasesz == 0x1) { - bank_size = ICH_FLASH_SEG_SIZE_4K; - iteration = 1; - } else if (hsfsts.hsf_status.berasesz == 0x3) { - bank_size = ICH_FLASH_SEG_SIZE_64K; - iteration = 1; - } else { - return error; - } - - for (j = 0; j < iteration ; j++) { - do { - count++; - /* Steps */ - error = e1000_ich8_cycle_init(hw); - if (error != E1000_SUCCESS) { - error_flag = 1; - break; - } - - /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash - * Control */ - hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; - E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); - - /* Write the last 24 bits of an index within the block into Flash - * Linear address field in Flash Address. This probably needs to - * be calculated here based off the on-chip erase sector size and - * the software bank size (4, 8 or 64 KBytes) */ - flash_linear_address = bank * bank_size + j * sub_sector_size; - flash_linear_address += hw->flash_base_addr; - flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK; - - E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); - - error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT); - /* Check if FCERR is set to 1. If 1, clear it and try the whole - * sequence a few more times else Done */ - if (error == E1000_SUCCESS) { - break; - } else { - hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) { - /* repeat for some time before giving up */ - continue; - } else if (hsfsts.hsf_status.flcdone == 0) { - error_flag = 1; - break; - } - } - } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); - if (error_flag == 1) - break; - } - if (error_flag != 1) - error = E1000_SUCCESS; - return error; -} - -static int32_t -e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, - uint32_t cnf_base_addr, uint32_t cnf_size) -{ - uint32_t ret_val = E1000_SUCCESS; - uint16_t word_addr, reg_data, reg_addr; - uint16_t i; - - /* cnf_base_addr is in DWORD */ - word_addr = (uint16_t)(cnf_base_addr << 1); - - /* cnf_size is returned in size of dwords */ - for (i = 0; i < cnf_size; i++) { - ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, ®_data); - if (ret_val) - return ret_val; - - ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); - if (ret_val) - return ret_val; - - ret_val = e1000_get_software_flag(hw); - if (ret_val != E1000_SUCCESS) - return ret_val; - - ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data); - - e1000_release_software_flag(hw); - } - - return ret_val; -} - - -/****************************************************************************** - * This function initializes the PHY from the NVM on ICH8 platforms. This - * is needed due to an issue where the NVM configuration is not properly - * autoloaded after power transitions. Therefore, after each PHY reset, we - * will load the configuration data out of the NVM manually. - * - * hw: Struct containing variables accessed by shared code - *****************************************************************************/ -static int32_t -e1000_init_lcd_from_nvm(struct e1000_hw *hw) -{ - uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop; - - if (hw->phy_type != e1000_phy_igp_3) - return E1000_SUCCESS; - - /* Check if SW needs configure the PHY */ - reg_data = E1000_READ_REG(hw, FEXTNVM); - if (!(reg_data & FEXTNVM_SW_CONFIG)) - return E1000_SUCCESS; - - /* Wait for basic configuration completes before proceeding*/ - loop = 0; - do { - reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE; - udelay(100); - loop++; - } while ((!reg_data) && (loop < 50)); - - /* Clear the Init Done bit for the next init event */ - reg_data = E1000_READ_REG(hw, STATUS); - reg_data &= ~E1000_STATUS_LAN_INIT_DONE; - E1000_WRITE_REG(hw, STATUS, reg_data); - - /* Make sure HW does not configure LCD from PHY extended configuration - before SW configuration */ - reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); - if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { - reg_data = E1000_READ_REG(hw, EXTCNF_SIZE); - cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; - cnf_size >>= 16; - if (cnf_size) { - reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); - cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; - /* cnf_base_addr is in DWORD */ - cnf_base_addr >>= 16; - - /* Configure LCD from extended configuration region. */ - ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr, - cnf_size); - if (ret_val) - return ret_val; - } - } - - return E1000_SUCCESS; -} - -/* - * Local variables: - * c-basic-offset: 8 - * c-indent-level: 8 - * tab-width: 8 - * End: - */ diff --git a/src/drivers/net/e1000/e1000_hw.h b/src/drivers/net/e1000/e1000_hw.h index 628b2e374..753f75e7e 100644 --- a/src/drivers/net/e1000/e1000_hw.h +++ b/src/drivers/net/e1000/e1000_hw.h @@ -1,7 +1,7 @@ /******************************************************************************* Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2006 Intel Corporation. + Copyright(c) 1999 - 2008 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -26,3406 +26,703 @@ *******************************************************************************/ -FILE_LICENCE ( GPL2_ONLY ); - -/* e1000_hw.h - * Structures, enums, and macros for the MAC - */ +FILE_LICENCE ( GPL2_OR_LATER ); #ifndef _E1000_HW_H_ #define _E1000_HW_H_ #include "e1000_osdep.h" +#include "e1000_regs.h" +#include "e1000_defines.h" - -/* Forward declarations of structures used by the shared code */ struct e1000_hw; -struct e1000_hw_stats; - -/* Enumerated types specific to the e1000 hardware */ -/* Media Access Controlers */ -typedef enum { - e1000_undefined = 0, - e1000_82542_rev2_0, - e1000_82542_rev2_1, - e1000_82543, - e1000_82544, - e1000_82540, - e1000_82545, - e1000_82545_rev_3, - e1000_82546, - e1000_82546_rev_3, - e1000_82541, - e1000_82541_rev_2, - e1000_82547, - e1000_82547_rev_2, - e1000_82571, - e1000_82572, - e1000_82573, - e1000_80003es2lan, - e1000_ich8lan, - e1000_82576, - e1000_num_macs -} e1000_mac_type; - -typedef enum { - e1000_eeprom_uninitialized = 0, - e1000_eeprom_spi, - e1000_eeprom_microwire, - e1000_eeprom_flash, - e1000_eeprom_ich8, - e1000_eeprom_none, /* No NVM support */ - e1000_num_eeprom_types -} e1000_eeprom_type; - -/* Media Types */ -typedef enum { - e1000_media_type_copper = 0, - e1000_media_type_fiber = 1, - e1000_media_type_internal_serdes = 2, - e1000_num_media_types -} e1000_media_type; - -typedef enum { - e1000_10_half = 0, - e1000_10_full = 1, - e1000_100_half = 2, - e1000_100_full = 3 -} e1000_speed_duplex_type; - -/* Flow Control Settings */ -typedef enum { - E1000_FC_NONE = 0, - E1000_FC_RX_PAUSE = 1, - E1000_FC_TX_PAUSE = 2, - E1000_FC_FULL = 3, - E1000_FC_DEFAULT = 0xFF -} e1000_fc_type; - -struct e1000_shadow_ram { - uint16_t eeprom_word; - boolean_t modified; + +#define E1000_DEV_ID_82542 0x1000 +#define E1000_DEV_ID_82543GC_FIBER 0x1001 +#define E1000_DEV_ID_82543GC_COPPER 0x1004 +#define E1000_DEV_ID_82544EI_COPPER 0x1008 +#define E1000_DEV_ID_82544EI_FIBER 0x1009 +#define E1000_DEV_ID_82544GC_COPPER 0x100C +#define E1000_DEV_ID_82544GC_LOM 0x100D +#define E1000_DEV_ID_82540EM 0x100E +#define E1000_DEV_ID_82540EM_LOM 0x1015 +#define E1000_DEV_ID_82540EP_LOM 0x1016 +#define E1000_DEV_ID_82540EP 0x1017 +#define E1000_DEV_ID_82540EP_LP 0x101E +#define E1000_DEV_ID_82545EM_COPPER 0x100F +#define E1000_DEV_ID_82545EM_FIBER 0x1011 +#define E1000_DEV_ID_82545GM_COPPER 0x1026 +#define E1000_DEV_ID_82545GM_FIBER 0x1027 +#define E1000_DEV_ID_82545GM_SERDES 0x1028 +#define E1000_DEV_ID_82546EB_COPPER 0x1010 +#define E1000_DEV_ID_82546EB_FIBER 0x1012 +#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D +#define E1000_DEV_ID_82546GB_COPPER 0x1079 +#define E1000_DEV_ID_82546GB_FIBER 0x107A +#define E1000_DEV_ID_82546GB_SERDES 0x107B +#define E1000_DEV_ID_82546GB_PCIE 0x108A +#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 +#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 +#define E1000_DEV_ID_82541EI 0x1013 +#define E1000_DEV_ID_82541EI_MOBILE 0x1018 +#define E1000_DEV_ID_82541ER_LOM 0x1014 +#define E1000_DEV_ID_82541ER 0x1078 +#define E1000_DEV_ID_82541GI 0x1076 +#define E1000_DEV_ID_82541GI_LF 0x107C +#define E1000_DEV_ID_82541GI_MOBILE 0x1077 +#define E1000_DEV_ID_82547EI 0x1019 +#define E1000_DEV_ID_82547EI_MOBILE 0x101A +#define E1000_DEV_ID_82547GI 0x1075 +#define E1000_REVISION_0 0 +#define E1000_REVISION_1 1 +#define E1000_REVISION_2 2 +#define E1000_REVISION_3 3 +#define E1000_REVISION_4 4 + +#define E1000_FUNC_0 0 +#define E1000_FUNC_1 1 + +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0 +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3 + +enum e1000_mac_type { + e1000_undefined = 0, + e1000_82542, + e1000_82543, + e1000_82544, + e1000_82540, + e1000_82545, + e1000_82545_rev_3, + e1000_82546, + e1000_82546_rev_3, + e1000_82541, + e1000_82541_rev_2, + e1000_82547, + e1000_82547_rev_2, + e1000_num_macs /* List is 1-based, so subtract 1 for true count. */ }; -/* PCI bus types */ -typedef enum { - e1000_bus_type_unknown = 0, - e1000_bus_type_pci, - e1000_bus_type_pcix, - e1000_bus_type_pci_express, - e1000_bus_type_reserved -} e1000_bus_type; - -/* PCI bus speeds */ -typedef enum { - e1000_bus_speed_unknown = 0, - e1000_bus_speed_33, - e1000_bus_speed_66, - e1000_bus_speed_100, - e1000_bus_speed_120, - e1000_bus_speed_133, - e1000_bus_speed_2500, - e1000_bus_speed_reserved -} e1000_bus_speed; - -/* PCI bus widths */ -typedef enum { - e1000_bus_width_unknown = 0, - /* These PCIe values should literally match the possible return values - * from config space */ - e1000_bus_width_pciex_1 = 1, - e1000_bus_width_pciex_2 = 2, - e1000_bus_width_pciex_4 = 4, - e1000_bus_width_32, - e1000_bus_width_64, - e1000_bus_width_reserved -} e1000_bus_width; - -/* PHY status info structure and supporting enums */ -typedef enum { - e1000_cable_length_50 = 0, - e1000_cable_length_50_80, - e1000_cable_length_80_110, - e1000_cable_length_110_140, - e1000_cable_length_140, - e1000_cable_length_undefined = 0xFF -} e1000_cable_length; - -typedef enum { - e1000_gg_cable_length_60 = 0, - e1000_gg_cable_length_60_115 = 1, - e1000_gg_cable_length_115_150 = 2, - e1000_gg_cable_length_150 = 4 -} e1000_gg_cable_length; - -typedef enum { - e1000_igp_cable_length_10 = 10, - e1000_igp_cable_length_20 = 20, - e1000_igp_cable_length_30 = 30, - e1000_igp_cable_length_40 = 40, - e1000_igp_cable_length_50 = 50, - e1000_igp_cable_length_60 = 60, - e1000_igp_cable_length_70 = 70, - e1000_igp_cable_length_80 = 80, - e1000_igp_cable_length_90 = 90, - e1000_igp_cable_length_100 = 100, - e1000_igp_cable_length_110 = 110, - e1000_igp_cable_length_115 = 115, - e1000_igp_cable_length_120 = 120, - e1000_igp_cable_length_130 = 130, - e1000_igp_cable_length_140 = 140, - e1000_igp_cable_length_150 = 150, - e1000_igp_cable_length_160 = 160, - e1000_igp_cable_length_170 = 170, - e1000_igp_cable_length_180 = 180 -} e1000_igp_cable_length; - -typedef enum { - e1000_10bt_ext_dist_enable_normal = 0, - e1000_10bt_ext_dist_enable_lower, - e1000_10bt_ext_dist_enable_undefined = 0xFF -} e1000_10bt_ext_dist_enable; - -typedef enum { - e1000_rev_polarity_normal = 0, - e1000_rev_polarity_reversed, - e1000_rev_polarity_undefined = 0xFF -} e1000_rev_polarity; - -typedef enum { - e1000_downshift_normal = 0, - e1000_downshift_activated, - e1000_downshift_undefined = 0xFF -} e1000_downshift; - -typedef enum { - e1000_smart_speed_default = 0, - e1000_smart_speed_on, - e1000_smart_speed_off -} e1000_smart_speed; - -typedef enum { - e1000_polarity_reversal_enabled = 0, - e1000_polarity_reversal_disabled, - e1000_polarity_reversal_undefined = 0xFF -} e1000_polarity_reversal; - -typedef enum { - e1000_auto_x_mode_manual_mdi = 0, - e1000_auto_x_mode_manual_mdix, - e1000_auto_x_mode_auto1, - e1000_auto_x_mode_auto2, - e1000_auto_x_mode_undefined = 0xFF -} e1000_auto_x_mode; - -typedef enum { - e1000_1000t_rx_status_not_ok = 0, - e1000_1000t_rx_status_ok, - e1000_1000t_rx_status_undefined = 0xFF -} e1000_1000t_rx_status; - -typedef enum { - e1000_phy_m88 = 0, - e1000_phy_igp, - e1000_phy_igp_2, - e1000_phy_gg82563, - e1000_phy_igp_3, - e1000_phy_ife, - e1000_phy_undefined = 0xFF -} e1000_phy_type; - -typedef enum { - e1000_ms_hw_default = 0, - e1000_ms_force_master, - e1000_ms_force_slave, - e1000_ms_auto -} e1000_ms_type; - -typedef enum { - e1000_ffe_config_enabled = 0, - e1000_ffe_config_active, - e1000_ffe_config_blocked -} e1000_ffe_config; - -typedef enum { - e1000_dsp_config_disabled = 0, - e1000_dsp_config_enabled, - e1000_dsp_config_activated, - e1000_dsp_config_undefined = 0xFF -} e1000_dsp_config; +enum e1000_media_type { + e1000_media_type_unknown = 0, + e1000_media_type_copper = 1, + e1000_media_type_fiber = 2, + e1000_media_type_internal_serdes = 3, + e1000_num_media_types +}; -struct e1000_phy_info { - e1000_cable_length cable_length; - e1000_10bt_ext_dist_enable extended_10bt_distance; - e1000_rev_polarity cable_polarity; - e1000_downshift downshift; - e1000_polarity_reversal polarity_correction; - e1000_auto_x_mode mdix_mode; - e1000_1000t_rx_status local_rx; - e1000_1000t_rx_status remote_rx; +enum e1000_nvm_type { + e1000_nvm_unknown = 0, + e1000_nvm_none, + e1000_nvm_eeprom_spi, + e1000_nvm_eeprom_microwire, + e1000_nvm_flash_hw, + e1000_nvm_flash_sw }; -struct e1000_phy_stats { - uint32_t idle_errors; - uint32_t receive_errors; +enum e1000_nvm_override { + e1000_nvm_override_none = 0, + e1000_nvm_override_spi_small, + e1000_nvm_override_spi_large, + e1000_nvm_override_microwire_small, + e1000_nvm_override_microwire_large }; -struct e1000_eeprom_info { - e1000_eeprom_type type; - uint16_t word_size; - uint16_t opcode_bits; - uint16_t address_bits; - uint16_t delay_usec; - uint16_t page_size; - boolean_t use_eerd; - boolean_t use_eewr; +enum e1000_phy_type { + e1000_phy_unknown = 0, + e1000_phy_none, + e1000_phy_m88, + e1000_phy_igp, + e1000_phy_igp_2, + e1000_phy_gg82563, + e1000_phy_igp_3, + e1000_phy_ife, }; -/* Flex ASF Information */ -#define E1000_HOST_IF_MAX_SIZE 2048 - -typedef enum { - e1000_byte_align = 0, - e1000_word_align = 1, - e1000_dword_align = 2 -} e1000_align_type; - - - -/* Error Codes */ -#define E1000_SUCCESS 0 -#define E1000_ERR_EEPROM 1 -#define E1000_ERR_PHY 2 -#define E1000_ERR_CONFIG 3 -#define E1000_ERR_PARAM 4 -#define E1000_ERR_MAC_TYPE 5 -#define E1000_ERR_PHY_TYPE 6 -#define E1000_ERR_RESET 9 -#define E1000_ERR_MASTER_REQUESTS_PENDING 10 -#define E1000_ERR_HOST_INTERFACE_COMMAND 11 -#define E1000_BLK_PHY_RESET 12 -#define E1000_ERR_SWFW_SYNC 13 - -#define E1000_BYTE_SWAP_WORD(_value) ((((_value) & 0x00ff) << 8) | \ - (((_value) & 0xff00) >> 8)) - -/* Function prototypes */ -/* Initialization */ -int32_t e1000_reset_hw(struct e1000_hw *hw); -int32_t e1000_init_hw(struct e1000_hw *hw); -int32_t e1000_set_mac_type(struct e1000_hw *hw); -void e1000_set_media_type(struct e1000_hw *hw); - -/* Link Configuration */ -int32_t e1000_setup_link(struct e1000_hw *hw); -int32_t e1000_phy_setup_autoneg(struct e1000_hw *hw); -void e1000_config_collision_dist(struct e1000_hw *hw); -int32_t e1000_check_for_link(struct e1000_hw *hw); -int32_t e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, uint16_t *duplex); -int32_t e1000_force_mac_fc(struct e1000_hw *hw); - -/* PHY */ -int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data); -int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); -int32_t e1000_phy_hw_reset(struct e1000_hw *hw); -int32_t e1000_phy_reset(struct e1000_hw *hw); -int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); -int32_t e1000_validate_mdi_setting(struct e1000_hw *hw); - -void e1000_phy_powerdown_workaround(struct e1000_hw *hw); - -/* EEPROM Functions */ -int32_t e1000_init_eeprom_params(struct e1000_hw *hw); - -/* MNG HOST IF functions */ -uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw); - -#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 -#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 /* Host Interface data length */ - -#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 /* Time in ms to process MNG command */ -#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */ -#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */ -#define E1000_MNG_IAMT_MODE 0x3 -#define E1000_MNG_ICH_IAMT_MODE 0x2 -#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */ - -#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */ -#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT 0x2 /* DHCP parsing enabled */ -#define E1000_VFTA_ENTRY_SHIFT 0x5 -#define E1000_VFTA_ENTRY_MASK 0x7F -#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F +enum e1000_bus_type { + e1000_bus_type_unknown = 0, + e1000_bus_type_pci, + e1000_bus_type_pcix, + e1000_bus_type_pci_express, + e1000_bus_type_reserved +}; -struct e1000_host_mng_command_header { - uint8_t command_id; - uint8_t checksum; - uint16_t reserved1; - uint16_t reserved2; - uint16_t command_length; +enum e1000_bus_speed { + e1000_bus_speed_unknown = 0, + e1000_bus_speed_33, + e1000_bus_speed_66, + e1000_bus_speed_100, + e1000_bus_speed_120, + e1000_bus_speed_133, + e1000_bus_speed_2500, + e1000_bus_speed_5000, + e1000_bus_speed_reserved }; -struct e1000_host_mng_command_info { - struct e1000_host_mng_command_header command_header; /* Command Head/Command Result Head has 4 bytes */ - uint8_t command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; /* Command data can length 0..0x658*/ +enum e1000_bus_width { + e1000_bus_width_unknown = 0, + e1000_bus_width_pcie_x1, + e1000_bus_width_pcie_x2, + e1000_bus_width_pcie_x4 = 4, + e1000_bus_width_pcie_x8 = 8, + e1000_bus_width_32, + e1000_bus_width_64, + e1000_bus_width_reserved }; -#ifdef __BIG_ENDIAN -struct e1000_host_mng_dhcp_cookie{ - uint32_t signature; - uint16_t vlan_id; - uint8_t reserved0; - uint8_t status; - uint32_t reserved1; - uint8_t checksum; - uint8_t reserved3; - uint16_t reserved2; + +enum e1000_1000t_rx_status { + e1000_1000t_rx_status_not_ok = 0, + e1000_1000t_rx_status_ok, + e1000_1000t_rx_status_undefined = 0xFF }; -#else -struct e1000_host_mng_dhcp_cookie{ - uint32_t signature; - uint8_t status; - uint8_t reserved0; - uint16_t vlan_id; - uint32_t reserved1; - uint16_t reserved2; - uint8_t reserved3; - uint8_t checksum; + +enum e1000_rev_polarity { + e1000_rev_polarity_normal = 0, + e1000_rev_polarity_reversed, + e1000_rev_polarity_undefined = 0xFF }; -#endif -int32_t e1000_mng_write_dhcp_info(struct e1000_hw *hw, uint8_t *buffer, - uint16_t length); -boolean_t e1000_check_mng_mode(struct e1000_hw *hw); -boolean_t e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); -int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); -int32_t e1000_validate_eeprom_checksum(struct e1000_hw *hw); -int32_t e1000_update_eeprom_checksum(struct e1000_hw *hw); -int32_t e1000_write_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); -int32_t e1000_read_mac_addr(struct e1000_hw * hw); - -/* Filters (multicast, vlan, receive) */ -uint32_t e1000_hash_mc_addr(struct e1000_hw *hw, uint8_t * mc_addr); -void e1000_mta_set(struct e1000_hw *hw, uint32_t hash_value); -void e1000_rar_set(struct e1000_hw *hw, uint8_t * mc_addr, uint32_t rar_index); -void e1000_write_vfta(struct e1000_hw *hw, uint32_t offset, uint32_t value); - -/* LED functions */ -int32_t e1000_setup_led(struct e1000_hw *hw); -int32_t e1000_cleanup_led(struct e1000_hw *hw); -int32_t e1000_led_on(struct e1000_hw *hw); -int32_t e1000_led_off(struct e1000_hw *hw); -int32_t e1000_blink_led_start(struct e1000_hw *hw); - -/* Adaptive IFS Functions */ - -/* Everything else */ -void e1000_reset_adaptive(struct e1000_hw *hw); -void e1000_update_adaptive(struct e1000_hw *hw); -void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, uint32_t frame_len, uint8_t * mac_addr); -void e1000_get_bus_info(struct e1000_hw *hw); -void e1000_pci_set_mwi(struct e1000_hw *hw); -void e1000_pci_clear_mwi(struct e1000_hw *hw); -void e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t * value); -void e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t * value); -int32_t e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value); -/* Port I/O is only supported on 82544 and newer */ -void e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value); -int32_t e1000_disable_pciex_master(struct e1000_hw *hw); -int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); - - -#define E1000_READ_REG_IO(a, reg) \ - e1000_read_reg_io((a), E1000_##reg) -#define E1000_WRITE_REG_IO(a, reg, val) \ - e1000_write_reg_io((a), E1000_##reg, val) - -/* PCI Device IDs */ -#define E1000_DEV_ID_82542 0x1000 -#define E1000_DEV_ID_82543GC_FIBER 0x1001 -#define E1000_DEV_ID_82543GC_COPPER 0x1004 -#define E1000_DEV_ID_82544EI_COPPER 0x1008 -#define E1000_DEV_ID_82544EI_FIBER 0x1009 -#define E1000_DEV_ID_82544GC_COPPER 0x100C -#define E1000_DEV_ID_82544GC_LOM 0x100D -#define E1000_DEV_ID_82540EM 0x100E -#define E1000_DEV_ID_82540EM_LOM 0x1015 -#define E1000_DEV_ID_82540EP_LOM 0x1016 -#define E1000_DEV_ID_82540EP 0x1017 -#define E1000_DEV_ID_82540EP_LP 0x101E -#define E1000_DEV_ID_82545EM_COPPER 0x100F -#define E1000_DEV_ID_82545EM_FIBER 0x1011 -#define E1000_DEV_ID_82545GM_COPPER 0x1026 -#define E1000_DEV_ID_82545GM_FIBER 0x1027 -#define E1000_DEV_ID_82545GM_SERDES 0x1028 -#define E1000_DEV_ID_82546EB_COPPER 0x1010 -#define E1000_DEV_ID_82546EB_FIBER 0x1012 -#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D -#define E1000_DEV_ID_82541EI 0x1013 -#define E1000_DEV_ID_82541EI_MOBILE 0x1018 -#define E1000_DEV_ID_82541ER_LOM 0x1014 -#define E1000_DEV_ID_82541ER 0x1078 -#define E1000_DEV_ID_82547GI 0x1075 -#define E1000_DEV_ID_82541GI 0x1076 -#define E1000_DEV_ID_82541GI_MOBILE 0x1077 -#define E1000_DEV_ID_82541GI_LF 0x107C -#define E1000_DEV_ID_82546GB_COPPER 0x1079 -#define E1000_DEV_ID_82546GB_FIBER 0x107A -#define E1000_DEV_ID_82546GB_SERDES 0x107B -#define E1000_DEV_ID_82546GB_PCIE 0x108A -#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 -#define E1000_DEV_ID_82547EI 0x1019 -#define E1000_DEV_ID_82547EI_MOBILE 0x101A -#define E1000_DEV_ID_82571EB_COPPER 0x105E -#define E1000_DEV_ID_82571EB_FIBER 0x105F -#define E1000_DEV_ID_82571EB_SERDES 0x1060 -#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4 -#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5 -#define E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE 0x10BC -#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9 -#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA -#define E1000_DEV_ID_82572EI_COPPER 0x107D -#define E1000_DEV_ID_82572EI_FIBER 0x107E -#define E1000_DEV_ID_82572EI_SERDES 0x107F -#define E1000_DEV_ID_82572EI 0x10B9 -#define E1000_DEV_ID_82573E 0x108B -#define E1000_DEV_ID_82573E_IAMT 0x108C -#define E1000_DEV_ID_82573L 0x109A -#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 -#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 -#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 -#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA -#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB - -#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 -#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A -#define E1000_DEV_ID_ICH8_IGP_C 0x104B -#define E1000_DEV_ID_ICH8_IFE 0x104C -#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4 -#define E1000_DEV_ID_ICH8_IFE_G 0x10C5 -#define E1000_DEV_ID_ICH8_IGP_M 0x104D - -#define E1000_DEV_ID_82576 0x10C9 - -#define NODE_ADDRESS_SIZE 6 -#define ETH_LENGTH_OF_ADDRESS 6 - -/* MAC decode size is 128K - This is the size of BAR0 */ -#define MAC_DECODE_SIZE (128 * 1024) - -#define E1000_82542_2_0_REV_ID 2 -#define E1000_82542_2_1_REV_ID 3 -#define E1000_REVISION_0 0 -#define E1000_REVISION_1 1 -#define E1000_REVISION_2 2 -#define E1000_REVISION_3 3 - -#define SPEED_10 10 -#define SPEED_100 100 -#define SPEED_1000 1000 -#define HALF_DUPLEX 1 -#define FULL_DUPLEX 2 - -/* The sizes (in bytes) of a ethernet packet */ -#define ENET_HEADER_SIZE 14 -#define MAXIMUM_ETHERNET_FRAME_SIZE 1518 /* With FCS */ -#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */ -#define ETHERNET_FCS_SIZE 4 -#define MAXIMUM_ETHERNET_PACKET_SIZE \ - (MAXIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) -#define MINIMUM_ETHERNET_PACKET_SIZE \ - (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) -#define CRC_LENGTH ETHERNET_FCS_SIZE -#define MAX_JUMBO_FRAME_SIZE 0x3F00 - - -/* 802.1q VLAN Packet Sizes */ -#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */ - -/* Ethertype field values */ -#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ -#define ETHERNET_IP_TYPE 0x0800 /* IP packets */ -#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */ - -/* Packet Header defines */ -#define IP_PROTOCOL_TCP 6 -#define IP_PROTOCOL_UDP 0x11 - -/* This defines the bits that are set in the Interrupt Mask - * Set/Read Register. Each bit is documented below: - * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) - * o RXSEQ = Receive Sequence Error - */ -#define POLL_IMS_ENABLE_MASK ( \ - E1000_IMS_RXDMT0 | \ - E1000_IMS_RXSEQ) - -/* This defines the bits that are set in the Interrupt Mask - * Set/Read Register. Each bit is documented below: - * o RXT0 = Receiver Timer Interrupt (ring 0) - * o TXDW = Transmit Descriptor Written Back - * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) - * o RXSEQ = Receive Sequence Error - * o LSC = Link Status Change - */ -#define IMS_ENABLE_MASK ( \ - E1000_IMS_RXT0 | \ - E1000_IMS_TXDW | \ - E1000_IMS_RXDMT0 | \ - E1000_IMS_RXSEQ | \ - E1000_IMS_LSC | \ - E1000_IMS_DOUTSYNC) - -/* Additional interrupts need to be handled for e1000_ich8lan: - DSW = The FW changed the status of the DISSW bit in FWSM - PHYINT = The LAN connected device generates an interrupt - EPRST = Manageability reset event */ -#define IMS_ICH8LAN_ENABLE_MASK (\ - E1000_IMS_DSW | \ - E1000_IMS_PHYINT | \ - E1000_IMS_EPRST) - -/* Number of high/low register pairs in the RAR. The RAR (Receive Address - * Registers) holds the directed and multicast addresses that we monitor. We - * reserve one of these spots for our directed address, allowing us room for - * E1000_RAR_ENTRIES - 1 multicast addresses. - */ -#define E1000_RAR_ENTRIES 15 - -#define E1000_RAR_ENTRIES_ICH8LAN 6 - -#define MIN_NUMBER_OF_DESCRIPTORS 8 -#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 +enum e1000_fc_mode { + e1000_fc_none = 0, + e1000_fc_rx_pause, + e1000_fc_tx_pause, + e1000_fc_full, + e1000_fc_default = 0xFF +}; + +enum e1000_ffe_config { + e1000_ffe_config_enabled = 0, + e1000_ffe_config_active, + e1000_ffe_config_blocked +}; + +enum e1000_dsp_config { + e1000_dsp_config_disabled = 0, + e1000_dsp_config_enabled, + e1000_dsp_config_activated, + e1000_dsp_config_undefined = 0xFF +}; + +enum e1000_ms_type { + e1000_ms_hw_default = 0, + e1000_ms_force_master, + e1000_ms_force_slave, + e1000_ms_auto +}; + +enum e1000_smart_speed { + e1000_smart_speed_default = 0, + e1000_smart_speed_on, + e1000_smart_speed_off +}; + +enum e1000_serdes_link_state { + e1000_serdes_link_down = 0, + e1000_serdes_link_autoneg_progress, + e1000_serdes_link_autoneg_complete, + e1000_serdes_link_forced_up +}; /* Receive Descriptor */ struct e1000_rx_desc { - uint64_t buffer_addr; /* Address of the descriptor's data buffer */ - uint16_t length; /* Length of data DMAed into data buffer */ - uint16_t csum; /* Packet checksum */ - uint8_t status; /* Descriptor status */ - uint8_t errors; /* Descriptor Errors */ - uint16_t special; + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + __le16 length; /* Length of data DMAed into data buffer */ + __le16 csum; /* Packet checksum */ + u8 status; /* Descriptor status */ + u8 errors; /* Descriptor Errors */ + __le16 special; }; /* Receive Descriptor - Extended */ union e1000_rx_desc_extended { - struct { - uint64_t buffer_addr; - uint64_t reserved; - } read; - struct { - struct { - uint32_t mrq; /* Multiple Rx Queues */ - union { - uint32_t rss; /* RSS Hash */ - struct { - uint16_t ip_id; /* IP id */ - uint16_t csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - uint32_t status_error; /* ext status/error */ - uint16_t length; - uint16_t vlan; /* VLAN tag */ - } upper; - } wb; /* writeback */ + struct { + __le64 buffer_addr; + __le64 reserved; + } read; + struct { + struct { + __le32 mrq; /* Multiple Rx Queues */ + union { + __le32 rss; /* RSS Hash */ + struct { + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + __le32 status_error; /* ext status/error */ + __le16 length; + __le16 vlan; /* VLAN tag */ + } upper; + } wb; /* writeback */ }; #define MAX_PS_BUFFERS 4 /* Receive Descriptor - Packet Split */ union e1000_rx_desc_packet_split { - struct { - /* one buffer for protocol header(s), three data buffers */ - uint64_t buffer_addr[MAX_PS_BUFFERS]; - } read; - struct { - struct { - uint32_t mrq; /* Multiple Rx Queues */ - union { - uint32_t rss; /* RSS Hash */ - struct { - uint16_t ip_id; /* IP id */ - uint16_t csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - uint32_t status_error; /* ext status/error */ - uint16_t length0; /* length of buffer 0 */ - uint16_t vlan; /* VLAN tag */ - } middle; - struct { - uint16_t header_status; - uint16_t length[3]; /* length of buffers 1-3 */ - } upper; - uint64_t reserved; - } wb; /* writeback */ + struct { + /* one buffer for protocol header(s), three data buffers */ + __le64 buffer_addr[MAX_PS_BUFFERS]; + } read; + struct { + struct { + __le32 mrq; /* Multiple Rx Queues */ + union { + __le32 rss; /* RSS Hash */ + struct { + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + __le32 status_error; /* ext status/error */ + __le16 length0; /* length of buffer 0 */ + __le16 vlan; /* VLAN tag */ + } middle; + struct { + __le16 header_status; + __le16 length[3]; /* length of buffers 1-3 */ + } upper; + __le64 reserved; + } wb; /* writeback */ }; -/* Receive Decriptor bit definitions */ -#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ -#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ -#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ -#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ -#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */ -#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ -#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ -#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ -#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ -#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ -#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */ -#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ -#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ -#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ -#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ -#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ -#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ -#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ -#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ -#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ -#define E1000_RXD_SPC_PRI_SHIFT 13 -#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ -#define E1000_RXD_SPC_CFI_SHIFT 12 - -#define E1000_RXDEXT_STATERR_CE 0x01000000 -#define E1000_RXDEXT_STATERR_SE 0x02000000 -#define E1000_RXDEXT_STATERR_SEQ 0x04000000 -#define E1000_RXDEXT_STATERR_CXE 0x10000000 -#define E1000_RXDEXT_STATERR_TCPE 0x20000000 -#define E1000_RXDEXT_STATERR_IPE 0x40000000 -#define E1000_RXDEXT_STATERR_RXE 0x80000000 - -#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 -#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF - -/* mask to determine if packets should be dropped due to frame errors */ -#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ - E1000_RXD_ERR_CE | \ - E1000_RXD_ERR_SE | \ - E1000_RXD_ERR_SEQ | \ - E1000_RXD_ERR_CXE | \ - E1000_RXD_ERR_RXE) - - -/* Same mask, but for extended and packet split descriptors */ -#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ - E1000_RXDEXT_STATERR_CE | \ - E1000_RXDEXT_STATERR_SE | \ - E1000_RXDEXT_STATERR_SEQ | \ - E1000_RXDEXT_STATERR_CXE | \ - E1000_RXDEXT_STATERR_RXE) - - /* Transmit Descriptor */ struct e1000_tx_desc { - uint64_t buffer_addr; /* Address of the descriptor's data buffer */ - union { - uint32_t data; - struct { - uint16_t length; /* Data buffer length */ - uint8_t cso; /* Checksum offset */ - uint8_t cmd; /* Descriptor control */ - } flags; - } lower; - union { - uint32_t data; - struct { - uint8_t status; /* Descriptor status */ - uint8_t css; /* Checksum start */ - uint16_t special; - } fields; - } upper; + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + union { + __le32 data; + struct { + __le16 length; /* Data buffer length */ + u8 cso; /* Checksum offset */ + u8 cmd; /* Descriptor control */ + } flags; + } lower; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 css; /* Checksum start */ + __le16 special; + } fields; + } upper; }; -/* Transmit Descriptor bit definitions */ -#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ -#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ -#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ -#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ -#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ -#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ -#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ -#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ -#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ -#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ -#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ -#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ -#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ -#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ -#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ -#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ -#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ -#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ -#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ - /* Offload Context Descriptor */ struct e1000_context_desc { - union { - uint32_t ip_config; - struct { - uint8_t ipcss; /* IP checksum start */ - uint8_t ipcso; /* IP checksum offset */ - uint16_t ipcse; /* IP checksum end */ - } ip_fields; - } lower_setup; - union { - uint32_t tcp_config; - struct { - uint8_t tucss; /* TCP checksum start */ - uint8_t tucso; /* TCP checksum offset */ - uint16_t tucse; /* TCP checksum end */ - } tcp_fields; - } upper_setup; - uint32_t cmd_and_length; /* */ - union { - uint32_t data; - struct { - uint8_t status; /* Descriptor status */ - uint8_t hdr_len; /* Header length */ - uint16_t mss; /* Maximum segment size */ - } fields; - } tcp_seg_setup; + union { + __le32 ip_config; + struct { + u8 ipcss; /* IP checksum start */ + u8 ipcso; /* IP checksum offset */ + __le16 ipcse; /* IP checksum end */ + } ip_fields; + } lower_setup; + union { + __le32 tcp_config; + struct { + u8 tucss; /* TCP checksum start */ + u8 tucso; /* TCP checksum offset */ + __le16 tucse; /* TCP checksum end */ + } tcp_fields; + } upper_setup; + __le32 cmd_and_length; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 hdr_len; /* Header length */ + __le16 mss; /* Maximum segment size */ + } fields; + } tcp_seg_setup; }; /* Offload data descriptor */ struct e1000_data_desc { - uint64_t buffer_addr; /* Address of the descriptor's buffer address */ - union { - uint32_t data; - struct { - uint16_t length; /* Data buffer length */ - uint8_t typ_len_ext; /* */ - uint8_t cmd; /* */ - } flags; - } lower; - union { - uint32_t data; - struct { - uint8_t status; /* Descriptor status */ - uint8_t popts; /* Packet Options */ - uint16_t special; /* */ - } fields; - } upper; + __le64 buffer_addr; /* Address of the descriptor's buffer address */ + union { + __le32 data; + struct { + __le16 length; /* Data buffer length */ + u8 typ_len_ext; + u8 cmd; + } flags; + } lower; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 popts; /* Packet Options */ + __le16 special; + } fields; + } upper; }; -/* Filters */ -#define E1000_NUM_UNICAST 16 /* Unicast filter entries */ -#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ -#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ - -#define E1000_NUM_UNICAST_ICH8LAN 7 -#define E1000_MC_TBL_SIZE_ICH8LAN 32 +/* Statistics counters collected by the MAC */ +struct e1000_hw_stats { + u64 crcerrs; + u64 algnerrc; + u64 symerrs; + u64 rxerrc; + u64 mpc; + u64 scc; + u64 ecol; + u64 mcc; + u64 latecol; + u64 colc; + u64 dc; + u64 tncrs; + u64 sec; + u64 cexterr; + u64 rlec; + u64 xonrxc; + u64 xontxc; + u64 xoffrxc; + u64 xofftxc; + u64 fcruc; + u64 prc64; + u64 prc127; + u64 prc255; + u64 prc511; + u64 prc1023; + u64 prc1522; + u64 gprc; + u64 bprc; + u64 mprc; + u64 gptc; + u64 gorc; + u64 gotc; + u64 rnbc; + u64 ruc; + u64 rfc; + u64 roc; + u64 rjc; + u64 mgprc; + u64 mgpdc; + u64 mgptc; + u64 tor; + u64 tot; + u64 tpr; + u64 tpt; + u64 ptc64; + u64 ptc127; + u64 ptc255; + u64 ptc511; + u64 ptc1023; + u64 ptc1522; + u64 mptc; + u64 bptc; + u64 tsctc; + u64 tsctfc; + u64 iac; + u64 icrxptc; + u64 icrxatc; + u64 ictxptc; + u64 ictxatc; + u64 ictxqec; + u64 ictxqmtc; + u64 icrxdmtc; + u64 icrxoc; + u64 cbtmpc; + u64 htdpmc; + u64 cbrdpc; + u64 cbrmpc; + u64 rpthc; + u64 hgptc; + u64 htcbdpc; + u64 hgorc; + u64 hgotc; + u64 lenerrs; + u64 scvpc; + u64 hrmpc; + u64 doosync; +}; -/* Receive Address Register */ -struct e1000_rar { - volatile uint32_t low; /* receive address low */ - volatile uint32_t high; /* receive address high */ +struct e1000_phy_stats { + u32 idle_errors; + u32 receive_errors; }; -/* Number of entries in the Multicast Table Array (MTA). */ -#define E1000_NUM_MTA_REGISTERS 128 -#define E1000_NUM_MTA_REGISTERS_ICH8LAN 32 +struct e1000_host_mng_dhcp_cookie { + u32 signature; + u8 status; + u8 reserved0; + u16 vlan_id; + u32 reserved1; + u16 reserved2; + u8 reserved3; + u8 checksum; +}; -/* IPv4 Address Table Entry */ -struct e1000_ipv4_at_entry { - volatile uint32_t ipv4_addr; /* IP Address (RW) */ - volatile uint32_t reserved; +/* Host Interface "Rev 1" */ +struct e1000_host_command_header { + u8 command_id; + u8 command_length; + u8 command_options; + u8 checksum; }; -/* Four wakeup IP addresses are supported */ -#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 -#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX -#define E1000_IP4AT_SIZE_ICH8LAN 3 -#define E1000_IP6AT_SIZE 1 +#define E1000_HI_MAX_DATA_LENGTH 252 +struct e1000_host_command_info { + struct e1000_host_command_header command_header; + u8 command_data[E1000_HI_MAX_DATA_LENGTH]; +}; -/* IPv6 Address Table Entry */ -struct e1000_ipv6_at_entry { - volatile uint8_t ipv6_addr[16]; +/* Host Interface "Rev 2" */ +struct e1000_host_mng_command_header { + u8 command_id; + u8 checksum; + u16 reserved1; + u16 reserved2; + u16 command_length; }; -/* Flexible Filter Length Table Entry */ -struct e1000_fflt_entry { - volatile uint32_t length; /* Flexible Filter Length (RW) */ - volatile uint32_t reserved; +#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 +struct e1000_host_mng_command_info { + struct e1000_host_mng_command_header command_header; + u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; }; -/* Flexible Filter Mask Table Entry */ -struct e1000_ffmt_entry { - volatile uint32_t mask; /* Flexible Filter Mask (RW) */ - volatile uint32_t reserved; +#include "e1000_mac.h" +#include "e1000_phy.h" +#include "e1000_nvm.h" +#include "e1000_manage.h" + +struct e1000_mac_operations { + /* Function pointers for the MAC. */ + s32 (*init_params)(struct e1000_hw *); + s32 (*id_led_init)(struct e1000_hw *); + s32 (*blink_led)(struct e1000_hw *); + s32 (*check_for_link)(struct e1000_hw *); + bool (*check_mng_mode)(struct e1000_hw *hw); + s32 (*cleanup_led)(struct e1000_hw *); + void (*clear_hw_cntrs)(struct e1000_hw *); + void (*clear_vfta)(struct e1000_hw *); + s32 (*get_bus_info)(struct e1000_hw *); + void (*set_lan_id)(struct e1000_hw *); + s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); + s32 (*led_on)(struct e1000_hw *); + s32 (*led_off)(struct e1000_hw *); + void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32); + s32 (*reset_hw)(struct e1000_hw *); + s32 (*init_hw)(struct e1000_hw *); + s32 (*setup_link)(struct e1000_hw *); + s32 (*setup_physical_interface)(struct e1000_hw *); + s32 (*setup_led)(struct e1000_hw *); + void (*write_vfta)(struct e1000_hw *, u32, u32); + void (*mta_set)(struct e1000_hw *, u32); + void (*config_collision_dist)(struct e1000_hw *); + void (*rar_set)(struct e1000_hw *, u8*, u32); + s32 (*read_mac_addr)(struct e1000_hw *); + s32 (*validate_mdi_setting)(struct e1000_hw *); + s32 (*mng_host_if_write)(struct e1000_hw *, u8*, u16, u16, u8*); + s32 (*mng_write_cmd_header)(struct e1000_hw *hw, + struct e1000_host_mng_command_header*); + s32 (*mng_enable_host_if)(struct e1000_hw *); + s32 (*wait_autoneg)(struct e1000_hw *); }; -/* Flexible Filter Value Table Entry */ -struct e1000_ffvt_entry { - volatile uint32_t value; /* Flexible Filter Value (RW) */ - volatile uint32_t reserved; +struct e1000_phy_operations { + s32 (*init_params)(struct e1000_hw *); + s32 (*acquire)(struct e1000_hw *); + s32 (*check_polarity)(struct e1000_hw *); + s32 (*check_reset_block)(struct e1000_hw *); + s32 (*commit)(struct e1000_hw *); +#if 0 + s32 (*force_speed_duplex)(struct e1000_hw *); +#endif + s32 (*get_cfg_done)(struct e1000_hw *hw); +#if 0 + s32 (*get_cable_length)(struct e1000_hw *); +#endif + s32 (*get_info)(struct e1000_hw *); + s32 (*read_reg)(struct e1000_hw *, u32, u16 *); + void (*release)(struct e1000_hw *); + s32 (*reset)(struct e1000_hw *); + s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); + s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); + s32 (*write_reg)(struct e1000_hw *, u32, u16); + void (*power_up)(struct e1000_hw *); + void (*power_down)(struct e1000_hw *); }; -/* Four Flexible Filters are supported */ -#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4 - -/* Each Flexible Filter is at most 128 (0x80) bytes in length */ -#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128 - -#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX -#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX -#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX - -#define E1000_DISABLE_SERDES_LOOPBACK 0x0400 - -/* Register Set. (82543, 82544) - * - * Registers are defined to be 32 bits and should be accessed as 32 bit values. - * These registers are physically located on the NIC, but are mapped into the - * host memory address space. - * - * RW - register is both readable and writable - * RO - register is read only - * WO - register is write only - * R/clr - register is read only and is cleared when read - * A - register array - */ -#define E1000_CTRL 0x00000 /* Device Control - RW */ -#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ -#define E1000_STATUS 0x00008 /* Device Status - RO */ -#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ -#define E1000_EERD 0x00014 /* EEPROM Read - RW */ -#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ -#define E1000_FLA 0x0001C /* Flash Access - RW */ -#define E1000_MDIC 0x00020 /* MDI Control - RW */ -#define E1000_SCTL 0x00024 /* SerDes Control - RW */ -#define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */ -#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ -#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ -#define E1000_FCT 0x00030 /* Flow Control Type - RW */ -#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ -#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ -#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ -#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ -#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ -#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ -#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ -#define E1000_RCTL 0x00100 /* RX Control - RW */ -#define E1000_RDTR1 0x02820 /* RX Delay Timer (1) - RW */ -#define E1000_RDBAL1 0x02900 /* RX Descriptor Base Address Low (1) - RW */ -#define E1000_RDBAH1 0x02904 /* RX Descriptor Base Address High (1) - RW */ -#define E1000_RDLEN1 0x02908 /* RX Descriptor Length (1) - RW */ -#define E1000_RDH1 0x02910 /* RX Descriptor Head (1) - RW */ -#define E1000_RDT1 0x02918 /* RX Descriptor Tail (1) - RW */ -#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ -#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ -#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */ -#define E1000_TCTL 0x00400 /* TX Control - RW */ -#define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */ -#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */ -#define E1000_TBT 0x00448 /* TX Burst Timer - RW */ -#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ -#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ -#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ -#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ -#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ -#define FEXTNVM_SW_CONFIG 0x0001 -#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ -#define E1000_PBS 0x01008 /* Packet Buffer Size */ -#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ -#define E1000_FLASH_UPDATES 1000 -#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ -#define E1000_FLASHT 0x01028 /* FLASH Timer Register */ -#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ -#define E1000_FLSWCTL 0x01030 /* FLASH control register */ -#define E1000_FLSWDATA 0x01034 /* FLASH data register */ -#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ -#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ -#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ -#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ -#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ -#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ -#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ -#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ -#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ -#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */ -#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */ -#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */ -#define E1000_RDBAL0 E1000_RDBAL /* RX Desc Base Address Low (0) - RW */ -#define E1000_RDBAH0 E1000_RDBAH /* RX Desc Base Address High (0) - RW */ -#define E1000_RDLEN0 E1000_RDLEN /* RX Desc Length (0) - RW */ -#define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */ -#define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */ -#define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */ -#define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */ -#define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */ -#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ -#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ -#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ -#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ -#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ -#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ -#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ -#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ -#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */ -#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */ -#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */ -#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */ -#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */ -#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */ -#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */ -#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */ -#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ -#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ -#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ -#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */ -#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */ -#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */ -#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */ -#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */ -#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */ -#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */ -#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */ -#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ -#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ -#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ -#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ -#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ -#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ -#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ -#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ -#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ -#define E1000_COLC 0x04028 /* Collision Count - R/clr */ -#define E1000_DC 0x04030 /* Defer Count - R/clr */ -#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */ -#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ -#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ -#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ -#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */ -#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */ -#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */ -#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */ -#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */ -#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */ -#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */ -#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */ -#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */ -#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */ -#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */ -#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */ -#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */ -#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */ -#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */ -#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */ -#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */ -#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */ -#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */ -#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */ -#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */ -#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */ -#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */ -#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */ -#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */ -#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ -#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */ -#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */ -#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */ -#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */ -#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */ -#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */ -#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */ -#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */ -#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */ -#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */ -#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */ -#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */ -#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */ -#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */ -#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ -#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ -#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ -#define E1000_IAC 0x04100 /* Interrupt Assertion Count */ -#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Packet Timer Expire Count */ -#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Absolute Timer Expire Count */ -#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Packet Timer Expire Count */ -#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Absolute Timer Expire Count */ -#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */ -#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Minimum Threshold Count */ -#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */ -#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ -#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ -#define E1000_RFCTL 0x05008 /* Receive Filter Control*/ -#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ -#define E1000_RA 0x05400 /* Receive Address - RW Array */ -#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ -#define E1000_WUC 0x05800 /* Wakeup Control - RW */ -#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ -#define E1000_WUS 0x05810 /* Wakeup Status - RO */ -#define E1000_MANC 0x05820 /* Management Control - RW */ -#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ -#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ -#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ -#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ -#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ -#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ -#define E1000_HOST_IF 0x08800 /* Host Interface */ -#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ -#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ - -#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */ -#define E1000_MDPHYA 0x0003C /* PHY address - RW */ -#define E1000_MANC2H 0x05860 /* Managment Control To Host - RW */ -#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */ - -#define E1000_GCR 0x05B00 /* PCI-Ex Control */ -#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ -#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ -#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ -#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ -#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ -#define E1000_SWSM 0x05B50 /* SW Semaphore */ -#define E1000_FWSM 0x05B54 /* FW Semaphore */ -#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ -#define E1000_HICR 0x08F00 /* Host Inteface Control */ - -/* RSS registers */ -#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ -#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ -#define E1000_RETA 0x05C00 /* Redirection Table - RW Array */ -#define E1000_RSSRK 0x05C80 /* RSS Random Key - RW Array */ -#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ -#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ -/* Register Set (82542) - * - * Some of the 82542 registers are located at different offsets than they are - * in more current versions of the 8254x. Despite the difference in location, - * the registers function in the same manner. - */ -#define E1000_82542_CTRL E1000_CTRL -#define E1000_82542_CTRL_DUP E1000_CTRL_DUP -#define E1000_82542_STATUS E1000_STATUS -#define E1000_82542_EECD E1000_EECD -#define E1000_82542_EERD E1000_EERD -#define E1000_82542_CTRL_EXT E1000_CTRL_EXT -#define E1000_82542_FLA E1000_FLA -#define E1000_82542_MDIC E1000_MDIC -#define E1000_82542_SCTL E1000_SCTL -#define E1000_82542_FEXTNVM E1000_FEXTNVM -#define E1000_82542_FCAL E1000_FCAL -#define E1000_82542_FCAH E1000_FCAH -#define E1000_82542_FCT E1000_FCT -#define E1000_82542_VET E1000_VET -#define E1000_82542_RA 0x00040 -#define E1000_82542_ICR E1000_ICR -#define E1000_82542_ITR E1000_ITR -#define E1000_82542_ICS E1000_ICS -#define E1000_82542_IMS E1000_IMS -#define E1000_82542_IMC E1000_IMC -#define E1000_82542_RCTL E1000_RCTL -#define E1000_82542_RDTR 0x00108 -#define E1000_82542_RDBAL 0x00110 -#define E1000_82542_RDBAH 0x00114 -#define E1000_82542_RDLEN 0x00118 -#define E1000_82542_RDH 0x00120 -#define E1000_82542_RDT 0x00128 -#define E1000_82542_RDTR0 E1000_82542_RDTR -#define E1000_82542_RDBAL0 E1000_82542_RDBAL -#define E1000_82542_RDBAH0 E1000_82542_RDBAH -#define E1000_82542_RDLEN0 E1000_82542_RDLEN -#define E1000_82542_RDH0 E1000_82542_RDH -#define E1000_82542_RDT0 E1000_82542_RDT -#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication - * RX Control - RW */ -#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8)) -#define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */ -#define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */ -#define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */ -#define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */ -#define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */ -#define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */ -#define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */ -#define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */ -#define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */ -#define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */ -#define E1000_82542_RDTR1 0x00130 -#define E1000_82542_RDBAL1 0x00138 -#define E1000_82542_RDBAH1 0x0013C -#define E1000_82542_RDLEN1 0x00140 -#define E1000_82542_RDH1 0x00148 -#define E1000_82542_RDT1 0x00150 -#define E1000_82542_FCRTH 0x00160 -#define E1000_82542_FCRTL 0x00168 -#define E1000_82542_FCTTV E1000_FCTTV -#define E1000_82542_TXCW E1000_TXCW -#define E1000_82542_RXCW E1000_RXCW -#define E1000_82542_MTA 0x00200 -#define E1000_82542_TCTL E1000_TCTL -#define E1000_82542_TCTL_EXT E1000_TCTL_EXT -#define E1000_82542_TIPG E1000_TIPG -#define E1000_82542_TDBAL 0x00420 -#define E1000_82542_TDBAH 0x00424 -#define E1000_82542_TDLEN 0x00428 -#define E1000_82542_TDH 0x00430 -#define E1000_82542_TDT 0x00438 -#define E1000_82542_TIDV 0x00440 -#define E1000_82542_TBT E1000_TBT -#define E1000_82542_AIT E1000_AIT -#define E1000_82542_VFTA 0x00600 -#define E1000_82542_LEDCTL E1000_LEDCTL -#define E1000_82542_PBA E1000_PBA -#define E1000_82542_PBS E1000_PBS -#define E1000_82542_EEMNGCTL E1000_EEMNGCTL -#define E1000_82542_EEARBC E1000_EEARBC -#define E1000_82542_FLASHT E1000_FLASHT -#define E1000_82542_EEWR E1000_EEWR -#define E1000_82542_FLSWCTL E1000_FLSWCTL -#define E1000_82542_FLSWDATA E1000_FLSWDATA -#define E1000_82542_FLSWCNT E1000_FLSWCNT -#define E1000_82542_FLOP E1000_FLOP -#define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL -#define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE -#define E1000_82542_PHY_CTRL E1000_PHY_CTRL -#define E1000_82542_ERT E1000_ERT -#define E1000_82542_RXDCTL E1000_RXDCTL -#define E1000_82542_RXDCTL1 E1000_RXDCTL1 -#define E1000_82542_RADV E1000_RADV -#define E1000_82542_RSRPD E1000_RSRPD -#define E1000_82542_TXDMAC E1000_TXDMAC -#define E1000_82542_KABGTXD E1000_KABGTXD -#define E1000_82542_TDFHS E1000_TDFHS -#define E1000_82542_TDFTS E1000_TDFTS -#define E1000_82542_TDFPC E1000_TDFPC -#define E1000_82542_TXDCTL E1000_TXDCTL -#define E1000_82542_TADV E1000_TADV -#define E1000_82542_TSPMT E1000_TSPMT -#define E1000_82542_CRCERRS E1000_CRCERRS -#define E1000_82542_ALGNERRC E1000_ALGNERRC -#define E1000_82542_SYMERRS E1000_SYMERRS -#define E1000_82542_RXERRC E1000_RXERRC -#define E1000_82542_MPC E1000_MPC -#define E1000_82542_SCC E1000_SCC -#define E1000_82542_ECOL E1000_ECOL -#define E1000_82542_MCC E1000_MCC -#define E1000_82542_LATECOL E1000_LATECOL -#define E1000_82542_COLC E1000_COLC -#define E1000_82542_DC E1000_DC -#define E1000_82542_TNCRS E1000_TNCRS -#define E1000_82542_SEC E1000_SEC -#define E1000_82542_CEXTERR E1000_CEXTERR -#define E1000_82542_RLEC E1000_RLEC -#define E1000_82542_XONRXC E1000_XONRXC -#define E1000_82542_XONTXC E1000_XONTXC -#define E1000_82542_XOFFRXC E1000_XOFFRXC -#define E1000_82542_XOFFTXC E1000_XOFFTXC -#define E1000_82542_FCRUC E1000_FCRUC -#define E1000_82542_PRC64 E1000_PRC64 -#define E1000_82542_PRC127 E1000_PRC127 -#define E1000_82542_PRC255 E1000_PRC255 -#define E1000_82542_PRC511 E1000_PRC511 -#define E1000_82542_PRC1023 E1000_PRC1023 -#define E1000_82542_PRC1522 E1000_PRC1522 -#define E1000_82542_GPRC E1000_GPRC -#define E1000_82542_BPRC E1000_BPRC -#define E1000_82542_MPRC E1000_MPRC -#define E1000_82542_GPTC E1000_GPTC -#define E1000_82542_GORCL E1000_GORCL -#define E1000_82542_GORCH E1000_GORCH -#define E1000_82542_GOTCL E1000_GOTCL -#define E1000_82542_GOTCH E1000_GOTCH -#define E1000_82542_RNBC E1000_RNBC -#define E1000_82542_RUC E1000_RUC -#define E1000_82542_RFC E1000_RFC -#define E1000_82542_ROC E1000_ROC -#define E1000_82542_RJC E1000_RJC -#define E1000_82542_MGTPRC E1000_MGTPRC -#define E1000_82542_MGTPDC E1000_MGTPDC -#define E1000_82542_MGTPTC E1000_MGTPTC -#define E1000_82542_TORL E1000_TORL -#define E1000_82542_TORH E1000_TORH -#define E1000_82542_TOTL E1000_TOTL -#define E1000_82542_TOTH E1000_TOTH -#define E1000_82542_TPR E1000_TPR -#define E1000_82542_TPT E1000_TPT -#define E1000_82542_PTC64 E1000_PTC64 -#define E1000_82542_PTC127 E1000_PTC127 -#define E1000_82542_PTC255 E1000_PTC255 -#define E1000_82542_PTC511 E1000_PTC511 -#define E1000_82542_PTC1023 E1000_PTC1023 -#define E1000_82542_PTC1522 E1000_PTC1522 -#define E1000_82542_MPTC E1000_MPTC -#define E1000_82542_BPTC E1000_BPTC -#define E1000_82542_TSCTC E1000_TSCTC -#define E1000_82542_TSCTFC E1000_TSCTFC -#define E1000_82542_RXCSUM E1000_RXCSUM -#define E1000_82542_WUC E1000_WUC -#define E1000_82542_WUFC E1000_WUFC -#define E1000_82542_WUS E1000_WUS -#define E1000_82542_MANC E1000_MANC -#define E1000_82542_IPAV E1000_IPAV -#define E1000_82542_IP4AT E1000_IP4AT -#define E1000_82542_IP6AT E1000_IP6AT -#define E1000_82542_WUPL E1000_WUPL -#define E1000_82542_WUPM E1000_WUPM -#define E1000_82542_FFLT E1000_FFLT -#define E1000_82542_TDFH 0x08010 -#define E1000_82542_TDFT 0x08018 -#define E1000_82542_FFMT E1000_FFMT -#define E1000_82542_FFVT E1000_FFVT -#define E1000_82542_HOST_IF E1000_HOST_IF -#define E1000_82542_IAM E1000_IAM -#define E1000_82542_EEMNGCTL E1000_EEMNGCTL -#define E1000_82542_PSRCTL E1000_PSRCTL -#define E1000_82542_RAID E1000_RAID -#define E1000_82542_TARC0 E1000_TARC0 -#define E1000_82542_TDBAL1 E1000_TDBAL1 -#define E1000_82542_TDBAH1 E1000_TDBAH1 -#define E1000_82542_TDLEN1 E1000_TDLEN1 -#define E1000_82542_TDH1 E1000_TDH1 -#define E1000_82542_TDT1 E1000_TDT1 -#define E1000_82542_TXDCTL1 E1000_TXDCTL1 -#define E1000_82542_TARC1 E1000_TARC1 -#define E1000_82542_RFCTL E1000_RFCTL -#define E1000_82542_GCR E1000_GCR -#define E1000_82542_GSCL_1 E1000_GSCL_1 -#define E1000_82542_GSCL_2 E1000_GSCL_2 -#define E1000_82542_GSCL_3 E1000_GSCL_3 -#define E1000_82542_GSCL_4 E1000_GSCL_4 -#define E1000_82542_FACTPS E1000_FACTPS -#define E1000_82542_SWSM E1000_SWSM -#define E1000_82542_FWSM E1000_FWSM -#define E1000_82542_FFLT_DBG E1000_FFLT_DBG -#define E1000_82542_IAC E1000_IAC -#define E1000_82542_ICRXPTC E1000_ICRXPTC -#define E1000_82542_ICRXATC E1000_ICRXATC -#define E1000_82542_ICTXPTC E1000_ICTXPTC -#define E1000_82542_ICTXATC E1000_ICTXATC -#define E1000_82542_ICTXQEC E1000_ICTXQEC -#define E1000_82542_ICTXQMTC E1000_ICTXQMTC -#define E1000_82542_ICRXDMTC E1000_ICRXDMTC -#define E1000_82542_ICRXOC E1000_ICRXOC -#define E1000_82542_HICR E1000_HICR - -#define E1000_82542_CPUVEC E1000_CPUVEC -#define E1000_82542_MRQC E1000_MRQC -#define E1000_82542_RETA E1000_RETA -#define E1000_82542_RSSRK E1000_RSSRK -#define E1000_82542_RSSIM E1000_RSSIM -#define E1000_82542_RSSIR E1000_RSSIR -#define E1000_82542_KUMCTRLSTA E1000_KUMCTRLSTA -#define E1000_82542_SW_FW_SYNC E1000_SW_FW_SYNC -#define E1000_82542_MANC2H E1000_MANC2H +struct e1000_nvm_operations { + s32 (*init_params)(struct e1000_hw *); + s32 (*acquire)(struct e1000_hw *); + s32 (*read)(struct e1000_hw *, u16, u16, u16 *); + void (*release)(struct e1000_hw *); + void (*reload)(struct e1000_hw *); + s32 (*update)(struct e1000_hw *); + s32 (*valid_led_default)(struct e1000_hw *, u16 *); + s32 (*validate)(struct e1000_hw *); + s32 (*write)(struct e1000_hw *, u16, u16, u16 *); +}; -/* Statistics counters collected by the MAC */ -struct e1000_hw_stats { - uint64_t crcerrs; - uint64_t algnerrc; - uint64_t symerrs; - uint64_t rxerrc; - uint64_t txerrc; - uint64_t mpc; - uint64_t scc; - uint64_t ecol; - uint64_t mcc; - uint64_t latecol; - uint64_t colc; - uint64_t dc; - uint64_t tncrs; - uint64_t sec; - uint64_t cexterr; - uint64_t rlec; - uint64_t xonrxc; - uint64_t xontxc; - uint64_t xoffrxc; - uint64_t xofftxc; - uint64_t fcruc; - uint64_t prc64; - uint64_t prc127; - uint64_t prc255; - uint64_t prc511; - uint64_t prc1023; - uint64_t prc1522; - uint64_t gprc; - uint64_t bprc; - uint64_t mprc; - uint64_t gptc; - uint64_t gorcl; - uint64_t gorch; - uint64_t gotcl; - uint64_t gotch; - uint64_t rnbc; - uint64_t ruc; - uint64_t rfc; - uint64_t roc; - uint64_t rlerrc; - uint64_t rjc; - uint64_t mgprc; - uint64_t mgpdc; - uint64_t mgptc; - uint64_t torl; - uint64_t torh; - uint64_t totl; - uint64_t toth; - uint64_t tpr; - uint64_t tpt; - uint64_t ptc64; - uint64_t ptc127; - uint64_t ptc255; - uint64_t ptc511; - uint64_t ptc1023; - uint64_t ptc1522; - uint64_t mptc; - uint64_t bptc; - uint64_t tsctc; - uint64_t tsctfc; - uint64_t iac; - uint64_t icrxptc; - uint64_t icrxatc; - uint64_t ictxptc; - uint64_t ictxatc; - uint64_t ictxqec; - uint64_t ictxqmtc; - uint64_t icrxdmtc; - uint64_t icrxoc; +struct e1000_mac_info { + struct e1000_mac_operations ops; + u8 addr[6]; + u8 perm_addr[6]; + + enum e1000_mac_type type; + + u32 collision_delta; + u32 ledctl_default; + u32 ledctl_mode1; + u32 ledctl_mode2; + u32 mc_filter_type; + u32 tx_packet_delta; + u32 txcw; + + u16 current_ifs_val; + u16 ifs_max_val; + u16 ifs_min_val; + u16 ifs_ratio; + u16 ifs_step_size; + u16 mta_reg_count; + + /* Maximum size of the MTA register table in all supported adapters */ + #define MAX_MTA_REG 128 + u32 mta_shadow[MAX_MTA_REG]; + u16 rar_entry_count; + + u8 forced_speed_duplex; + + bool adaptive_ifs; + bool arc_subsystem_valid; + bool asf_firmware_present; + bool autoneg; + bool autoneg_failed; + bool get_link_status; + bool in_ifs_mode; + bool report_tx_early; + enum e1000_serdes_link_state serdes_link_state; + bool serdes_has_link; + bool tx_pkt_filtering; }; -/* Structure containing variables used by the shared code (e1000_hw.c) */ -struct e1000_hw { - uint8_t *hw_addr; - uint8_t *flash_address; - e1000_mac_type mac_type; - e1000_phy_type phy_type; - uint32_t phy_init_script; - e1000_media_type media_type; - void *back; - struct e1000_shadow_ram *eeprom_shadow_ram; - uint32_t flash_bank_size; - uint32_t flash_base_addr; - e1000_fc_type fc; - e1000_bus_speed bus_speed; - e1000_bus_width bus_width; - e1000_bus_type bus_type; - struct e1000_eeprom_info eeprom; - e1000_ms_type master_slave; - e1000_ms_type original_master_slave; - e1000_ffe_config ffe_config_state; - uint32_t asf_firmware_present; - uint32_t eeprom_semaphore_present; - uint32_t swfw_sync_present; - uint32_t swfwhw_semaphore_present; - unsigned long io_base; - uint32_t phy_id; - uint32_t phy_revision; - uint32_t phy_addr; - uint32_t original_fc; - uint32_t txcw; - uint32_t autoneg_failed; - uint32_t max_frame_size; - uint32_t min_frame_size; - uint32_t mc_filter_type; - uint32_t num_mc_addrs; - uint32_t collision_delta; - uint32_t tx_packet_delta; - uint32_t ledctl_default; - uint32_t ledctl_mode1; - uint32_t ledctl_mode2; - boolean_t tx_pkt_filtering; - struct e1000_host_mng_dhcp_cookie mng_cookie; - uint16_t phy_spd_default; - uint16_t autoneg_advertised; - uint16_t pci_cmd_word; - uint16_t fc_high_water; - uint16_t fc_low_water; - uint16_t fc_pause_time; - uint16_t current_ifs_val; - uint16_t ifs_min_val; - uint16_t ifs_max_val; - uint16_t ifs_step_size; - uint16_t ifs_ratio; - uint16_t device_id; - uint16_t vendor_id; - uint16_t subsystem_id; - uint16_t subsystem_vendor_id; - uint8_t revision_id; - uint8_t autoneg; - uint8_t mdix; - uint8_t forced_speed_duplex; - uint8_t wait_autoneg_complete; - uint8_t dma_fairness; - uint8_t mac_addr[NODE_ADDRESS_SIZE]; - uint8_t perm_mac_addr[NODE_ADDRESS_SIZE]; - boolean_t disable_polarity_correction; - boolean_t speed_downgraded; - e1000_smart_speed smart_speed; - e1000_dsp_config dsp_config_state; - boolean_t get_link_status; - boolean_t serdes_link_down; - boolean_t tbi_compatibility_en; - boolean_t tbi_compatibility_on; - boolean_t laa_is_present; - boolean_t phy_reset_disable; - boolean_t initialize_hw_bits_disable; - boolean_t fc_send_xon; - boolean_t fc_strict_ieee; - boolean_t report_tx_early; - boolean_t adaptive_ifs; - boolean_t ifs_params_forced; - boolean_t in_ifs_mode; - boolean_t mng_reg_access_disabled; - boolean_t leave_av_bit_off; - boolean_t kmrn_lock_loss_workaround_disabled; - boolean_t bad_tx_carr_stats_fd; - boolean_t has_manc2h; - boolean_t rx_needs_kicking; - boolean_t has_smbus; +struct e1000_phy_info { + struct e1000_phy_operations ops; + enum e1000_phy_type type; + + enum e1000_1000t_rx_status local_rx; + enum e1000_1000t_rx_status remote_rx; + enum e1000_ms_type ms_type; + enum e1000_ms_type original_ms_type; + enum e1000_rev_polarity cable_polarity; + enum e1000_smart_speed smart_speed; + + u32 addr; + u32 id; + u32 reset_delay_us; /* in usec */ + u32 revision; + + enum e1000_media_type media_type; + + u16 autoneg_advertised; + u16 autoneg_mask; + u16 cable_length; + u16 max_cable_length; + u16 min_cable_length; + + u8 mdix; + + bool disable_polarity_correction; + bool is_mdix; + bool polarity_correction; + bool reset_disable; + bool speed_downgraded; + bool autoneg_wait_to_complete; }; +struct e1000_nvm_info { + struct e1000_nvm_operations ops; + enum e1000_nvm_type type; + enum e1000_nvm_override override; -#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ -#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ -#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM read/write registers */ -#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ -#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start operation */ -#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ -#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write complete */ -#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */ -/* Register Bit Masks */ -/* Device Control */ -#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ -#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ -#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ -#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */ -#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ -#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ -#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ -#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ -#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ -#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ -#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ -#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ -#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ -#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ -#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ -#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ -#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ -#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */ -#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */ -#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through PHYRST_N pin */ -#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external LINK_0 and LINK_1 pins */ -#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ -#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ -#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ -#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ -#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ -#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ -#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ -#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ -#define E1000_CTRL_RST 0x04000000 /* Global reset */ -#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ -#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ -#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ -#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ -#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ -#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */ - -/* Device Status */ -#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ -#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ -#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ -#define E1000_STATUS_FUNC_SHIFT 2 -#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ -#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ -#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ -#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ -#define E1000_STATUS_SPEED_MASK 0x000000C0 -#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ -#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ -#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ -#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion - by EEPROM/Flash */ -#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ -#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ -#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ -#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ -#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ -#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ -#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ -#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ -#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */ -#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */ -#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */ -#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */ -#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution disabled */ -#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */ -#define E1000_STATUS_FUSE_8 0x04000000 -#define E1000_STATUS_FUSE_9 0x08000000 -#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */ -#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */ - -/* Constants used to intrepret the masked PCI-X bus speed. */ -#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */ -#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */ -#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */ - -/* EEPROM/Flash Control */ -#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */ -#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */ -#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */ -#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */ -#define E1000_EECD_FWE_MASK 0x00000030 -#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ -#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ -#define E1000_EECD_FWE_SHIFT 4 -#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */ -#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */ -#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */ -#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */ -#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type - * (0-small, 1-large) */ -#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */ -#ifndef E1000_EEPROM_GRANT_ATTEMPTS -#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */ -#endif -#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */ -#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */ -#define E1000_EECD_SIZE_EX_SHIFT 11 -#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */ -#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */ -#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */ -#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ -#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ -#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */ -#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ -#define E1000_EECD_SECVAL_SHIFT 22 -#define E1000_STM_OPCODE 0xDB00 -#define E1000_HICR_FW_RESET 0xC0 - -#define E1000_SHADOW_RAM_WORDS 2048 -#define E1000_ICH_NVM_SIG_WORD 0x13 -#define E1000_ICH_NVM_SIG_MASK 0xC0 - -/* EEPROM Read */ -#define E1000_EERD_START 0x00000001 /* Start Read */ -#define E1000_EERD_DONE 0x00000010 /* Read Done */ -#define E1000_EERD_ADDR_SHIFT 8 -#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */ -#define E1000_EERD_DATA_SHIFT 16 -#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */ - -/* SPI EEPROM Status Register */ -#define EEPROM_STATUS_RDY_SPI 0x01 -#define EEPROM_STATUS_WEN_SPI 0x02 -#define EEPROM_STATUS_BP0_SPI 0x04 -#define EEPROM_STATUS_BP1_SPI 0x08 -#define EEPROM_STATUS_WPEN_SPI 0x80 - -/* Extended Device Control */ -#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ -#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ -#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN -#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ -#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ -#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */ -#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */ -#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA -#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */ -#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */ -#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ -#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ -#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ -#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */ -#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ -#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ -#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ -#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ -#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ -#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 -#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000 -#define E1000_CTRL_EXT_LINK_MODE_SERDES 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 -#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000 -#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000 -#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 -#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 -#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 -#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ -#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ -#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ -#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error detection enabled */ -#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity error detection enable */ -#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000 - -/* MDI Control */ -#define E1000_MDIC_DATA_MASK 0x0000FFFF -#define E1000_MDIC_REG_MASK 0x001F0000 -#define E1000_MDIC_REG_SHIFT 16 -#define E1000_MDIC_PHY_MASK 0x03E00000 -#define E1000_MDIC_PHY_SHIFT 21 -#define E1000_MDIC_OP_WRITE 0x04000000 -#define E1000_MDIC_OP_READ 0x08000000 -#define E1000_MDIC_READY 0x10000000 -#define E1000_MDIC_INT_EN 0x20000000 -#define E1000_MDIC_ERROR 0x40000000 - -#define E1000_KUMCTRLSTA_MASK 0x0000FFFF -#define E1000_KUMCTRLSTA_OFFSET 0x001F0000 -#define E1000_KUMCTRLSTA_OFFSET_SHIFT 16 -#define E1000_KUMCTRLSTA_REN 0x00200000 - -#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL 0x00000000 -#define E1000_KUMCTRLSTA_OFFSET_CTRL 0x00000001 -#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL 0x00000002 -#define E1000_KUMCTRLSTA_OFFSET_DIAG 0x00000003 -#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS 0x00000004 -#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM 0x00000009 -#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL 0x00000010 -#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES 0x0000001E -#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES 0x0000001F - -/* FIFO Control */ -#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS 0x00000008 -#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800 - -/* In-Band Control */ -#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500 -#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010 - -/* Half-Duplex Control */ -#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004 -#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000 - -#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E - -#define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000 -#define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000 - -#define E1000_KUMCTRLSTA_K0S_100_EN 0x2000 -#define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000 -#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003 - -#define E1000_KABGTXD_BGSQLBIAS 0x00050000 - -#define E1000_PHY_CTRL_SPD_EN 0x00000001 -#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 -#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 -#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 -#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 -#define E1000_PHY_CTRL_B2B_EN 0x00000080 - -/* LED Control */ -#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F -#define E1000_LEDCTL_LED0_MODE_SHIFT 0 -#define E1000_LEDCTL_LED0_BLINK_RATE 0x0000020 -#define E1000_LEDCTL_LED0_IVRT 0x00000040 -#define E1000_LEDCTL_LED0_BLINK 0x00000080 -#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 -#define E1000_LEDCTL_LED1_MODE_SHIFT 8 -#define E1000_LEDCTL_LED1_BLINK_RATE 0x0002000 -#define E1000_LEDCTL_LED1_IVRT 0x00004000 -#define E1000_LEDCTL_LED1_BLINK 0x00008000 -#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 -#define E1000_LEDCTL_LED2_MODE_SHIFT 16 -#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000 -#define E1000_LEDCTL_LED2_IVRT 0x00400000 -#define E1000_LEDCTL_LED2_BLINK 0x00800000 -#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 -#define E1000_LEDCTL_LED3_MODE_SHIFT 24 -#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000 -#define E1000_LEDCTL_LED3_IVRT 0x40000000 -#define E1000_LEDCTL_LED3_BLINK 0x80000000 - -#define E1000_LEDCTL_MODE_LINK_10_1000 0x0 -#define E1000_LEDCTL_MODE_LINK_100_1000 0x1 -#define E1000_LEDCTL_MODE_LINK_UP 0x2 -#define E1000_LEDCTL_MODE_ACTIVITY 0x3 -#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4 -#define E1000_LEDCTL_MODE_LINK_10 0x5 -#define E1000_LEDCTL_MODE_LINK_100 0x6 -#define E1000_LEDCTL_MODE_LINK_1000 0x7 -#define E1000_LEDCTL_MODE_PCIX_MODE 0x8 -#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9 -#define E1000_LEDCTL_MODE_COLLISION 0xA -#define E1000_LEDCTL_MODE_BUS_SPEED 0xB -#define E1000_LEDCTL_MODE_BUS_SIZE 0xC -#define E1000_LEDCTL_MODE_PAUSED 0xD -#define E1000_LEDCTL_MODE_LED_ON 0xE -#define E1000_LEDCTL_MODE_LED_OFF 0xF - -/* Receive Address */ -#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ - -#define E1000_RAH_POOL_1 0x00040000 - -/* Interrupt Cause Read */ -#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ -#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ -#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ -#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ -#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ -/* LAN connected device generates an interrupt */ -#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */ -#define E1000_ICR_RXO 0x00000040 /* rx overrun */ -#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ -#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ -#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */ -#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ -#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ -#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ -#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ -#define E1000_ICR_TXD_LOW 0x00008000 -#define E1000_ICR_SRPD 0x00010000 -#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */ -#define E1000_ICR_MNG 0x00040000 /* Manageability event */ -#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */ -#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */ -#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* queue 0 Rx descriptor FIFO parity error */ -#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* queue 0 Tx descriptor FIFO parity error */ -#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity error */ -#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */ -#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */ -#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */ -#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ -#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */ -#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */ -#define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */ - -/* Interrupt Cause Set */ -#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_ICS_SRPD E1000_ICR_SRPD -#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */ -#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */ -#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */ -#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ -#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ -#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ -#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ -#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ -#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ -#define E1000_ICS_DSW E1000_ICR_DSW -#define E1000_ICS_PHYINT E1000_ICR_PHYINT -#define E1000_ICS_EPRST E1000_ICR_EPRST - -/* Interrupt Mask Set */ -#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ -#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_IMS_SRPD E1000_ICR_SRPD -#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */ -#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */ -#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */ -#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ -#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ -#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ -#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ -#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ -#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ -#define E1000_IMS_DSW E1000_ICR_DSW -#define E1000_IMS_PHYINT E1000_ICR_PHYINT -#define E1000_IMS_EPRST E1000_ICR_EPRST - -/* Interrupt Mask Clear */ -#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_IMC_SRPD E1000_ICR_SRPD -#define E1000_IMC_ACK E1000_ICR_ACK /* Receive Ack frame */ -#define E1000_IMC_MNG E1000_ICR_MNG /* Manageability event */ -#define E1000_IMC_DOCK E1000_ICR_DOCK /* Dock/Undock */ -#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ -#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ -#define E1000_IMC_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ -#define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ -#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ -#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ -#define E1000_IMC_DSW E1000_ICR_DSW -#define E1000_IMC_PHYINT E1000_ICR_PHYINT -#define E1000_IMC_EPRST E1000_ICR_EPRST - -/* Receive Control */ -#define E1000_RCTL_RST 0x00000001 /* Software reset */ -#define E1000_RCTL_EN 0x00000002 /* enable */ -#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ -#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ -#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ -#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ -#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ -#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ -#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ -#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ -#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */ -#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ -#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ -#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ -#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ -#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ -#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ -#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ -#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ -#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ -#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ -#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ -#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ -#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ -#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ -#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ -#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ -#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ -#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ -#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ -#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ -#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ -#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ -#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ -#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ -#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ -#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */ -#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */ - -/* Use byte values for the following shift parameters - * Usage: - * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & - * E1000_PSRCTL_BSIZE0_MASK) | - * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & - * E1000_PSRCTL_BSIZE1_MASK) | - * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & - * E1000_PSRCTL_BSIZE2_MASK) | - * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; - * E1000_PSRCTL_BSIZE3_MASK)) - * where value0 = [128..16256], default=256 - * value1 = [1024..64512], default=4096 - * value2 = [0..64512], default=4096 - * value3 = [0..64512], default=0 - */ - -#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F -#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 -#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 -#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 - -#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ -#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ -#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ -#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ - -/* SW_W_SYNC definitions */ -#define E1000_SWFW_EEP_SM 0x0001 -#define E1000_SWFW_PHY0_SM 0x0002 -#define E1000_SWFW_PHY1_SM 0x0004 -#define E1000_SWFW_MAC_CSR_SM 0x0008 + u32 flash_bank_size; + u32 flash_base_addr; -/* Receive Descriptor */ -#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ -#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */ -#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */ -#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */ -#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */ - -/* Flow Control */ -#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ -#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ -#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ -#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ - -/* Header split receive */ -#define E1000_RFCTL_ISCSI_DIS 0x00000001 -#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E -#define E1000_RFCTL_ISCSI_DWC_SHIFT 1 -#define E1000_RFCTL_NFSW_DIS 0x00000040 -#define E1000_RFCTL_NFSR_DIS 0x00000080 -#define E1000_RFCTL_NFS_VER_MASK 0x00000300 -#define E1000_RFCTL_NFS_VER_SHIFT 8 -#define E1000_RFCTL_IPV6_DIS 0x00000400 -#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800 -#define E1000_RFCTL_ACK_DIS 0x00001000 -#define E1000_RFCTL_ACKD_DIS 0x00002000 -#define E1000_RFCTL_IPFRSP_DIS 0x00004000 -#define E1000_RFCTL_EXTEN 0x00008000 -#define E1000_RFCTL_IPV6_EX_DIS 0x00010000 -#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 - -/* Receive Descriptor Control */ -#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ -#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ -#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */ -#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ -#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */ -#define IGB_RX_PTHRESH 16 -#define IGB_RX_HTHRESH 8 -#define IGB_RX_WTHRESH 1 - -/* Transmit Descriptor Control */ -#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ -#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ -#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ -#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ -#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ -#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ -#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc. - still to be processed. */ -#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */ -/* Transmit Configuration Word */ -#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ -#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ -#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ -#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ -#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ -#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ -#define E1000_TXCW_NP 0x00008000 /* TXCW next page */ -#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ -#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ -#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ - -/* Receive Configuration Word */ -#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ -#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ -#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ -#define E1000_RXCW_CC 0x10000000 /* Receive config change */ -#define E1000_RXCW_C 0x20000000 /* Receive config */ -#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ -#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ - -/* Transmit Control */ -#define E1000_TCTL_RST 0x00000001 /* software reset */ -#define E1000_TCTL_EN 0x00000002 /* enable tx */ -#define E1000_TCTL_BCE 0x00000004 /* busy check enable */ -#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ -#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ -#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ -#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ -#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ -#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ -#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ -#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ -/* Extended Transmit Control */ -#define E1000_TCTL_EXT_BST_MASK 0x000003FF /* Backoff Slot Time */ -#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ - -#define DEFAULT_80003ES2LAN_TCTL_EXT_GCEX 0x00010000 - -/* Receive Checksum Control */ -#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ -#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ -#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ -#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ -#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ -#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ - -/* Multiple Receive Queue Control */ -#define E1000_MRQC_ENABLE_MASK 0x00000003 -#define E1000_MRQC_ENABLE_VMDQ 0x00000003 -#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001 -#define E1000_MRQC_ENABLE_RSS_INT 0x00000004 -#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 -#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 -#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 -#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 -#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 - -/* Definitions for power management and wakeup registers */ -/* Wake Up Control */ -#define E1000_WUC_APME 0x00000001 /* APM Enable */ -#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ -#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ -#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ -#define E1000_WUC_SPM 0x80000000 /* Enable SPM */ - -/* Wake Up Filter Control */ -#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ -#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ -#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ -#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ -#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ -#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ -#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ -#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ -#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */ -#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ -#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ -#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ -#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ -#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ -#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */ -#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ - -/* Wake Up Status */ -#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */ -#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */ -#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */ -#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */ -#define E1000_WUS_BC 0x00000010 /* Broadcast Received */ -#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */ -#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */ -#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */ -#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */ -#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */ -#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */ -#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */ -#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ - -/* Management Control */ -#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ -#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ -#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ -#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ -#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ -#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ -#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ -#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ -#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ -#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery - * Filtering */ -#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */ -#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ -#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ -#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ -#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */ -#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ -#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address - * filtering */ -#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host - * memory */ -#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 /* Enable IP address - * filtering */ -#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */ -#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */ -#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ -#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ -#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ -#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ -#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ -#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ - -#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ -#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ - -/* SW Semaphore Register */ -#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ -#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ -#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */ -#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ - -/* FW Semaphore Register */ -#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */ -#define E1000_FWSM_MODE_SHIFT 1 -#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ - -#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */ -#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */ -#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */ -#define E1000_FWSM_SKUEL_SHIFT 29 -#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */ -#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */ -#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */ -#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */ - -/* FFLT Debug Register */ -#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */ - -typedef enum { - e1000_mng_mode_none = 0, - e1000_mng_mode_asf, - e1000_mng_mode_pt, - e1000_mng_mode_ipmi, - e1000_mng_mode_host_interface_only -} e1000_mng_mode; - -/* Host Inteface Control Register */ -#define E1000_HICR_EN 0x00000001 /* Enable Bit - RO */ -#define E1000_HICR_C 0x00000002 /* Driver sets this bit when done - * to put command in RAM */ -#define E1000_HICR_SV 0x00000004 /* Status Validity */ -#define E1000_HICR_FWR 0x00000080 /* FW reset. Set by the Host */ - -/* Host Interface Command Interface - Address range 0x8800-0x8EFF */ -#define E1000_HI_MAX_DATA_LENGTH 252 /* Host Interface data length */ -#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Number of bytes in range */ -#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Number of dwords in range */ -#define E1000_HI_COMMAND_TIMEOUT 500 /* Time in ms to process HI command */ + u16 word_size; + u16 delay_usec; + u16 address_bits; + u16 opcode_bits; + u16 page_size; +}; -struct e1000_host_command_header { - uint8_t command_id; - uint8_t command_length; - uint8_t command_options; /* I/F bits for command, status for return */ - uint8_t checksum; +struct e1000_bus_info { + enum e1000_bus_type type; + enum e1000_bus_speed speed; + enum e1000_bus_width width; + + u16 func; + u16 pci_cmd_word; }; -struct e1000_host_command_info { - struct e1000_host_command_header command_header; /* Command Head/Command Result Head has 4 bytes */ - uint8_t command_data[E1000_HI_MAX_DATA_LENGTH]; /* Command data can length 0..252 */ + +struct e1000_fc_info { + u32 high_water; /* Flow control high-water mark */ + u32 low_water; /* Flow control low-water mark */ + u16 pause_time; /* Flow control pause timer */ + bool send_xon; /* Flow control send XON */ + bool strict_ieee; /* Strict IEEE mode */ + enum e1000_fc_mode current_mode; /* FC mode in effect */ + enum e1000_fc_mode requested_mode; /* FC mode requested by caller */ }; -/* Host SMB register #0 */ -#define E1000_HSMC0R_CLKIN 0x00000001 /* SMB Clock in */ -#define E1000_HSMC0R_DATAIN 0x00000002 /* SMB Data in */ -#define E1000_HSMC0R_DATAOUT 0x00000004 /* SMB Data out */ -#define E1000_HSMC0R_CLKOUT 0x00000008 /* SMB Clock out */ - -/* Host SMB register #1 */ -#define E1000_HSMC1R_CLKIN E1000_HSMC0R_CLKIN -#define E1000_HSMC1R_DATAIN E1000_HSMC0R_DATAIN -#define E1000_HSMC1R_DATAOUT E1000_HSMC0R_DATAOUT -#define E1000_HSMC1R_CLKOUT E1000_HSMC0R_CLKOUT - -/* FW Status Register */ -#define E1000_FWSTS_FWS_MASK 0x000000FF /* FW Status */ - -/* Wake Up Packet Length */ -#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ - -#define E1000_MDALIGN 4096 - -/* PCI-Ex registers*/ - -/* PCI-Ex Control Register */ -#define E1000_GCR_RXD_NO_SNOOP 0x00000001 -#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 -#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 -#define E1000_GCR_TXD_NO_SNOOP 0x00000008 -#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 -#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 - -#define PCI_EX_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ - E1000_GCR_RXDSCW_NO_SNOOP | \ - E1000_GCR_RXDSCR_NO_SNOOP | \ - E1000_GCR_TXD_NO_SNOOP | \ - E1000_GCR_TXDSCW_NO_SNOOP | \ - E1000_GCR_TXDSCR_NO_SNOOP) - -#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL - -#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 -/* Function Active and Power State to MNG */ -#define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003 -#define E1000_FACTPS_LAN0_VALID 0x00000004 -#define E1000_FACTPS_FUNC0_AUX_EN 0x00000008 -#define E1000_FACTPS_FUNC1_POWER_STATE_MASK 0x000000C0 -#define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT 6 -#define E1000_FACTPS_LAN1_VALID 0x00000100 -#define E1000_FACTPS_FUNC1_AUX_EN 0x00000200 -#define E1000_FACTPS_FUNC2_POWER_STATE_MASK 0x00003000 -#define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT 12 -#define E1000_FACTPS_IDE_ENABLE 0x00004000 -#define E1000_FACTPS_FUNC2_AUX_EN 0x00008000 -#define E1000_FACTPS_FUNC3_POWER_STATE_MASK 0x000C0000 -#define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT 18 -#define E1000_FACTPS_SP_ENABLE 0x00100000 -#define E1000_FACTPS_FUNC3_AUX_EN 0x00200000 -#define E1000_FACTPS_FUNC4_POWER_STATE_MASK 0x03000000 -#define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT 24 -#define E1000_FACTPS_IPMI_ENABLE 0x04000000 -#define E1000_FACTPS_FUNC4_AUX_EN 0x08000000 -#define E1000_FACTPS_MNGCG 0x20000000 -#define E1000_FACTPS_LAN_FUNC_SEL 0x40000000 -#define E1000_FACTPS_PM_STATE_CHANGED 0x80000000 - -/* PCI-Ex Config Space */ -#define PCI_EX_LINK_STATUS 0x12 -#define PCI_EX_LINK_WIDTH_MASK 0x3F0 -#define PCI_EX_LINK_WIDTH_SHIFT 4 - -/* EEPROM Commands - Microwire */ -#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */ -#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */ -#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */ -#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */ -#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */ - -/* EEPROM Commands - SPI */ -#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ -#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */ -#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */ -#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ -#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */ -#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */ -#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */ -#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */ -#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */ -#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */ -#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */ - -/* EEPROM Size definitions */ -#define EEPROM_WORD_SIZE_SHIFT 6 -#define EEPROM_SIZE_SHIFT 10 -#define EEPROM_SIZE_MASK 0x1C00 - -/* EEPROM Word Offsets */ -#define EEPROM_COMPAT 0x0003 -#define EEPROM_ID_LED_SETTINGS 0x0004 -#define EEPROM_VERSION 0x0005 -#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */ -#define EEPROM_PHY_CLASS_WORD 0x0007 -#define EEPROM_INIT_CONTROL1_REG 0x000A -#define EEPROM_INIT_CONTROL2_REG 0x000F -#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010 -#define EEPROM_INIT_CONTROL3_PORT_B 0x0014 -#define EEPROM_INIT_3GIO_3 0x001A -#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020 -#define EEPROM_INIT_CONTROL3_PORT_A 0x0024 -#define EEPROM_CFG 0x0012 -#define EEPROM_FLASH_VERSION 0x0032 -#define EEPROM_ALT_MAC_ADDR_PTR 0x0037 -#define EEPROM_CHECKSUM_REG 0x003F - -#define E1000_EEPROM_CFG_DONE 0x00040000 /* MNG config cycle done */ -#define E1000_EEPROM_CFG_DONE_PORT_1 0x00080000 /* ...for second port */ - -/* Word definitions for ID LED Settings */ -#define ID_LED_RESERVED_0000 0x0000 -#define ID_LED_RESERVED_FFFF 0xFFFF -#define ID_LED_RESERVED_82573 0xF746 -#define ID_LED_DEFAULT_82573 0x1811 -#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ - (ID_LED_OFF1_OFF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_DEF1_DEF2)) -#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ - (ID_LED_DEF1_OFF2 << 8) | \ - (ID_LED_DEF1_ON2 << 4) | \ - (ID_LED_DEF1_DEF2)) -#define ID_LED_DEF1_DEF2 0x1 -#define ID_LED_DEF1_ON2 0x2 -#define ID_LED_DEF1_OFF2 0x3 -#define ID_LED_ON1_DEF2 0x4 -#define ID_LED_ON1_ON2 0x5 -#define ID_LED_ON1_OFF2 0x6 -#define ID_LED_OFF1_DEF2 0x7 -#define ID_LED_OFF1_ON2 0x8 -#define ID_LED_OFF1_OFF2 0x9 - -#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF -#define IGP_ACTIVITY_LED_ENABLE 0x0300 -#define IGP_LED3_MODE 0x07000000 - - -/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */ -#define EEPROM_SERDES_AMPLITUDE_MASK 0x000F - -/* Mask bit for PHY class in Word 7 of the EEPROM */ -#define EEPROM_PHY_CLASS_A 0x8000 - -/* Mask bits for fields in Word 0x0a of the EEPROM */ -#define EEPROM_WORD0A_ILOS 0x0010 -#define EEPROM_WORD0A_SWDPIO 0x01E0 -#define EEPROM_WORD0A_LRST 0x0200 -#define EEPROM_WORD0A_FD 0x0400 -#define EEPROM_WORD0A_66MHZ 0x0800 - -/* Mask bits for fields in Word 0x0f of the EEPROM */ -#define EEPROM_WORD0F_PAUSE_MASK 0x3000 -#define EEPROM_WORD0F_PAUSE 0x1000 -#define EEPROM_WORD0F_ASM_DIR 0x2000 -#define EEPROM_WORD0F_ANE 0x0800 -#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 -#define EEPROM_WORD0F_LPLU 0x0001 - -/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */ -#define EEPROM_WORD1020_GIGA_DISABLE 0x0010 -#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008 - -/* Mask bits for fields in Word 0x1a of the EEPROM */ -#define EEPROM_WORD1A_ASPM_MASK 0x000C - -/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */ -#define EEPROM_SUM 0xBABA - -/* EEPROM Map defines (WORD OFFSETS)*/ -#define EEPROM_NODE_ADDRESS_BYTE_0 0 -#define EEPROM_PBA_BYTE_1 8 - -#define EEPROM_RESERVED_WORD 0xFFFF - -/* EEPROM Map Sizes (Byte Counts) */ -#define PBA_SIZE 4 - -/* Collision related configuration parameters */ -#define E1000_COLLISION_THRESHOLD 15 -#define E1000_CT_SHIFT 4 -/* Collision distance is a 0-based value that applies to - * half-duplex-capable hardware only. */ -#define E1000_COLLISION_DISTANCE 63 -#define E1000_COLLISION_DISTANCE_82542 64 -#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE -#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE -#define E1000_COLD_SHIFT 12 - -/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ -#define REQ_TX_DESCRIPTOR_MULTIPLE 8 -#define REQ_RX_DESCRIPTOR_MULTIPLE 8 - -/* Default values for the transmit IPG register */ -#define DEFAULT_82542_TIPG_IPGT 10 -#define DEFAULT_82543_TIPG_IPGT_FIBER 9 -#define DEFAULT_82543_TIPG_IPGT_COPPER 8 - -#define E1000_TIPG_IPGT_MASK 0x000003FF -#define E1000_TIPG_IPGR1_MASK 0x000FFC00 -#define E1000_TIPG_IPGR2_MASK 0x3FF00000 - -#define DEFAULT_82542_TIPG_IPGR1 2 -#define DEFAULT_82543_TIPG_IPGR1 8 -#define E1000_TIPG_IPGR1_SHIFT 10 - -#define DEFAULT_82542_TIPG_IPGR2 10 -#define DEFAULT_82543_TIPG_IPGR2 6 -#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 -#define E1000_TIPG_IPGR2_SHIFT 20 - -#define DEFAULT_80003ES2LAN_TIPG_IPGT_10_100 0x00000009 -#define DEFAULT_80003ES2LAN_TIPG_IPGT_1000 0x00000008 -#define E1000_TXDMAC_DPP 0x00000001 - -/* Adaptive IFS defines */ -#define TX_THRESHOLD_START 8 -#define TX_THRESHOLD_INCREMENT 10 -#define TX_THRESHOLD_DECREMENT 1 -#define TX_THRESHOLD_STOP 190 -#define TX_THRESHOLD_DISABLE 0 -#define TX_THRESHOLD_TIMER_MS 10000 -#define MIN_NUM_XMITS 1000 -#define IFS_MAX 80 -#define IFS_STEP 10 -#define IFS_MIN 40 -#define IFS_RATIO 4 - -/* Extended Configuration Control and Size */ -#define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001 -#define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE 0x00000002 -#define E1000_EXTCNF_CTRL_D_UD_ENABLE 0x00000004 -#define E1000_EXTCNF_CTRL_D_UD_LATENCY 0x00000008 -#define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010 -#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 -#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040 -#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x0FFF0000 - -#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF -#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00 -#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000 -#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 -#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 - -/* PBA constants */ -#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */ -#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */ -#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ -#define E1000_PBA_20K 0x0014 -#define E1000_PBA_22K 0x0016 -#define E1000_PBA_24K 0x0018 -#define E1000_PBA_30K 0x001E -#define E1000_PBA_32K 0x0020 -#define E1000_PBA_34K 0x0022 -#define E1000_PBA_38K 0x0026 -#define E1000_PBA_40K 0x0028 -#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ -#define E1000_PBA_64K 0x0040 /* 64KB */ - -#define E1000_PBS_16K E1000_PBA_16K - -/* Flow Control Constants */ -#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 -#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 -#define FLOW_CONTROL_TYPE 0x8808 - -/* The historical defaults for the flow control values are given below. */ -#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */ -#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */ -#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */ - -/* PCIX Config space */ -#define PCIX_COMMAND_REGISTER 0xE6 -#define PCIX_STATUS_REGISTER_LO 0xE8 -#define PCIX_STATUS_REGISTER_HI 0xEA - -#define PCIX_COMMAND_MMRBC_MASK 0x000C -#define PCIX_COMMAND_MMRBC_SHIFT 0x2 -#define PCIX_STATUS_HI_MMRBC_MASK 0x0060 -#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5 -#define PCIX_STATUS_HI_MMRBC_4K 0x3 -#define PCIX_STATUS_HI_MMRBC_2K 0x2 - - -/* Number of bits required to shift right the "pause" bits from the - * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register. - */ -#define PAUSE_SHIFT 5 - -/* Number of bits required to shift left the "SWDPIO" bits from the - * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register. - */ -#define SWDPIO_SHIFT 17 - -/* Number of bits required to shift left the "SWDPIO_EXT" bits from the - * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register. - */ -#define SWDPIO__EXT_SHIFT 4 - -/* Number of bits required to shift left the "ILOS" bit from the EEPROM - * (bit 4) to the "ILOS" (bit 7) field in the CTRL register. - */ -#define ILOS_SHIFT 3 - - -#define RECEIVE_BUFFER_ALIGN_SIZE (256) - -/* Number of milliseconds we wait for auto-negotiation to complete */ -#define LINK_UP_TIMEOUT 500 - -/* Number of 100 microseconds we wait for PCI Express master disable */ -#define MASTER_DISABLE_TIMEOUT 800 -/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */ -#define AUTO_READ_DONE_TIMEOUT 10 -/* Number of milliseconds we wait for PHY configuration done after MAC reset */ -#define PHY_CFG_TIMEOUT 100 - -#define E1000_TX_BUFFER_SIZE ((uint32_t)1514) - -/* The carrier extension symbol, as received by the NIC. */ -#define CARRIER_EXTENSION 0x0F - -/* TBI_ACCEPT macro definition: - * - * This macro requires: - * adapter = a pointer to struct e1000_hw - * status = the 8 bit status field of the RX descriptor with EOP set - * error = the 8 bit error field of the RX descriptor with EOP set - * length = the sum of all the length fields of the RX descriptors that - * make up the current frame - * last_byte = the last byte of the frame DMAed by the hardware - * max_frame_length = the maximum frame length we want to accept. - * min_frame_length = the minimum frame length we want to accept. - * - * This macro is a conditional that should be used in the interrupt - * handler's Rx processing routine when RxErrors have been detected. - * - * Typical use: - * ... - * if (TBI_ACCEPT) { - * accept_frame = TRUE; - * e1000_tbi_adjust_stats(adapter, MacAddress); - * frame_length--; - * } else { - * accept_frame = FALSE; - * } - * ... - */ - -#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \ - ((adapter)->tbi_compatibility_on && \ - (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ - ((last_byte) == CARRIER_EXTENSION) && \ - (((status) & E1000_RXD_STAT_VP) ? \ - (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \ - ((length) <= ((adapter)->max_frame_size + 1))) : \ - (((length) > (adapter)->min_frame_size) && \ - ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1))))) - - -/* Structures, enums, and macros for the PHY */ - -/* Bit definitions for the Management Data IO (MDIO) and Management Data - * Clock (MDC) pins in the Device Control Register. - */ -#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0 -#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0 -#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 -#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 -#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 -#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 -#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR -#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA - -/* PHY 1000 MII Register/Bit Definitions */ -/* PHY Registers defined by IEEE */ -#define PHY_CTRL 0x00 /* Control Register */ -#define PHY_STATUS 0x01 /* Status Regiser */ -#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ -#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ -#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ -#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ -#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ -#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */ -#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ -#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ -#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ -#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ - -#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ -#define MAX_PHY_MULTI_PAGE_REG 0xF /* Registers equal on all pages */ - -/* M88E1000 Specific Registers */ -#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ -#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ -#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ -#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ -#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ -#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ - -#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ -#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ -#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ -#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ -#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ - -#define IGP01E1000_IEEE_REGS_PAGE 0x0000 -#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 -#define IGP01E1000_IEEE_FORCE_GIGA 0x0140 - -/* IGP01E1000 Specific Registers */ -#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */ -#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */ -#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */ -#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */ -#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */ -#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */ -#define IGP02E1000_PHY_POWER_MGMT 0x19 -#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */ - -/* IGP01E1000 AGC Registers - stores the cable length values*/ -#define IGP01E1000_PHY_AGC_A 0x1172 -#define IGP01E1000_PHY_AGC_B 0x1272 -#define IGP01E1000_PHY_AGC_C 0x1472 -#define IGP01E1000_PHY_AGC_D 0x1872 - -/* IGP02E1000 AGC Registers for cable length values */ -#define IGP02E1000_PHY_AGC_A 0x11B1 -#define IGP02E1000_PHY_AGC_B 0x12B1 -#define IGP02E1000_PHY_AGC_C 0x14B1 -#define IGP02E1000_PHY_AGC_D 0x18B1 - -/* IGP01E1000 DSP Reset Register */ -#define IGP01E1000_PHY_DSP_RESET 0x1F33 -#define IGP01E1000_PHY_DSP_SET 0x1F71 -#define IGP01E1000_PHY_DSP_FFE 0x1F35 - -#define IGP01E1000_PHY_CHANNEL_NUM 4 -#define IGP02E1000_PHY_CHANNEL_NUM 4 - -#define IGP01E1000_PHY_AGC_PARAM_A 0x1171 -#define IGP01E1000_PHY_AGC_PARAM_B 0x1271 -#define IGP01E1000_PHY_AGC_PARAM_C 0x1471 -#define IGP01E1000_PHY_AGC_PARAM_D 0x1871 - -#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000 -#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000 - -#define IGP01E1000_PHY_ANALOG_TX_STATE 0x2890 -#define IGP01E1000_PHY_ANALOG_CLASS_A 0x2000 -#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE 0x0004 -#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069 - -#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A -/* IGP01E1000 PCS Initialization register - stores the polarity status when - * speed = 1000 Mbps. */ -#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 -#define IGP01E1000_PHY_PCS_CTRL_REG 0x00B5 - -#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0 - -/* Bits... - * 15-5: page - * 4-0: register offset - */ -#define GG82563_PAGE_SHIFT 5 -#define GG82563_REG(page, reg) \ - (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) -#define GG82563_MIN_ALT_REG 30 - -/* GG82563 Specific Registers */ -#define GG82563_PHY_SPEC_CTRL \ - GG82563_REG(0, 16) /* PHY Specific Control */ -#define GG82563_PHY_SPEC_STATUS \ - GG82563_REG(0, 17) /* PHY Specific Status */ -#define GG82563_PHY_INT_ENABLE \ - GG82563_REG(0, 18) /* Interrupt Enable */ -#define GG82563_PHY_SPEC_STATUS_2 \ - GG82563_REG(0, 19) /* PHY Specific Status 2 */ -#define GG82563_PHY_RX_ERR_CNTR \ - GG82563_REG(0, 21) /* Receive Error Counter */ -#define GG82563_PHY_PAGE_SELECT \ - GG82563_REG(0, 22) /* Page Select */ -#define GG82563_PHY_SPEC_CTRL_2 \ - GG82563_REG(0, 26) /* PHY Specific Control 2 */ -#define GG82563_PHY_PAGE_SELECT_ALT \ - GG82563_REG(0, 29) /* Alternate Page Select */ -#define GG82563_PHY_TEST_CLK_CTRL \ - GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */ - -#define GG82563_PHY_MAC_SPEC_CTRL \ - GG82563_REG(2, 21) /* MAC Specific Control Register */ -#define GG82563_PHY_MAC_SPEC_CTRL_2 \ - GG82563_REG(2, 26) /* MAC Specific Control 2 */ - -#define GG82563_PHY_DSP_DISTANCE \ - GG82563_REG(5, 26) /* DSP Distance */ - -/* Page 193 - Port Control Registers */ -#define GG82563_PHY_KMRN_MODE_CTRL \ - GG82563_REG(193, 16) /* Kumeran Mode Control */ -#define GG82563_PHY_PORT_RESET \ - GG82563_REG(193, 17) /* Port Reset */ -#define GG82563_PHY_REVISION_ID \ - GG82563_REG(193, 18) /* Revision ID */ -#define GG82563_PHY_DEVICE_ID \ - GG82563_REG(193, 19) /* Device ID */ -#define GG82563_PHY_PWR_MGMT_CTRL \ - GG82563_REG(193, 20) /* Power Management Control */ -#define GG82563_PHY_RATE_ADAPT_CTRL \ - GG82563_REG(193, 25) /* Rate Adaptation Control */ - -/* Page 194 - KMRN Registers */ -#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \ - GG82563_REG(194, 16) /* FIFO's Control/Status */ -#define GG82563_PHY_KMRN_CTRL \ - GG82563_REG(194, 17) /* Control */ -#define GG82563_PHY_INBAND_CTRL \ - GG82563_REG(194, 18) /* Inband Control */ -#define GG82563_PHY_KMRN_DIAGNOSTIC \ - GG82563_REG(194, 19) /* Diagnostic */ -#define GG82563_PHY_ACK_TIMEOUTS \ - GG82563_REG(194, 20) /* Acknowledge Timeouts */ -#define GG82563_PHY_ADV_ABILITY \ - GG82563_REG(194, 21) /* Advertised Ability */ -#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \ - GG82563_REG(194, 23) /* Link Partner Advertised Ability */ -#define GG82563_PHY_ADV_NEXT_PAGE \ - GG82563_REG(194, 24) /* Advertised Next Page */ -#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \ - GG82563_REG(194, 25) /* Link Partner Advertised Next page */ -#define GG82563_PHY_KMRN_MISC \ - GG82563_REG(194, 26) /* Misc. */ - -/* PHY Control Register */ -#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ -#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ -#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ -#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ -#define MII_CR_POWER_DOWN 0x0800 /* Power down */ -#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ -#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ -#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ - -/* PHY Status Register */ -#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ -#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ -#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ -#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ -#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ -#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ -#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ -#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ -#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ -#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ -#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ -#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ -#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ -#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ -#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ - -/* Autoneg Advertisement Register */ -#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ -#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ -#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ -#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ -#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ -#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ -#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ -#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ -#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ -#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Link Partner Ability Register (Base Page) */ -#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ -#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ -#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ -#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ -#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ -#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ -#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ -#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ -#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ -#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ -#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Autoneg Expansion Register */ -#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ -#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ -#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ -#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ -#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */ - -/* Next Page TX Register */ -#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ -#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges - * of different NP - */ -#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg - * 0 = cannot comply with msg - */ -#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ -#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow - * 0 = sending last NP - */ - -/* Link Partner Next Page Register */ -#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ -#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges - * of different NP - */ -#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg - * 0 = cannot comply with msg - */ -#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ -#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */ -#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow - * 0 = sending last NP - */ - -/* 1000BASE-T Control Register */ -#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ -#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ -#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ -#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ - /* 0=DTE device */ -#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ - /* 0=Configure PHY as Slave */ -#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ - /* 0=Automatic Master/Slave config */ -#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ -#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ -#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ -#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ -#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ - -/* 1000BASE-T Status Register */ -#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ -#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ -#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ -#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ -#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ -#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ -#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */ -#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ -#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12 -#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13 -#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 -#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20 -#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100 - -/* Extended Status Register */ -#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */ -#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */ -#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */ -#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */ - -#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */ -#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */ - -#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */ - /* (0=enable, 1=disable) */ - -/* M88E1000 PHY Specific Control Register */ -#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ -#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ -#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ -#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low, - * 0=CLK125 toggling - */ -#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ - /* Manual MDI configuration */ -#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ -#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover, - * 100BASE-TX/10BASE-T: - * MDI Mode - */ -#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled - * all speeds. - */ -#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080 - /* 1=Enable Extended 10BASE-T distance - * (Lower 10BASE-T RX Threshold) - * 0=Normal 10BASE-T RX Threshold */ -#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100 - /* 1=5-Bit interface in 100BASE-TX - * 0=MII interface in 100BASE-TX */ -#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ -#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ -#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ - -#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1 -#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5 -#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7 - -/* M88E1000 PHY Specific Status Register */ -#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ -#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ -#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ -#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ -#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M; - * 3=110-140M;4=>140M */ -#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ -#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ -#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ -#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ -#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ -#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ -#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ -#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ - -#define M88E1000_PSSR_REV_POLARITY_SHIFT 1 -#define M88E1000_PSSR_DOWNSHIFT_SHIFT 5 -#define M88E1000_PSSR_MDIX_SHIFT 6 -#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 - -/* M88E1000 Extended PHY Specific Control Register */ -#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ -#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled. - * Will assert lost lock and bring - * link down if idle not seen - * within 1ms in 1000BASE-T - */ -/* Number of times we will attempt to autonegotiate before downshifting if we - * are the master */ -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00 -/* Number of times we will attempt to autonegotiate before downshifting if we - * are the slave */ -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300 -#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ -#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ -#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ - -/* M88EC018 Rev 2 specific DownShift settings */ -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00 - -/* IGP01E1000 Specific Port Config Register - R/W */ -#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010 -#define IGP01E1000_PSCFR_PRE_EN 0x0020 -#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 -#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100 -#define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400 -#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000 - -/* IGP01E1000 Specific Port Status Register - R/O */ -#define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001 /* RO LH SC */ -#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 -#define IGP01E1000_PSSR_CABLE_LENGTH 0x007C -#define IGP01E1000_PSSR_FULL_DUPLEX 0x0200 -#define IGP01E1000_PSSR_LINK_UP 0x0400 -#define IGP01E1000_PSSR_MDIX 0x0800 -#define IGP01E1000_PSSR_SPEED_MASK 0xC000 /* speed bits mask */ -#define IGP01E1000_PSSR_SPEED_10MBPS 0x4000 -#define IGP01E1000_PSSR_SPEED_100MBPS 0x8000 -#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 -#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002 /* shift right 2 */ -#define IGP01E1000_PSSR_MDIX_SHIFT 0x000B /* shift right 11 */ - -/* IGP01E1000 Specific Port Control Register - R/W */ -#define IGP01E1000_PSCR_TP_LOOPBACK 0x0010 -#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200 -#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400 -#define IGP01E1000_PSCR_FLIP_CHIP 0x0800 -#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 -#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */ - -/* IGP01E1000 Specific Port Link Health Register */ -#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 -#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR 0x4000 -#define IGP01E1000_PLHR_MASTER_FAULT 0x2000 -#define IGP01E1000_PLHR_MASTER_RESOLUTION 0x1000 -#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800 /* LH */ -#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400 /* LH */ -#define IGP01E1000_PLHR_DATA_ERR_1 0x0200 /* LH */ -#define IGP01E1000_PLHR_DATA_ERR_0 0x0100 -#define IGP01E1000_PLHR_AUTONEG_FAULT 0x0040 -#define IGP01E1000_PLHR_AUTONEG_ACTIVE 0x0010 -#define IGP01E1000_PLHR_VALID_CHANNEL_D 0x0008 -#define IGP01E1000_PLHR_VALID_CHANNEL_C 0x0004 -#define IGP01E1000_PLHR_VALID_CHANNEL_B 0x0002 -#define IGP01E1000_PLHR_VALID_CHANNEL_A 0x0001 - -/* IGP01E1000 Channel Quality Register */ -#define IGP01E1000_MSE_CHANNEL_D 0x000F -#define IGP01E1000_MSE_CHANNEL_C 0x00F0 -#define IGP01E1000_MSE_CHANNEL_B 0x0F00 -#define IGP01E1000_MSE_CHANNEL_A 0xF000 - -#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ -#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in non-D0a modes */ -#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in D0a mode */ - -/* IGP01E1000 DSP reset macros */ -#define DSP_RESET_ENABLE 0x0 -#define DSP_RESET_DISABLE 0x2 -#define E1000_MAX_DSP_RESETS 10 - -/* IGP01E1000 & IGP02E1000 AGC Registers */ - -#define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */ -#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Coarse - 15:13, Fine - 12:9 */ - -/* IGP02E1000 AGC Register Length 9-bit mask */ -#define IGP02E1000_AGC_LENGTH_MASK 0x7F - -/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */ -#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128 -#define IGP02E1000_AGC_LENGTH_TABLE_SIZE 113 - -/* The precision error of the cable length is +/- 10 meters */ -#define IGP01E1000_AGC_RANGE 10 -#define IGP02E1000_AGC_RANGE 15 - -/* IGP01E1000 PCS Initialization register */ -/* bits 3:6 in the PCS registers stores the channels polarity */ -#define IGP01E1000_PHY_POLARITY_MASK 0x0078 - -/* IGP01E1000 GMII FIFO Register */ -#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed - * on Link-Up */ -#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */ - -/* IGP01E1000 Analog Register */ -#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 -#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0 -#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC -#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE - -#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000 -#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80 -#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070 -#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100 -#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002 - -#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040 -#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010 -#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080 -#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500 - -/* GG82563 PHY Specific Status Register (Page 0, Register 16 */ -#define GG82563_PSCR_DISABLE_JABBER 0x0001 /* 1=Disable Jabber */ -#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Polarity Reversal Disabled */ -#define GG82563_PSCR_POWER_DOWN 0x0004 /* 1=Power Down */ -#define GG82563_PSCR_COPPER_TRANSMITER_DISABLE 0x0008 /* 1=Transmitter Disabled */ -#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 -#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI configuration */ -#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX configuration */ -#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Automatic crossover */ -#define GG82563_PSCR_ENALBE_EXTENDED_DISTANCE 0x0080 /* 1=Enable Extended Distance */ -#define GG82563_PSCR_ENERGY_DETECT_MASK 0x0300 -#define GG82563_PSCR_ENERGY_DETECT_OFF 0x0000 /* 00,01=Off */ -#define GG82563_PSCR_ENERGY_DETECT_RX 0x0200 /* 10=Sense on Rx only (Energy Detect) */ -#define GG82563_PSCR_ENERGY_DETECT_RX_TM 0x0300 /* 11=Sense and Tx NLP */ -#define GG82563_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force Link Good */ -#define GG82563_PSCR_DOWNSHIFT_ENABLE 0x0800 /* 1=Enable Downshift */ -#define GG82563_PSCR_DOWNSHIFT_COUNTER_MASK 0x7000 -#define GG82563_PSCR_DOWNSHIFT_COUNTER_SHIFT 12 - -/* PHY Specific Status Register (Page 0, Register 17) */ -#define GG82563_PSSR_JABBER 0x0001 /* 1=Jabber */ -#define GG82563_PSSR_POLARITY 0x0002 /* 1=Polarity Reversed */ -#define GG82563_PSSR_LINK 0x0008 /* 1=Link is Up */ -#define GG82563_PSSR_ENERGY_DETECT 0x0010 /* 1=Sleep, 0=Active */ -#define GG82563_PSSR_DOWNSHIFT 0x0020 /* 1=Downshift */ -#define GG82563_PSSR_CROSSOVER_STATUS 0x0040 /* 1=MDIX, 0=MDI */ -#define GG82563_PSSR_RX_PAUSE_ENABLED 0x0100 /* 1=Receive Pause Enabled */ -#define GG82563_PSSR_TX_PAUSE_ENABLED 0x0200 /* 1=Transmit Pause Enabled */ -#define GG82563_PSSR_LINK_UP 0x0400 /* 1=Link Up */ -#define GG82563_PSSR_SPEED_DUPLEX_RESOLVED 0x0800 /* 1=Resolved */ -#define GG82563_PSSR_PAGE_RECEIVED 0x1000 /* 1=Page Received */ -#define GG82563_PSSR_DUPLEX 0x2000 /* 1-Full-Duplex */ -#define GG82563_PSSR_SPEED_MASK 0xC000 -#define GG82563_PSSR_SPEED_10MBPS 0x0000 /* 00=10Mbps */ -#define GG82563_PSSR_SPEED_100MBPS 0x4000 /* 01=100Mbps */ -#define GG82563_PSSR_SPEED_1000MBPS 0x8000 /* 10=1000Mbps */ - -/* PHY Specific Status Register 2 (Page 0, Register 19) */ -#define GG82563_PSSR2_JABBER 0x0001 /* 1=Jabber */ -#define GG82563_PSSR2_POLARITY_CHANGED 0x0002 /* 1=Polarity Changed */ -#define GG82563_PSSR2_ENERGY_DETECT_CHANGED 0x0010 /* 1=Energy Detect Changed */ -#define GG82563_PSSR2_DOWNSHIFT_INTERRUPT 0x0020 /* 1=Downshift Detected */ -#define GG82563_PSSR2_MDI_CROSSOVER_CHANGE 0x0040 /* 1=Crossover Changed */ -#define GG82563_PSSR2_FALSE_CARRIER 0x0100 /* 1=False Carrier */ -#define GG82563_PSSR2_SYMBOL_ERROR 0x0200 /* 1=Symbol Error */ -#define GG82563_PSSR2_LINK_STATUS_CHANGED 0x0400 /* 1=Link Status Changed */ -#define GG82563_PSSR2_AUTO_NEG_COMPLETED 0x0800 /* 1=Auto-Neg Completed */ -#define GG82563_PSSR2_PAGE_RECEIVED 0x1000 /* 1=Page Received */ -#define GG82563_PSSR2_DUPLEX_CHANGED 0x2000 /* 1=Duplex Changed */ -#define GG82563_PSSR2_SPEED_CHANGED 0x4000 /* 1=Speed Changed */ -#define GG82563_PSSR2_AUTO_NEG_ERROR 0x8000 /* 1=Auto-Neg Error */ - -/* PHY Specific Control Register 2 (Page 0, Register 26) */ -#define GG82563_PSCR2_10BT_POLARITY_FORCE 0x0002 /* 1=Force Negative Polarity */ -#define GG82563_PSCR2_1000MB_TEST_SELECT_MASK 0x000C -#define GG82563_PSCR2_1000MB_TEST_SELECT_NORMAL 0x0000 /* 00,01=Normal Operation */ -#define GG82563_PSCR2_1000MB_TEST_SELECT_112NS 0x0008 /* 10=Select 112ns Sequence */ -#define GG82563_PSCR2_1000MB_TEST_SELECT_16NS 0x000C /* 11=Select 16ns Sequence */ -#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse Auto-Negotiation */ -#define GG82563_PSCR2_1000BT_DISABLE 0x4000 /* 1=Disable 1000BASE-T */ -#define GG82563_PSCR2_TRANSMITER_TYPE_MASK 0x8000 -#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_B 0x0000 /* 0=Class B */ -#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_A 0x8000 /* 1=Class A */ - -/* MAC Specific Control Register (Page 2, Register 21) */ -/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ -#define GG82563_MSCR_TX_CLK_MASK 0x0007 -#define GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ 0x0004 -#define GG82563_MSCR_TX_CLK_100MBPS_25MHZ 0x0005 -#define GG82563_MSCR_TX_CLK_1000MBPS_2_5MHZ 0x0006 -#define GG82563_MSCR_TX_CLK_1000MBPS_25MHZ 0x0007 - -#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ - -/* DSP Distance Register (Page 5, Register 26) */ -#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M; - 1 = 50-80M; - 2 = 80-110M; - 3 = 110-140M; - 4 = >140M */ - -/* Kumeran Mode Control Register (Page 193, Register 16) */ -#define GG82563_KMCR_PHY_LEDS_EN 0x0020 /* 1=PHY LEDs, 0=Kumeran Inband LEDs */ -#define GG82563_KMCR_FORCE_LINK_UP 0x0040 /* 1=Force Link Up */ -#define GG82563_KMCR_SUPPRESS_SGMII_EPD_EXT 0x0080 -#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT_MASK 0x0400 -#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT 0x0400 /* 1=6.25MHz, 0=0.8MHz */ -#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 - -/* Power Management Control Register (Page 193, Register 20) */ -#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 /* 1=Enalbe SERDES Electrical Idle */ -#define GG82563_PMCR_DISABLE_PORT 0x0002 /* 1=Disable Port */ -#define GG82563_PMCR_DISABLE_SERDES 0x0004 /* 1=Disable SERDES */ -#define GG82563_PMCR_REVERSE_AUTO_NEG 0x0008 /* 1=Enable Reverse Auto-Negotiation */ -#define GG82563_PMCR_DISABLE_1000_NON_D0 0x0010 /* 1=Disable 1000Mbps Auto-Neg in non D0 */ -#define GG82563_PMCR_DISABLE_1000 0x0020 /* 1=Disable 1000Mbps Auto-Neg Always */ -#define GG82563_PMCR_REVERSE_AUTO_NEG_D0A 0x0040 /* 1=Enable D0a Reverse Auto-Negotiation */ -#define GG82563_PMCR_FORCE_POWER_STATE 0x0080 /* 1=Force Power State */ -#define GG82563_PMCR_PROGRAMMED_POWER_STATE_MASK 0x0300 -#define GG82563_PMCR_PROGRAMMED_POWER_STATE_DR 0x0000 /* 00=Dr */ -#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0U 0x0100 /* 01=D0u */ -#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0A 0x0200 /* 10=D0a */ -#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D3 0x0300 /* 11=D3 */ - -/* In-Band Control Register (Page 194, Register 18) */ -#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding Use */ - - -/* Bit definitions for valid PHY IDs. */ -/* I = Integrated - * E = External - */ -#define M88_VENDOR 0x0141 -#define M88E1000_E_PHY_ID 0x01410C50 -#define M88E1000_I_PHY_ID 0x01410C30 -#define M88E1011_I_PHY_ID 0x01410C20 -#define IGP01E1000_I_PHY_ID 0x02A80380 -#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID -#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID -#define M88E1011_I_REV_4 0x04 -#define M88E1111_I_PHY_ID 0x01410CC0 -#define L1LXT971A_PHY_ID 0x001378E0 -#define GG82563_E_PHY_ID 0x01410CA0 - - -/* Bits... - * 15-5: page - * 4-0: register offset - */ -#define PHY_PAGE_SHIFT 5 -#define PHY_REG(page, reg) \ - (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) - -#define IGP3_PHY_PORT_CTRL \ - PHY_REG(769, 17) /* Port General Configuration */ -#define IGP3_PHY_RATE_ADAPT_CTRL \ - PHY_REG(769, 25) /* Rate Adapter Control Register */ - -#define IGP3_KMRN_FIFO_CTRL_STATS \ - PHY_REG(770, 16) /* KMRN FIFO's control/status register */ -#define IGP3_KMRN_POWER_MNG_CTRL \ - PHY_REG(770, 17) /* KMRN Power Management Control Register */ -#define IGP3_KMRN_INBAND_CTRL \ - PHY_REG(770, 18) /* KMRN Inband Control Register */ -#define IGP3_KMRN_DIAG \ - PHY_REG(770, 19) /* KMRN Diagnostic register */ -#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */ -#define IGP3_KMRN_ACK_TIMEOUT \ - PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */ - -#define IGP3_VR_CTRL \ - PHY_REG(776, 18) /* Voltage regulator control register */ -#define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */ -#define IGP3_VR_CTRL_MODE_MASK 0x0300 /* Shutdown VR Mask */ - -#define IGP3_CAPABILITY \ - PHY_REG(776, 19) /* IGP3 Capability Register */ - -/* Capabilities for SKU Control */ -#define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */ -#define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */ -#define IGP3_CAP_ASF 0x0004 /* Support ASF */ -#define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */ -#define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */ -#define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */ -#define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */ -#define IGP3_CAP_RSS 0x0080 /* Support RSS */ -#define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */ -#define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */ - -#define IGP3_PPC_JORDAN_EN 0x0001 -#define IGP3_PPC_JORDAN_GIGA_SPEED 0x0002 - -#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS 0x0001 -#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK 0x001E -#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA 0x0020 -#define IGP3_KMRN_PMC_K0S_MODE1_EN_100 0x0040 - -#define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */ -#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */ - -#define IGP3_KMRN_EXT_CTRL PHY_REG(770, 18) -#define IGP3_KMRN_EC_DIS_INBAND 0x0080 - -#define IGP03E1000_E_PHY_ID 0x02A80390 -#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */ -#define IFE_PLUS_E_PHY_ID 0x02A80320 -#define IFE_C_E_PHY_ID 0x02A80310 - -#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */ -#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */ -#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */ -#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet Counter */ -#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */ -#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */ -#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */ -#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */ -#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */ -#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */ -#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */ -#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */ -#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */ - -#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto reduced power down */ -#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */ -#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */ -#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */ -#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */ -#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */ -#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */ -#define IFE_PESC_POLARITY_REVERSED_SHIFT 8 - -#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down disabled */ -#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */ -#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */ -#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */ -#define IFE_PSC_FORCE_POLARITY_SHIFT 5 -#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4 - -#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */ -#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */ -#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ -#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorithm is completed */ -#define IFE_PMC_MDIX_MODE_SHIFT 6 -#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */ - -#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */ -#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */ -#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */ -#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */ -#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */ -#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */ -#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */ -#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */ -#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */ -#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ -#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ - -#define ICH_FLASH_COMMAND_TIMEOUT 5000 /* 5000 uSecs - adjusted */ -#define ICH_FLASH_ERASE_TIMEOUT 3000000 /* Up to 3 seconds - worst case */ -#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles */ -#define ICH_FLASH_SEG_SIZE_256 256 -#define ICH_FLASH_SEG_SIZE_4K 4096 -#define ICH_FLASH_SEG_SIZE_64K 65536 - -#define ICH_CYCLE_READ 0x0 -#define ICH_CYCLE_RESERVED 0x1 -#define ICH_CYCLE_WRITE 0x2 -#define ICH_CYCLE_ERASE 0x3 - -#define ICH_FLASH_GFPREG 0x0000 -#define ICH_FLASH_HSFSTS 0x0004 -#define ICH_FLASH_HSFCTL 0x0006 -#define ICH_FLASH_FADDR 0x0008 -#define ICH_FLASH_FDATA0 0x0010 -#define ICH_FLASH_FRACC 0x0050 -#define ICH_FLASH_FREG0 0x0054 -#define ICH_FLASH_FREG1 0x0058 -#define ICH_FLASH_FREG2 0x005C -#define ICH_FLASH_FREG3 0x0060 -#define ICH_FLASH_FPR0 0x0074 -#define ICH_FLASH_FPR1 0x0078 -#define ICH_FLASH_SSFSTS 0x0090 -#define ICH_FLASH_SSFCTL 0x0092 -#define ICH_FLASH_PREOP 0x0094 -#define ICH_FLASH_OPTYPE 0x0096 -#define ICH_FLASH_OPMENU 0x0098 - -#define ICH_FLASH_REG_MAPSIZE 0x00A0 -#define ICH_FLASH_SECTOR_SIZE 4096 -#define ICH_GFPREG_BASE_MASK 0x1FFF -#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF - -/* ICH8 GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ -/* Offset 04h HSFSTS */ -union ich8_hws_flash_status { - struct ich8_hsfsts { -#ifdef E1000_BIG_ENDIAN - uint16_t reserved2 :6; - uint16_t fldesvalid :1; - uint16_t flockdn :1; - uint16_t flcdone :1; - uint16_t flcerr :1; - uint16_t dael :1; - uint16_t berasesz :2; - uint16_t flcinprog :1; - uint16_t reserved1 :2; -#else - uint16_t flcdone :1; /* bit 0 Flash Cycle Done */ - uint16_t flcerr :1; /* bit 1 Flash Cycle Error */ - uint16_t dael :1; /* bit 2 Direct Access error Log */ - uint16_t berasesz :2; /* bit 4:3 Block/Sector Erase Size */ - uint16_t flcinprog :1; /* bit 5 flash SPI cycle in Progress */ - uint16_t reserved1 :2; /* bit 13:6 Reserved */ - uint16_t reserved2 :6; /* bit 13:6 Reserved */ - uint16_t fldesvalid :1; /* bit 14 Flash Descriptor Valid */ - uint16_t flockdn :1; /* bit 15 Flash Configuration Lock-Down */ -#endif - } hsf_status; - uint16_t regval; +struct e1000_dev_spec_82541 { + enum e1000_dsp_config dsp_config; + enum e1000_ffe_config ffe_config; + u16 spd_default; + bool phy_init_script; }; -/* ICH8 GbE Flash Hardware Sequencing Flash control Register bit breakdown */ -/* Offset 06h FLCTL */ -union ich8_hws_flash_ctrl { - struct ich8_hsflctl { -#ifdef E1000_BIG_ENDIAN - uint16_t fldbcount :2; - uint16_t flockdn :6; - uint16_t flcgo :1; - uint16_t flcycle :2; - uint16_t reserved :5; -#else - uint16_t flcgo :1; /* 0 Flash Cycle Go */ - uint16_t flcycle :2; /* 2:1 Flash Cycle */ - uint16_t reserved :5; /* 7:3 Reserved */ - uint16_t fldbcount :2; /* 9:8 Flash Data Byte Count */ - uint16_t flockdn :6; /* 15:10 Reserved */ -#endif - } hsf_ctrl; - uint16_t regval; +struct e1000_dev_spec_82542 { + bool dma_fairness; }; -/* ICH8 Flash Region Access Permissions */ -union ich8_hws_flash_regacc { - struct ich8_flracc { -#ifdef E1000_BIG_ENDIAN - uint32_t gmwag :8; - uint32_t gmrag :8; - uint32_t grwa :8; - uint32_t grra :8; -#else - uint32_t grra :8; /* 0:7 GbE region Read Access */ - uint32_t grwa :8; /* 8:15 GbE region Write Access */ - uint32_t gmrag :8; /* 23:16 GbE Master Read Access Grant */ - uint32_t gmwag :8; /* 31:24 GbE Master Write Access Grant */ -#endif - } hsf_flregacc; - uint16_t regval; +struct e1000_dev_spec_82543 { + u32 tbi_compatibility; + bool dma_fairness; + bool init_phy_disabled; +}; + +struct e1000_hw { + void *back; + + u8 __iomem *hw_addr; + u8 __iomem *flash_address; + unsigned long io_base; + + struct e1000_mac_info mac; + struct e1000_fc_info fc; + struct e1000_phy_info phy; + struct e1000_nvm_info nvm; + struct e1000_bus_info bus; + struct e1000_host_mng_dhcp_cookie mng_cookie; + + union { + struct e1000_dev_spec_82541 _82541; + struct e1000_dev_spec_82542 _82542; + struct e1000_dev_spec_82543 _82543; + } dev_spec; + + u16 device_id; + u16 subsystem_vendor_id; + u16 subsystem_device_id; + u16 vendor_id; + + u8 revision_id; }; -/* Miscellaneous PHY bit definitions. */ -#define PHY_PREAMBLE 0xFFFFFFFF -#define PHY_SOF 0x01 -#define PHY_OP_READ 0x02 -#define PHY_OP_WRITE 0x01 -#define PHY_TURNAROUND 0x02 -#define PHY_PREAMBLE_SIZE 32 -#define MII_CR_SPEED_1000 0x0040 -#define MII_CR_SPEED_100 0x2000 -#define MII_CR_SPEED_10 0x0000 -#define E1000_PHY_ADDRESS 0x01 -#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */ -#define PHY_FORCE_TIME 20 /* 2.0 Seconds */ -#define PHY_REVISION_MASK 0xFFFFFFF0 -#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */ -#define REG4_SPEED_MASK 0x01E0 -#define REG9_SPEED_MASK 0x0300 -#define ADVERTISE_10_HALF 0x0001 -#define ADVERTISE_10_FULL 0x0002 -#define ADVERTISE_100_HALF 0x0004 -#define ADVERTISE_100_FULL 0x0008 -#define ADVERTISE_1000_HALF 0x0010 -#define ADVERTISE_1000_FULL 0x0020 -#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */ -#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds*/ -#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds*/ - -#endif /* _E1000_HW_H_ */ - -/* - * Local variables: - * c-basic-offset: 8 - * c-indent-level: 8 - * tab-width: 8 - * End: - */ +#include "e1000_82541.h" +#include "e1000_82543.h" + +/* These functions must be implemented by drivers */ +void e1000_pci_clear_mwi(struct e1000_hw *hw); +void e1000_pci_set_mwi(struct e1000_hw *hw); +s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); +void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value); +void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value); + +#endif diff --git a/src/drivers/net/e1000/e1000_mac.c b/src/drivers/net/e1000/e1000_mac.c new file mode 100644 index 000000000..235138798 --- /dev/null +++ b/src/drivers/net/e1000/e1000_mac.c @@ -0,0 +1,2196 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +#include "e1000_api.h" + +static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw); +static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw); + +/** + * e1000_init_mac_ops_generic - Initialize MAC function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_mac_ops_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + DEBUGFUNC("e1000_init_mac_ops_generic"); + + /* General Setup */ + mac->ops.init_params = e1000_null_ops_generic; + mac->ops.init_hw = e1000_null_ops_generic; + mac->ops.reset_hw = e1000_null_ops_generic; + mac->ops.setup_physical_interface = e1000_null_ops_generic; + mac->ops.get_bus_info = e1000_null_ops_generic; + mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie; + mac->ops.read_mac_addr = e1000_read_mac_addr_generic; + mac->ops.config_collision_dist = e1000_config_collision_dist_generic; + mac->ops.clear_hw_cntrs = e1000_null_mac_generic; + /* LED */ + mac->ops.cleanup_led = e1000_null_ops_generic; + mac->ops.setup_led = e1000_null_ops_generic; + mac->ops.blink_led = e1000_null_ops_generic; + mac->ops.led_on = e1000_null_ops_generic; + mac->ops.led_off = e1000_null_ops_generic; + /* LINK */ + mac->ops.setup_link = e1000_null_ops_generic; + mac->ops.get_link_up_info = e1000_null_link_info; + mac->ops.check_for_link = e1000_null_ops_generic; + mac->ops.wait_autoneg = e1000_wait_autoneg_generic; +#if 0 + /* Management */ + mac->ops.check_mng_mode = e1000_null_mng_mode; + mac->ops.mng_host_if_write = e1000_mng_host_if_write_generic; + mac->ops.mng_write_cmd_header = e1000_mng_write_cmd_header_generic; + mac->ops.mng_enable_host_if = e1000_mng_enable_host_if_generic; +#endif + /* VLAN, MC, etc. */ + mac->ops.update_mc_addr_list = e1000_null_update_mc; + mac->ops.clear_vfta = e1000_null_mac_generic; + mac->ops.write_vfta = e1000_null_write_vfta; + mac->ops.mta_set = e1000_null_mta_set; + mac->ops.rar_set = e1000_rar_set_generic; + mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic; +} + +/** + * e1000_null_ops_generic - No-op function, returns 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_ops_generic(struct e1000_hw *hw __unused) +{ + DEBUGFUNC("e1000_null_ops_generic"); + return E1000_SUCCESS; +} + +/** + * e1000_null_mac_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_mac_generic(struct e1000_hw *hw __unused) +{ + DEBUGFUNC("e1000_null_mac_generic"); + return; +} + +/** + * e1000_null_link_info - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_link_info(struct e1000_hw *hw __unused, + u16 *s __unused, u16 *d __unused) +{ + DEBUGFUNC("e1000_null_link_info"); + return E1000_SUCCESS; +} + +/** + * e1000_null_mng_mode - No-op function, return false + * @hw: pointer to the HW structure + **/ +bool e1000_null_mng_mode(struct e1000_hw *hw __unused) +{ + DEBUGFUNC("e1000_null_mng_mode"); + return false; +} + +/** + * e1000_null_update_mc - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_update_mc(struct e1000_hw *hw __unused, + u8 *h __unused, u32 a __unused) +{ + DEBUGFUNC("e1000_null_update_mc"); + return; +} + +/** + * e1000_null_write_vfta - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_write_vfta(struct e1000_hw *hw __unused, + u32 a __unused, u32 b __unused) +{ + DEBUGFUNC("e1000_null_write_vfta"); + return; +} + +/** + * e1000_null_set_mta - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_mta_set(struct e1000_hw *hw __unused, u32 a __unused) +{ + DEBUGFUNC("e1000_null_mta_set"); + return; +} + +/** + * e1000_null_rar_set - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_rar_set(struct e1000_hw *hw __unused, u8 *h __unused, + u32 a __unused) +{ + DEBUGFUNC("e1000_null_rar_set"); + return; +} + +/** + * e1000_get_bus_info_pci_generic - Get PCI(x) bus information + * @hw: pointer to the HW structure + * + * Determines and stores the system bus information for a particular + * network interface. The following bus information is determined and stored: + * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function. + **/ +s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw __unused) +{ +#if 0 + struct e1000_mac_info *mac = &hw->mac; + struct e1000_bus_info *bus = &hw->bus; + u32 status = E1000_READ_REG(hw, E1000_STATUS); + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_get_bus_info_pci_generic"); + + /* PCI or PCI-X? */ + bus->type = (status & E1000_STATUS_PCIX_MODE) + ? e1000_bus_type_pcix + : e1000_bus_type_pci; + + /* Bus speed */ + if (bus->type == e1000_bus_type_pci) { + bus->speed = (status & E1000_STATUS_PCI66) + ? e1000_bus_speed_66 + : e1000_bus_speed_33; + } else { + switch (status & E1000_STATUS_PCIX_SPEED) { + case E1000_STATUS_PCIX_SPEED_66: + bus->speed = e1000_bus_speed_66; + break; + case E1000_STATUS_PCIX_SPEED_100: + bus->speed = e1000_bus_speed_100; + break; + case E1000_STATUS_PCIX_SPEED_133: + bus->speed = e1000_bus_speed_133; + break; + default: + bus->speed = e1000_bus_speed_reserved; + break; + } + } + + /* Bus width */ + bus->width = (status & E1000_STATUS_BUS64) + ? e1000_bus_width_64 + : e1000_bus_width_32; + + /* Which PCI(-X) function? */ + mac->ops.set_lan_id(hw); + + return ret_val; +#endif + return 0; +} + +/** + * e1000_get_bus_info_pcie_generic - Get PCIe bus information + * @hw: pointer to the HW structure + * + * Determines and stores the system bus information for a particular + * network interface. The following bus information is determined and stored: + * bus speed, bus width, type (PCIe), and PCIe function. + **/ +s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw __unused) +{ +#if 0 + struct e1000_mac_info *mac = &hw->mac; + struct e1000_bus_info *bus = &hw->bus; + + s32 ret_val; + u16 pcie_link_status; + + DEBUGFUNC("e1000_get_bus_info_pcie_generic"); + + bus->type = e1000_bus_type_pci_express; + bus->speed = e1000_bus_speed_2500; + + ret_val = e1000_read_pcie_cap_reg(hw, + PCIE_LINK_STATUS, + &pcie_link_status); + if (ret_val) + bus->width = e1000_bus_width_unknown; + else + bus->width = (enum e1000_bus_width)((pcie_link_status & + PCIE_LINK_WIDTH_MASK) >> + PCIE_LINK_WIDTH_SHIFT); + + mac->ops.set_lan_id(hw); + + return E1000_SUCCESS; +#endif + return 0; +} + +/** + * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices + * + * @hw: pointer to the HW structure + * + * Determines the LAN function id by reading memory-mapped registers + * and swaps the port value if requested. + **/ +static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + u32 reg; + + /* + * The status register reports the correct function number + * for the device regardless of function swap state. + */ + reg = E1000_READ_REG(hw, E1000_STATUS); + bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; +} + +/** + * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices + * @hw: pointer to the HW structure + * + * Determines the LAN function id by reading PCI config space. + **/ +void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + u16 pci_header_type; + u32 status; + + e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); + if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { + status = E1000_READ_REG(hw, E1000_STATUS); + bus->func = (status & E1000_STATUS_FUNC_MASK) + >> E1000_STATUS_FUNC_SHIFT; + } else { + bus->func = 0; + } +} + +/** + * e1000_set_lan_id_single_port - Set LAN id for a single port device + * @hw: pointer to the HW structure + * + * Sets the LAN function id to zero for a single port device. + **/ +void e1000_set_lan_id_single_port(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + + bus->func = 0; +} + +/** + * e1000_clear_vfta_generic - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +void e1000_clear_vfta_generic(struct e1000_hw *hw) +{ + u32 offset; + + DEBUGFUNC("e1000_clear_vfta_generic"); + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); + E1000_WRITE_FLUSH(hw); + } +} + +/** + * e1000_write_vfta_generic - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: register offset in VLAN filter table + * @value: register value written to VLAN filter table + * + * Writes value at the given offset in the register array which stores + * the VLAN filter table. + **/ +void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) +{ + DEBUGFUNC("e1000_write_vfta_generic"); + + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_init_rx_addrs_generic - Initialize receive address's + * @hw: pointer to the HW structure + * @rar_count: receive address registers + * + * Setups the receive address registers by setting the base receive address + * register to the devices MAC address and clearing all the other receive + * address registers to 0. + **/ +void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count) +{ + u32 i; + u8 mac_addr[ETH_ADDR_LEN] = {0}; + + DEBUGFUNC("e1000_init_rx_addrs_generic"); + + /* Setup the receive address */ + DEBUGOUT("Programming MAC Address into RAR[0]\n"); + + hw->mac.ops.rar_set(hw, hw->mac.addr, 0); + + /* Zero out the other (rar_entry_count - 1) receive addresses */ + DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1); + for (i = 1; i < rar_count; i++) + hw->mac.ops.rar_set(hw, mac_addr, i); +} + +/** + * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr + * @hw: pointer to the HW structure + * + * Checks the nvm for an alternate MAC address. An alternate MAC address + * can be setup by pre-boot software and must be treated like a permanent + * address and must override the actual permanent MAC address. If an + * alternate MAC address is found it is programmed into RAR0, replacing + * the permanent address that was installed into RAR0 by the Si on reset. + * This function will return SUCCESS unless it encounters an error while + * reading the EEPROM. + **/ +s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) +{ + u32 i; + s32 ret_val = E1000_SUCCESS; + u16 offset, nvm_alt_mac_addr_offset, nvm_data; + u8 alt_mac_addr[ETH_ADDR_LEN]; + + DEBUGFUNC("e1000_check_alt_mac_addr_generic"); + + ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, + &nvm_alt_mac_addr_offset); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (nvm_alt_mac_addr_offset == 0xFFFF) { + /* There is no Alternate MAC Address */ + goto out; + } + + if (hw->bus.func == E1000_FUNC_1) + nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; + for (i = 0; i < ETH_ADDR_LEN; i += 2) { + offset = nvm_alt_mac_addr_offset + (i >> 1); + ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + alt_mac_addr[i] = (u8)(nvm_data & 0xFF); + alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); + } + + /* if multicast bit is set, the alternate address will not be used */ + if (alt_mac_addr[0] & 0x01) { + DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n"); + goto out; + } + + /* + * We have a valid alternate MAC address, and we want to treat it the + * same as the normal permanent MAC address stored by the HW into the + * RAR. Do this by mapping this address into RAR0. + */ + hw->mac.ops.rar_set(hw, alt_mac_addr, 0); + +out: + return ret_val; +} + +/** + * e1000_rar_set_generic - Set receive address register + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address array register at index to the address passed + * in by addr. + **/ +void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + + DEBUGFUNC("e1000_rar_set_generic"); + + /* + * HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | + ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + /* If MAC address zero, no need to set the AV bit */ + if (rar_low || rar_high) + rar_high |= E1000_RAH_AV; + + /* + * Some bridges will combine consecutive 32-bit writes into + * a single burst write, which will malfunction on some parts. + * The flushes avoid this. + */ + E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_mta_set_generic - Set multicast filter table address + * @hw: pointer to the HW structure + * @hash_value: determines the MTA register and bit to set + * + * The multicast table address is a register array of 32-bit registers. + * The hash_value is used to determine what register the bit is in, the + * current value is read, the new bit is OR'd in and the new value is + * written back into the register. + **/ +void e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value) +{ + u32 hash_bit, hash_reg, mta; + + DEBUGFUNC("e1000_mta_set_generic"); + /* + * The MTA is a register array of 32-bit registers. It is + * treated like an array of (32*mta_reg_count) bits. We want to + * set bit BitArray[hash_value]. So we figure out what register + * the bit is in, read it, OR in the new bit, then write + * back the new value. The (hw->mac.mta_reg_count - 1) serves as a + * mask to bits 31:5 of the hash value which gives us the + * register we're modifying. The hash bit within that register + * is determined by the lower 5 bits of the hash value. + */ + hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); + hash_bit = hash_value & 0x1F; + + mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg); + + mta |= (1 << hash_bit); + + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_update_mc_addr_list_generic - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * + * Updates entire Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + **/ +void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count) +{ + u32 hash_value, hash_bit, hash_reg; + int i; + + DEBUGFUNC("e1000_update_mc_addr_list_generic"); + + /* clear mta_shadow */ + memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); + + /* update mta_shadow from mc_addr_list */ + for (i = 0; (u32) i < mc_addr_count; i++) { + hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list); + + hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); + hash_bit = hash_value & 0x1F; + + hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); + mc_addr_list += (ETH_ADDR_LEN); + } + + /* replace the entire MTA table */ + for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_hash_mc_addr_generic - Generate a multicast hash value + * @hw: pointer to the HW structure + * @mc_addr: pointer to a multicast address + * + * Generates a multicast address hash value which is used to determine + * the multicast filter table array address and new table value. See + * e1000_mta_set_generic() + **/ +u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr) +{ + u32 hash_value, hash_mask; + u8 bit_shift = 0; + + DEBUGFUNC("e1000_hash_mc_addr_generic"); + + /* Register count multiplied by bits per register */ + hash_mask = (hw->mac.mta_reg_count * 32) - 1; + + /* + * For a mc_filter_type of 0, bit_shift is the number of left-shifts + * where 0xFF would still fall within the hash mask. + */ + while (hash_mask >> bit_shift != 0xFF) + bit_shift++; + + /* + * The portion of the address that is used for the hash table + * is determined by the mc_filter_type setting. + * The algorithm is such that there is a total of 8 bits of shifting. + * The bit_shift for a mc_filter_type of 0 represents the number of + * left-shifts where the MSB of mc_addr[5] would still fall within + * the hash_mask. Case 0 does this exactly. Since there are a total + * of 8 bits of shifting, then mc_addr[4] will shift right the + * remaining number of bits. Thus 8 - bit_shift. The rest of the + * cases are a variation of this algorithm...essentially raising the + * number of bits to shift mc_addr[5] left, while still keeping the + * 8-bit shifting total. + * + * For example, given the following Destination MAC Address and an + * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), + * we can see that the bit_shift for case 0 is 4. These are the hash + * values resulting from each mc_filter_type... + * [0] [1] [2] [3] [4] [5] + * 01 AA 00 12 34 56 + * LSB MSB + * + * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 + * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 + * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 + * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 + */ + switch (hw->mac.mc_filter_type) { + default: + case 0: + break; + case 1: + bit_shift += 1; + break; + case 2: + bit_shift += 2; + break; + case 3: + bit_shift += 4; + break; + } + + hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | + (((u16) mc_addr[5]) << bit_shift))); + + return hash_value; +} + +/** + * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value + * @hw: pointer to the HW structure + * + * In certain situations, a system BIOS may report that the PCIx maximum + * memory read byte count (MMRBC) value is higher than than the actual + * value. We check the PCIx command register with the current PCIx status + * register. + **/ +void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw) +{ + u16 cmd_mmrbc; + u16 pcix_cmd; + u16 pcix_stat_hi_word; + u16 stat_mmrbc; + + DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic"); + + /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */ + if (hw->bus.type != e1000_bus_type_pcix) + return; + + e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); + e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); + cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >> + PCIX_COMMAND_MMRBC_SHIFT; + stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> + PCIX_STATUS_HI_MMRBC_SHIFT; + if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) + stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; + if (cmd_mmrbc > stat_mmrbc) { + pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK; + pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; + e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); + } +} + +/** + * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters + * @hw: pointer to the HW structure + * + * Clears the base hardware counters by reading the counter registers. + **/ +void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw __unused) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_base_generic"); + +#if 0 + E1000_READ_REG(hw, E1000_CRCERRS); + E1000_READ_REG(hw, E1000_SYMERRS); + E1000_READ_REG(hw, E1000_MPC); + E1000_READ_REG(hw, E1000_SCC); + E1000_READ_REG(hw, E1000_ECOL); + E1000_READ_REG(hw, E1000_MCC); + E1000_READ_REG(hw, E1000_LATECOL); + E1000_READ_REG(hw, E1000_COLC); + E1000_READ_REG(hw, E1000_DC); + E1000_READ_REG(hw, E1000_SEC); + E1000_READ_REG(hw, E1000_RLEC); + E1000_READ_REG(hw, E1000_XONRXC); + E1000_READ_REG(hw, E1000_XONTXC); + E1000_READ_REG(hw, E1000_XOFFRXC); + E1000_READ_REG(hw, E1000_XOFFTXC); + E1000_READ_REG(hw, E1000_FCRUC); + E1000_READ_REG(hw, E1000_GPRC); + E1000_READ_REG(hw, E1000_BPRC); + E1000_READ_REG(hw, E1000_MPRC); + E1000_READ_REG(hw, E1000_GPTC); + E1000_READ_REG(hw, E1000_GORCL); + E1000_READ_REG(hw, E1000_GORCH); + E1000_READ_REG(hw, E1000_GOTCL); + E1000_READ_REG(hw, E1000_GOTCH); + E1000_READ_REG(hw, E1000_RNBC); + E1000_READ_REG(hw, E1000_RUC); + E1000_READ_REG(hw, E1000_RFC); + E1000_READ_REG(hw, E1000_ROC); + E1000_READ_REG(hw, E1000_RJC); + E1000_READ_REG(hw, E1000_TORL); + E1000_READ_REG(hw, E1000_TORH); + E1000_READ_REG(hw, E1000_TOTL); + E1000_READ_REG(hw, E1000_TOTH); + E1000_READ_REG(hw, E1000_TPR); + E1000_READ_REG(hw, E1000_TPT); + E1000_READ_REG(hw, E1000_MPTC); + E1000_READ_REG(hw, E1000_BPTC); +#endif +} + +/** + * e1000_check_for_copper_link_generic - Check for link (Copper) + * @hw: pointer to the HW structure + * + * Checks to see of the link status of the hardware has changed. If a + * change in link status has been detected, then we read the PHY registers + * to get the current speed/duplex if link exists. + **/ +s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_check_for_copper_link"); + + /* + * We only want to go out to the PHY registers to see if Auto-Neg + * has completed and/or if our link status has changed. The + * get_link_status flag is set upon receiving a Link Status + * Change or Rx Sequence Error interrupt. + */ + if (!mac->get_link_status) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* + * First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + */ + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (!link) + goto out; /* No link detected */ + + mac->get_link_status = false; + + /* + * Check if there was DownShift, must be checked + * immediately after link-up + */ + e1000_check_downshift_generic(hw); + + /* + * If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) { + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + /* + * Auto-Neg is enabled. Auto Speed Detection takes care + * of MAC speed/duplex configuration. So we only need to + * configure Collision Distance in the MAC. + */ + e1000_config_collision_dist_generic(hw); + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) + DEBUGOUT("Error configuring flow control\n"); + +out: + return ret_val; +} + +/** + * e1000_check_for_fiber_link_generic - Check for link (Fiber) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_check_for_fiber_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + /* + * If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), the cable is plugged in (we have signal), + * and our link partner is not trying to auto-negotiate with us (we + * are receiving idles or data), we need to force link up. We also + * need to give auto-negotiation time to complete, in case the cable + * was just plugged in. The autoneg_failed flag does this. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && + (!(rxcw & E1000_RXCW_C))) { + if (mac->autoneg_failed == 0) { + mac->autoneg_failed = 1; + goto out; + } + DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + goto out; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* + * If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = true; + } + +out: + return ret_val; +} + +/** + * e1000_check_for_serdes_link_generic - Check for link (Serdes) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_check_for_serdes_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + /* + * If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), and our link partner is not trying to + * auto-negotiate with us (we are receiving idles or data), + * we need to force link up. We also need to give auto-negotiation + * time to complete. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { + if (mac->autoneg_failed == 0) { + mac->autoneg_failed = 1; + goto out; + } + DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + goto out; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* + * If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = true; + } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) { + /* + * If we force link for non-auto-negotiation switch, check + * link status based on MAC synchronization for internal + * serdes media type. + */ + /* SYNCH bit and IV bit are sticky. */ + usec_delay(10); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = true; + DEBUGOUT("SERDES: Link up - forced.\n"); + } + } else { + mac->serdes_has_link = false; + DEBUGOUT("SERDES: Link down - force failed.\n"); + } + } + + if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) { + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_LU) { + /* SYNCH bit and IV bit are sticky, so reread rxcw. */ + usec_delay(10); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = true; + DEBUGOUT("SERDES: Link up - autoneg " + "completed sucessfully.\n"); + } else { + mac->serdes_has_link = false; + DEBUGOUT("SERDES: Link down - invalid" + "codewords detected in autoneg.\n"); + } + } else { + mac->serdes_has_link = false; + DEBUGOUT("SERDES: Link down - no sync.\n"); + } + } else { + mac->serdes_has_link = false; + DEBUGOUT("SERDES: Link down - autoneg failed\n"); + } + } + +out: + return ret_val; +} + +/** + * e1000_setup_link_generic - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +s32 e1000_setup_link_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_setup_link_generic"); + + /* + * In the case of the phy reset being blocked, we already have a link. + * We do not need to set it up again. + */ + if (hw->phy.ops.check_reset_block) + if (hw->phy.ops.check_reset_block(hw)) + goto out; + + /* + * If requested flow control is set to default, set flow control + * based on the EEPROM flow control settings. + */ + if (hw->fc.requested_mode == e1000_fc_default) { + ret_val = e1000_set_default_fc_generic(hw); + if (ret_val) + goto out; + } + + /* + * Save off the requested flow control mode for use later. Depending + * on the link partner's capabilities, we may or may not use this mode. + */ + hw->fc.current_mode = hw->fc.requested_mode; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", + hw->fc.current_mode); + + /* Call the necessary media_type subroutine to configure the link. */ + ret_val = hw->mac.ops.setup_physical_interface(hw); + if (ret_val) + goto out; + + /* + * Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); + E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); + E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); + + E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); + + ret_val = e1000_set_fc_watermarks_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber and serdes + * links. Upon successful setup, poll for link. + **/ +s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_setup_fiber_serdes_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Take the link out of reset */ + ctrl &= ~E1000_CTRL_LRST; + + e1000_config_collision_dist_generic(hw); + + ret_val = e1000_commit_fc_settings_generic(hw); + if (ret_val) + goto out; + + /* + * Since auto-negotiation is enabled, take the link out of reset (the + * link will be in reset, because we previously reset the chip). This + * will restart auto-negotiation. If auto-negotiation is successful + * then the link-up status bit will be set and the flow control enable + * bits (RFCE and TFCE) will be set according to their negotiated value. + */ + DEBUGOUT("Auto-negotiation enabled\n"); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + + /* + * For these adapters, the SW definable pin 1 is set when the optics + * detect a signal. If we have a signal, then poll for a "Link-Up" + * indication. + */ + if (hw->phy.media_type == e1000_media_type_internal_serdes || + (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { + ret_val = e1000_poll_fiber_serdes_link_generic(hw); + } else { + DEBUGOUT("No signal detected\n"); + } + +out: + return ret_val; +} + +/** + * e1000_config_collision_dist_generic - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +void e1000_config_collision_dist_generic(struct e1000_hw *hw) +{ + u32 tctl; + + DEBUGFUNC("e1000_config_collision_dist_generic"); + + tctl = E1000_READ_REG(hw, E1000_TCTL); + + tctl &= ~E1000_TCTL_COLD; + tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; + + E1000_WRITE_REG(hw, E1000_TCTL, tctl); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_poll_fiber_serdes_link_generic - Poll for link up + * @hw: pointer to the HW structure + * + * Polls for link up by reading the status register, if link fails to come + * up with auto-negotiation, then the link is forced if a signal is detected. + **/ +s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 i, status; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_poll_fiber_serdes_link_generic"); + + /* + * If we have a signal (the cable is plugged in, or assumed true for + * serdes media) then poll for a "Link-Up" indication in the Device + * Status Register. Time-out if a link isn't seen in 500 milliseconds + * seconds (Auto-negotiation should complete in less than 500 + * milliseconds even if the other end is doing it in SW). + */ + for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { + msec_delay(10); + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_LU) + break; + } + if (i == FIBER_LINK_UP_LIMIT) { + DEBUGOUT("Never got a valid link from auto-neg!!!\n"); + mac->autoneg_failed = 1; + /* + * AutoNeg failed to achieve a link, so we'll call + * mac->check_for_link. This routine will force the + * link up if we detect a signal. This will allow us to + * communicate with non-autonegotiating link partners. + */ + ret_val = hw->mac.ops.check_for_link(hw); + if (ret_val) { + DEBUGOUT("Error while checking for link\n"); + goto out; + } + mac->autoneg_failed = 0; + } else { + mac->autoneg_failed = 0; + DEBUGOUT("Valid Link Found\n"); + } + +out: + return ret_val; +} + +/** + * e1000_commit_fc_settings_generic - Configure flow control + * @hw: pointer to the HW structure + * + * Write the flow control settings to the Transmit Config Word Register (TXCW) + * base on the flow control settings in e1000_mac_info. + **/ +s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 txcw; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_commit_fc_settings_generic"); + + /* + * Check for a software override of the flow control settings, and + * setup the device accordingly. If auto-negotiation is enabled, then + * software will have to set the "PAUSE" bits to the correct value in + * the Transmit Config Word Register (TXCW) and re-start auto- + * negotiation. However, if auto-negotiation is disabled, then + * software will have to manually configure the two flow control enable + * bits in the CTRL register. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we + * do not support receiving pause frames). + * 3: Both Rx and Tx flow control (symmetric) are enabled. + */ + switch (hw->fc.current_mode) { + case e1000_fc_none: + /* Flow control completely disabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); + break; + case e1000_fc_rx_pause: + /* + * Rx Flow control is enabled and Tx Flow control is disabled + * by a software over-ride. Since there really isn't a way to + * advertise that we are capable of Rx Pause ONLY, we will + * advertise that we support both symmetric and asymmetric RX + * PAUSE. Later, we will disable the adapter's ability to send + * PAUSE frames. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + case e1000_fc_tx_pause: + /* + * Tx Flow control is enabled, and Rx Flow control is disabled, + * by a software over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); + break; + case e1000_fc_full: + /* + * Flow control (both Rx and Tx) is enabled by a software + * over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + break; + } + + E1000_WRITE_REG(hw, E1000_TXCW, txcw); + mac->txcw = txcw; + +out: + return ret_val; +} + +/** + * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks + * @hw: pointer to the HW structure + * + * Sets the flow control high/low threshold (watermark) registers. If + * flow control XON frame transmission is enabled, then set XON frame + * transmission as well. + **/ +s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 fcrtl = 0, fcrth = 0; + + DEBUGFUNC("e1000_set_fc_watermarks_generic"); + + /* + * Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames is not enabled, then these + * registers will be set to 0. + */ + if (hw->fc.current_mode & e1000_fc_tx_pause) { + /* + * We need to set up the Receive Threshold high and low water + * marks as well as (optionally) enabling the transmission of + * XON frames. + */ + fcrtl = hw->fc.low_water; + if (hw->fc.send_xon) + fcrtl |= E1000_FCRTL_XONE; + + fcrth = hw->fc.high_water; + } + E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl); + E1000_WRITE_REG(hw, E1000_FCRTH, fcrth); + + return ret_val; +} + +/** + * e1000_set_default_fc_generic - Set flow control default values + * @hw: pointer to the HW structure + * + * Read the EEPROM for the default values for flow control and store the + * values. + **/ +s32 e1000_set_default_fc_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 nvm_data; + + DEBUGFUNC("e1000_set_default_fc_generic"); + + /* + * Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); + + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) + hw->fc.requested_mode = e1000_fc_none; + else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == + NVM_WORD0F_ASM_DIR) + hw->fc.requested_mode = e1000_fc_tx_pause; + else + hw->fc.requested_mode = e1000_fc_full; + +out: + return ret_val; +} + +/** + * e1000_force_mac_fc_generic - Force the MAC's flow control settings + * @hw: pointer to the HW structure + * + * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the + * device control register to reflect the adapter settings. TFCE and RFCE + * need to be explicitly set by software when a copper PHY is used because + * autonegotiation is managed by the PHY rather than the MAC. Software must + * also configure these bits when link is forced on a fiber connection. + **/ +s32 e1000_force_mac_fc_generic(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_force_mac_fc_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* + * Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY + * auto-neg), we have to manually enable/disable transmit an + * receive flow control. + * + * The "Case" statement below enables/disable flow control + * according to the "hw->fc.current_mode" parameter. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause + * frames but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * frames but we do not receive pause frames). + * 3: Both Rx and Tx flow control (symmetric) is enabled. + * other: No other values should be possible at this point. + */ + DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode); + + switch (hw->fc.current_mode) { + case e1000_fc_none: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case e1000_fc_rx_pause: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case e1000_fc_tx_pause: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case e1000_fc_full: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + +out: + return ret_val; +} + +/** + * e1000_config_fc_after_link_up_generic - Configures flow control after link + * @hw: pointer to the HW structure + * + * Checks the status of auto-negotiation after link up to ensure that the + * speed and duplex were not forced. If the link needed to be forced, then + * flow control needs to be forced also. If auto-negotiation is enabled + * and did not fail, then we configure flow control based on our link + * partner. + **/ +s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; + u16 speed, duplex; + + DEBUGFUNC("e1000_config_fc_after_link_up_generic"); + + /* + * Check for the case where we have fiber media and auto-neg failed + * so we had to force link. In this case, we need to force the + * configuration of the MAC to match the "fc" parameter. + */ + if (mac->autoneg_failed) { + if (hw->phy.media_type == e1000_media_type_fiber || + hw->phy.media_type == e1000_media_type_internal_serdes) + ret_val = e1000_force_mac_fc_generic(hw); + } else { + if (hw->phy.media_type == e1000_media_type_copper) + ret_val = e1000_force_mac_fc_generic(hw); + } + + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + goto out; + } + + /* + * Check for the case where we have copper media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { + /* + * Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + goto out; + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + goto out; + + if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { + DEBUGOUT("Copper PHY and Auto Neg " + "has not completed.\n"); + goto out; + } + + /* + * The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement + * Register (Address 4) and the Auto_Negotiation Base + * Page Ability Register (Address 5) to determine how + * flow control was negotiated. + */ + ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, + &mii_nway_adv_reg); + if (ret_val) + goto out; + ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, + &mii_nway_lp_ability_reg); + if (ret_val) + goto out; + + /* + * Two bits in the Auto Negotiation Advertisement Register + * (Address 4) and two bits in the Auto Negotiation Base + * Page Ability Register (Address 5) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | e1000_fc_none + * 0 | 1 | 0 | DC | e1000_fc_none + * 0 | 1 | 1 | 0 | e1000_fc_none + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * 1 | 0 | 0 | DC | e1000_fc_none + * 1 | DC | 1 | DC | e1000_fc_full + * 1 | 1 | 0 | 0 | e1000_fc_none + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + * Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | E1000_fc_full + * + */ + if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + /* + * Now we need to check if the user selected Rx ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise RX + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->fc.requested_mode == e1000_fc_full) { + hw->fc.current_mode = e1000_fc_full; + DEBUGOUT("Flow Control = FULL.\r\n"); + } else { + hw->fc.current_mode = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = " + "RX PAUSE frames only.\r\n"); + } + } + /* + * For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + */ + else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_tx_pause; + DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); + } + /* + * For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + */ + else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); + } else { + /* + * Per the IEEE spec, at this point flow control + * should be disabled. + */ + hw->fc.current_mode = e1000_fc_none; + DEBUGOUT("Flow Control = NONE.\r\n"); + } + + /* + * Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not be + * enabled per IEEE 802.3 spec. + */ + ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + goto out; + } + + if (duplex == HALF_DUPLEX) + hw->fc.current_mode = e1000_fc_none; + + /* + * Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + ret_val = e1000_force_mac_fc_generic(hw); + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + goto out; + } + } + +out: + return ret_val; +} + +/** + * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Read the status register for the current speed/duplex and store the current + * speed and duplex for copper connections. + **/ +s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + u32 status; + + DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic"); + + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + DEBUGOUT("1000 Mbs, "); + } else if (status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + DEBUGOUT("100 Mbs, "); + } else { + *speed = SPEED_10; + DEBUGOUT("10 Mbs, "); + } + + if (status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } else { + *duplex = HALF_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Sets the speed and duplex to gigabit full duplex (the only possible option) + * for fiber/serdes links. + **/ +s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw __unused, + u16 *speed, u16 *duplex) +{ + DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic"); + + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + + return E1000_SUCCESS; +} + +/** + * e1000_get_hw_semaphore_generic - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM + **/ +s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw __unused) +{ +#if 0 + u32 swsm; + s32 ret_val = E1000_SUCCESS; + s32 timeout = hw->nvm.word_size + 1; + s32 i = 0; + + DEBUGFUNC("e1000_get_hw_semaphore_generic"); + + /* Get the SW semaphore */ + while (i < timeout) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + usec_delay(50); + i++; + } + + if (i == timeout) { + DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + /* Get the FW semaphore. */ + for (i = 0; i < timeout; i++) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); + + /* Semaphore acquired if bit latched */ + if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) + break; + + usec_delay(50); + } + + if (i == timeout) { + /* Release semaphores */ + e1000_put_hw_semaphore_generic(hw); + DEBUGOUT("Driver can't access the NVM\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + +out: + return ret_val; +#endif + return 0; +} + +/** + * e1000_put_hw_semaphore_generic - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + **/ +void e1000_put_hw_semaphore_generic(struct e1000_hw *hw __unused) +{ +#if 0 + u32 swsm; + + DEBUGFUNC("e1000_put_hw_semaphore_generic"); + + swsm = E1000_READ_REG(hw, E1000_SWSM); + + swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + + E1000_WRITE_REG(hw, E1000_SWSM, swsm); +#endif +} + +/** + * e1000_get_auto_rd_done_generic - Check for auto read completion + * @hw: pointer to the HW structure + * + * Check EEPROM for Auto Read done bit. + **/ +s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw) +{ + s32 i = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_get_auto_rd_done_generic"); + + while (i < AUTO_READ_DONE_TIMEOUT) { + if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD) + break; + msec_delay(1); + i++; + } + + if (i == AUTO_READ_DONE_TIMEOUT) { + DEBUGOUT("Auto read by HW from NVM has not completed.\n"); + ret_val = -E1000_ERR_RESET; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_valid_led_default_generic - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_generic"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT; + +out: + return ret_val; +} + +/** + * e1000_id_led_init_generic - + * @hw: pointer to the HW structure + * + **/ +s32 e1000_id_led_init_generic(struct e1000_hw *hw __unused) +{ +#if 0 + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + const u32 ledctl_mask = 0x000000FF; + const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; + const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; + u16 data, i, temp; + const u16 led_mask = 0x0F; + + DEBUGFUNC("e1000_id_led_init_generic"); + + ret_val = hw->nvm.ops.valid_led_default(hw, &data); + if (ret_val) + goto out; + + mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); + mac->ledctl_mode1 = mac->ledctl_default; + mac->ledctl_mode2 = mac->ledctl_default; + + for (i = 0; i < 4; i++) { + temp = (data >> (i << 2)) & led_mask; + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_on << (i << 3); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_on << (i << 3); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + } + +out: + return ret_val; +#endif + return 0; +} + +/** + * e1000_setup_led_generic - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. + **/ +s32 e1000_setup_led_generic(struct e1000_hw *hw __unused) +{ +#if 0 + u32 ledctl; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_setup_led_generic"); + + if (hw->mac.ops.setup_led != e1000_setup_led_generic) { + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + if (hw->phy.media_type == e1000_media_type_fiber) { + ledctl = E1000_READ_REG(hw, E1000_LEDCTL); + hw->mac.ledctl_default = ledctl; + /* Turn off LED0 */ + ledctl &= ~(E1000_LEDCTL_LED0_IVRT | + E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_LED0_MODE_MASK); + ledctl |= (E1000_LEDCTL_MODE_LED_OFF << + E1000_LEDCTL_LED0_MODE_SHIFT); + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); + } else if (hw->phy.media_type == e1000_media_type_copper) { + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + } + +out: + return ret_val; +#endif + return 0; +} + +/** + * e1000_cleanup_led_generic - Set LED config to default operation + * @hw: pointer to the HW structure + * + * Remove the current LED configuration and set the LED configuration + * to the default value, saved from the EEPROM. + **/ +s32 e1000_cleanup_led_generic(struct e1000_hw *hw __unused) +{ +#if 0 + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_cleanup_led_generic"); + + if (hw->mac.ops.cleanup_led != e1000_cleanup_led_generic) { + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); + +out: + return ret_val; +#endif + return 0; +} + +/** + * e1000_blink_led_generic - Blink LED + * @hw: pointer to the HW structure + * + * Blink the LEDs which are set to be on. + **/ +s32 e1000_blink_led_generic(struct e1000_hw *hw __unused) +{ +#if 0 + u32 ledctl_blink = 0; + u32 i; + + DEBUGFUNC("e1000_blink_led_generic"); + + if (hw->phy.media_type == e1000_media_type_fiber) { + /* always blink LED0 for PCI-E fiber */ + ledctl_blink = E1000_LEDCTL_LED0_BLINK | + (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); + } else { + /* + * set the blink bit for each LED that's "on" (0x0E) + * in ledctl_mode2 + */ + ledctl_blink = hw->mac.ledctl_mode2; + for (i = 0; i < 4; i++) + if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == + E1000_LEDCTL_MODE_LED_ON) + ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << + (i * 8)); + } + + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink); + + return E1000_SUCCESS; +#endif + return 0; +} + +/** + * e1000_led_on_generic - Turn LED on + * @hw: pointer to the HW structure + * + * Turn LED on. + **/ +s32 e1000_led_on_generic(struct e1000_hw *hw __unused) +{ +#if 0 + u32 ctrl; + + DEBUGFUNC("e1000_led_on_generic"); + + switch (hw->phy.media_type) { + case e1000_media_type_fiber: + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + break; + case e1000_media_type_copper: + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); + break; + default: + break; + } + + return E1000_SUCCESS; +#endif + return 0; +} + +/** + * e1000_led_off_generic - Turn LED off + * @hw: pointer to the HW structure + * + * Turn LED off. + **/ +s32 e1000_led_off_generic(struct e1000_hw *hw __unused) +{ +#if 0 + u32 ctrl; + + DEBUGFUNC("e1000_led_off_generic"); + + switch (hw->phy.media_type) { + case e1000_media_type_fiber: + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + break; + case e1000_media_type_copper: + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + break; + default: + break; + } + + return E1000_SUCCESS; +#endif + return 0; +} + +/** + * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities + * @hw: pointer to the HW structure + * @no_snoop: bitmap of snoop events + * + * Set the PCI-express register to snoop for events enabled in 'no_snoop'. + **/ +void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop) +{ + u32 gcr; + + DEBUGFUNC("e1000_set_pcie_no_snoop_generic"); + + if (hw->bus.type != e1000_bus_type_pci_express) + goto out; + + if (no_snoop) { + gcr = E1000_READ_REG(hw, E1000_GCR); + gcr &= ~(PCIE_NO_SNOOP_ALL); + gcr |= no_snoop; + E1000_WRITE_REG(hw, E1000_GCR, gcr); + } +out: + return; +} + +/** + * e1000_disable_pcie_master_generic - Disables PCI-express master access + * @hw: pointer to the HW structure + * + * Returns 0 (E1000_SUCCESS) if successful, else returns -10 + * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused + * the master requests to be disabled. + * + * Disables PCI-Express master access and verifies there are no pending + * requests. + **/ +s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw) +{ + u32 ctrl; + s32 timeout = MASTER_DISABLE_TIMEOUT; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_disable_pcie_master_generic"); + + if (hw->bus.type != e1000_bus_type_pci_express) + goto out; + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + while (timeout) { + if (!(E1000_READ_REG(hw, E1000_STATUS) & + E1000_STATUS_GIO_MASTER_ENABLE)) + break; + usec_delay(100); + timeout--; + } + + if (!timeout) { + DEBUGOUT("Master requests are pending.\n"); + ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Reset the Adaptive Interframe Spacing throttle to default values. + **/ +void e1000_reset_adaptive_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_reset_adaptive_generic"); + + if (!mac->adaptive_ifs) { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + goto out; + } + + mac->current_ifs_val = 0; + mac->ifs_min_val = IFS_MIN; + mac->ifs_max_val = IFS_MAX; + mac->ifs_step_size = IFS_STEP; + mac->ifs_ratio = IFS_RATIO; + + mac->in_ifs_mode = false; + E1000_WRITE_REG(hw, E1000_AIT, 0); +out: + return; +} + +/** + * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Update the Adaptive Interframe Spacing Throttle value based on the + * time between transmitted packets and time between collisions. + **/ +void e1000_update_adaptive_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_update_adaptive_generic"); + + if (!mac->adaptive_ifs) { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + goto out; + } + + if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { + if (mac->tx_packet_delta > MIN_NUM_XMITS) { + mac->in_ifs_mode = true; + if (mac->current_ifs_val < mac->ifs_max_val) { + if (!mac->current_ifs_val) + mac->current_ifs_val = mac->ifs_min_val; + else + mac->current_ifs_val += + mac->ifs_step_size; + E1000_WRITE_REG(hw, E1000_AIT, mac->current_ifs_val); + } + } + } else { + if (mac->in_ifs_mode && + (mac->tx_packet_delta <= MIN_NUM_XMITS)) { + mac->current_ifs_val = 0; + mac->in_ifs_mode = false; + E1000_WRITE_REG(hw, E1000_AIT, 0); + } + } +out: + return; +} + +/** + * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings + * @hw: pointer to the HW structure + * + * Verify that when not using auto-negotiation that MDI/MDIx is correctly + * set, which is forced to MDI mode only. + **/ +static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_validate_mdi_setting_generic"); + + if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { + DEBUGOUT("Invalid MDI setting detected\n"); + hw->phy.mdix = 1; + ret_val = -E1000_ERR_CONFIG; + goto out; + } + +out: + return ret_val; +} diff --git a/src/drivers/net/e1000/e1000_mac.h b/src/drivers/net/e1000/e1000_mac.h new file mode 100644 index 000000000..51acae088 --- /dev/null +++ b/src/drivers/net/e1000/e1000_mac.h @@ -0,0 +1,94 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +#ifndef _E1000_MAC_H_ +#define _E1000_MAC_H_ + +/* + * Functions that should not be called directly from drivers but can be used + * by other files in this 'shared code' + */ +void e1000_init_mac_ops_generic(struct e1000_hw *hw); +void e1000_null_mac_generic(struct e1000_hw *hw); +s32 e1000_null_ops_generic(struct e1000_hw *hw); +s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d); +bool e1000_null_mng_mode(struct e1000_hw *hw); +void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a); +void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b); +void e1000_null_mta_set(struct e1000_hw *hw, u32 a); +void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a); +s32 e1000_blink_led_generic(struct e1000_hw *hw); +s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw); +s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw); +s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw); +s32 e1000_cleanup_led_generic(struct e1000_hw *hw); +s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw); +s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw); +s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw); +s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw); +s32 e1000_force_mac_fc_generic(struct e1000_hw *hw); +s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw); +s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw); +s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw); +void e1000_set_lan_id_single_port(struct e1000_hw *hw); +void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw); +s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw); +s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw, + u16 *speed, u16 *duplex); +s32 e1000_id_led_init_generic(struct e1000_hw *hw); +s32 e1000_led_on_generic(struct e1000_hw *hw); +s32 e1000_led_off_generic(struct e1000_hw *hw); +void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count); +s32 e1000_set_default_fc_generic(struct e1000_hw *hw); +s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw); +s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw); +s32 e1000_setup_led_generic(struct e1000_hw *hw); +s32 e1000_setup_link_generic(struct e1000_hw *hw); + +u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr); + +void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw); +void e1000_clear_vfta_generic(struct e1000_hw *hw); +void e1000_config_collision_dist_generic(struct e1000_hw *hw); +void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count); +void e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value); +void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw); +void e1000_put_hw_semaphore_generic(struct e1000_hw *hw); +void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index); +s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw); +void e1000_reset_adaptive_generic(struct e1000_hw *hw); +void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop); +void e1000_update_adaptive_generic(struct e1000_hw *hw); +void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value); + +#endif diff --git a/src/drivers/net/e1000/e1000_main.c b/src/drivers/net/e1000/e1000_main.c new file mode 100644 index 000000000..3421ca1b0 --- /dev/null +++ b/src/drivers/net/e1000/e1000_main.c @@ -0,0 +1,912 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + Portions Copyright(c) 2010 Marty Connor <mdc@etherboot.org> + Portions Copyright(c) 2010 Entity Cyber, Inc. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_ONLY ); + +#include "e1000.h" + +/** + * e1000_irq_disable - Disable interrupt generation + * + * @adapter: board private structure + **/ +static void e1000_irq_disable ( struct e1000_adapter *adapter ) +{ + E1000_WRITE_REG ( &adapter->hw, E1000_IMC, ~0 ); + E1000_WRITE_FLUSH ( &adapter->hw ); +} + +/** + * e1000_irq_enable - Enable interrupt generation + * + * @adapter: board private structure + **/ +static void e1000_irq_enable ( struct e1000_adapter *adapter ) +{ + E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK); + E1000_WRITE_FLUSH(&adapter->hw); +} + +/** + * e1000_sw_init - Initialize general software structures (struct e1000_adapter) + * @adapter: board private structure to initialize + * + * e1000_sw_init initializes the Adapter private data structure. + * Fields are initialized based on PCI device information and + * OS network device settings (MTU size). + **/ +static int e1000_sw_init(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct pci_device *pdev = adapter->pdev; + + /* PCI config space info */ + + hw->vendor_id = pdev->vendor; + hw->device_id = pdev->device; + + pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &hw->subsystem_vendor_id); + pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_device_id); + + pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); + + pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); + + adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; + adapter->max_frame_size = MAXIMUM_ETHERNET_VLAN_SIZE + + ETH_HLEN + ETH_FCS_LEN; + adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; + + hw->fc.requested_mode = e1000_fc_none; + + /* Initialize the hardware-specific values */ + if (e1000_setup_init_funcs(hw, false)) { + DBG ("Hardware Initialization Failure\n"); + return -EIO; + } + + /* Explicitly disable IRQ since the NIC can be in any state. */ + e1000_irq_disable ( adapter ); + + return 0; +} + +int32_t e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) +{ + struct e1000_adapter *adapter = hw->back; + uint16_t cap_offset; + +#define PCI_CAP_ID_EXP 0x10 /* PCI Express */ + cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); + if (!cap_offset) + return -E1000_ERR_CONFIG; + + pci_read_config_word(adapter->pdev, cap_offset + reg, value); + + return 0; +} + +void e1000_pci_clear_mwi ( struct e1000_hw *hw ) +{ + struct e1000_adapter *adapter = hw->back; + + pci_write_config_word ( adapter->pdev, PCI_COMMAND, + hw->bus.pci_cmd_word & ~PCI_COMMAND_INVALIDATE ); +} + +void e1000_pci_set_mwi ( struct e1000_hw *hw ) +{ + struct e1000_adapter *adapter = hw->back; + + pci_write_config_word ( adapter->pdev, PCI_COMMAND, + hw->bus.pci_cmd_word ); +} + +void e1000_read_pci_cfg ( struct e1000_hw *hw, uint32_t reg, uint16_t *value ) +{ + struct e1000_adapter *adapter = hw->back; + + pci_read_config_word ( adapter->pdev, reg, value ); +} + +void e1000_write_pci_cfg ( struct e1000_hw *hw, uint32_t reg, uint16_t *value ) +{ + struct e1000_adapter *adapter = hw->back; + + pci_write_config_word ( adapter->pdev, reg, *value ); +} + +/** + * e1000_init_manageability - disable interception of ARP packets + * + * @v adapter e1000 private structure + **/ +static void e1000_init_manageability ( struct e1000_adapter *adapter ) +{ + if (adapter->en_mng_pt) { + u32 manc = E1000_READ_REG(&adapter->hw, E1000_MANC); + + /* disable hardware interception of ARP */ + manc &= ~(E1000_MANC_ARP_EN); + + E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); + } +} + +/** + * e1000_setup_tx_resources - allocate Tx resources (Descriptors) + * + * @v adapter e1000 private structure + * + * @ret rc Returns 0 on success, negative on failure + **/ +static int e1000_setup_tx_resources ( struct e1000_adapter *adapter ) +{ + DBG ( "e1000_setup_tx_resources\n" ); + + /* Allocate transmit descriptor ring memory. + It must not cross a 64K boundary because of hardware errata #23 + so we use malloc_dma() requesting a 128 byte block that is + 128 byte aligned. This should guarantee that the memory + allocated will not cross a 64K boundary, because 128 is an + even multiple of 65536 ( 65536 / 128 == 512 ), so all possible + allocations of 128 bytes on a 128 byte boundary will not + cross 64K bytes. + */ + + adapter->tx_base = + malloc_dma ( adapter->tx_ring_size, adapter->tx_ring_size ); + + if ( ! adapter->tx_base ) { + return -ENOMEM; + } + + memset ( adapter->tx_base, 0, adapter->tx_ring_size ); + + DBG ( "adapter->tx_base = %#08lx\n", virt_to_bus ( adapter->tx_base ) ); + + return 0; +} + +/** + * e1000_process_tx_packets - process transmitted packets + * + * @v netdev network interface device structure + **/ +static void e1000_process_tx_packets ( struct net_device *netdev ) +{ + struct e1000_adapter *adapter = netdev_priv ( netdev ); + uint32_t i; + uint32_t tx_status; + struct e1000_tx_desc *tx_curr_desc; + + /* Check status of transmitted packets + */ + while ( ( i = adapter->tx_head ) != adapter->tx_tail ) { + + tx_curr_desc = ( void * ) ( adapter->tx_base ) + + ( i * sizeof ( *adapter->tx_base ) ); + + tx_status = tx_curr_desc->upper.data; + + /* if the packet at tx_head is not owned by hardware it is for us */ + if ( ! ( tx_status & E1000_TXD_STAT_DD ) ) + break; + + DBG ( "Sent packet. tx_head: %d tx_tail: %d tx_status: %#08x\n", + adapter->tx_head, adapter->tx_tail, tx_status ); + + if ( tx_status & ( E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | + E1000_TXD_STAT_TU ) ) { + netdev_tx_complete_err ( netdev, adapter->tx_iobuf[i], -EINVAL ); + DBG ( "Error transmitting packet, tx_status: %#08x\n", + tx_status ); + } else { + netdev_tx_complete ( netdev, adapter->tx_iobuf[i] ); + DBG ( "Success transmitting packet, tx_status: %#08x\n", + tx_status ); + } + + /* Decrement count of used descriptors, clear this descriptor + */ + adapter->tx_fill_ctr--; + memset ( tx_curr_desc, 0, sizeof ( *tx_curr_desc ) ); + + adapter->tx_head = ( adapter->tx_head + 1 ) % NUM_TX_DESC; + } +} + +static void e1000_free_tx_resources ( struct e1000_adapter *adapter ) +{ + DBG ( "e1000_free_tx_resources\n" ); + + free_dma ( adapter->tx_base, adapter->tx_ring_size ); +} + +/** + * e1000_configure_tx - Configure 8254x Transmit Unit after Reset + * @adapter: board private structure + * + * Configure the Tx unit of the MAC after a reset. + **/ +static void e1000_configure_tx ( struct e1000_adapter *adapter ) +{ + struct e1000_hw *hw = &adapter->hw; + uint32_t tctl; + + DBG ( "e1000_configure_tx\n" ); + + E1000_WRITE_REG ( hw, E1000_TDBAH(0), 0 ); + E1000_WRITE_REG ( hw, E1000_TDBAL(0), virt_to_bus ( adapter->tx_base ) ); + E1000_WRITE_REG ( hw, E1000_TDLEN(0), adapter->tx_ring_size ); + + DBG ( "E1000_TDBAL(0): %#08x\n", E1000_READ_REG ( hw, E1000_TDBAL(0) ) ); + DBG ( "E1000_TDLEN(0): %d\n", E1000_READ_REG ( hw, E1000_TDLEN(0) ) ); + + /* Setup the HW Tx Head and Tail descriptor pointers */ + E1000_WRITE_REG ( hw, E1000_TDH(0), 0 ); + E1000_WRITE_REG ( hw, E1000_TDT(0), 0 ); + + adapter->tx_head = 0; + adapter->tx_tail = 0; + adapter->tx_fill_ctr = 0; + + /* Setup Transmit Descriptor Settings for eop descriptor */ + tctl = E1000_TCTL_PSP | E1000_TCTL_EN | + (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) | + (E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); + + e1000_config_collision_dist ( hw ); + + E1000_WRITE_REG ( hw, E1000_TCTL, tctl ); + E1000_WRITE_FLUSH ( hw ); +} + +static void e1000_free_rx_resources ( struct e1000_adapter *adapter ) +{ + int i; + + DBG ( "e1000_free_rx_resources\n" ); + + free_dma ( adapter->rx_base, adapter->rx_ring_size ); + + for ( i = 0; i < NUM_RX_DESC; i++ ) { + free_iob ( adapter->rx_iobuf[i] ); + } +} + +/** + * e1000_refill_rx_ring - allocate Rx io_buffers + * + * @v adapter e1000 private structure + * + * @ret rc Returns 0 on success, negative on failure + **/ +static int e1000_refill_rx_ring ( struct e1000_adapter *adapter ) +{ + int i, rx_curr; + int rc = 0; + struct e1000_rx_desc *rx_curr_desc; + struct e1000_hw *hw = &adapter->hw; + struct io_buffer *iob; + + DBG ("e1000_refill_rx_ring\n"); + + for ( i = 0; i < NUM_RX_DESC; i++ ) { + rx_curr = ( ( adapter->rx_curr + i ) % NUM_RX_DESC ); + rx_curr_desc = adapter->rx_base + rx_curr; + + if ( rx_curr_desc->status & E1000_RXD_STAT_DD ) + continue; + + if ( adapter->rx_iobuf[rx_curr] != NULL ) + continue; + + DBG2 ( "Refilling rx desc %d\n", rx_curr ); + + iob = alloc_iob ( MAXIMUM_ETHERNET_VLAN_SIZE ); + adapter->rx_iobuf[rx_curr] = iob; + + if ( ! iob ) { + DBG ( "alloc_iob failed\n" ); + rc = -ENOMEM; + break; + } else { + rx_curr_desc->buffer_addr = virt_to_bus ( iob->data ); + + E1000_WRITE_REG ( hw, E1000_RDT(0), rx_curr ); + } + } + return rc; +} + +/** + * e1000_setup_rx_resources - allocate Rx resources (Descriptors) + * + * @v adapter e1000 private structure + * + * @ret rc Returns 0 on success, negative on failure + **/ +static int e1000_setup_rx_resources ( struct e1000_adapter *adapter ) +{ + int i, rc = 0; + + DBG ( "e1000_setup_rx_resources\n" ); + + /* Allocate receive descriptor ring memory. + It must not cross a 64K boundary because of hardware errata + */ + + adapter->rx_base = + malloc_dma ( adapter->rx_ring_size, adapter->rx_ring_size ); + + if ( ! adapter->rx_base ) { + return -ENOMEM; + } + memset ( adapter->rx_base, 0, adapter->rx_ring_size ); + + for ( i = 0; i < NUM_RX_DESC; i++ ) { + /* let e1000_refill_rx_ring() io_buffer allocations */ + adapter->rx_iobuf[i] = NULL; + } + + /* allocate io_buffers */ + rc = e1000_refill_rx_ring ( adapter ); + if ( rc < 0 ) + e1000_free_rx_resources ( adapter ); + + return rc; +} + +/** + * e1000_configure_rx - Configure 8254x Receive Unit after Reset + * @adapter: board private structure + * + * Configure the Rx unit of the MAC after a reset. + **/ +static void e1000_configure_rx ( struct e1000_adapter *adapter ) +{ + struct e1000_hw *hw = &adapter->hw; + uint32_t rctl; + + DBG ( "e1000_configure_rx\n" ); + + /* disable receives while setting up the descriptors */ + rctl = E1000_READ_REG ( hw, E1000_RCTL ); + E1000_WRITE_REG ( hw, E1000_RCTL, rctl & ~E1000_RCTL_EN ); + E1000_WRITE_FLUSH ( hw ); + mdelay(10); + + adapter->rx_curr = 0; + + /* Setup the HW Rx Head and Tail Descriptor Pointers and + * the Base and Length of the Rx Descriptor Ring */ + + E1000_WRITE_REG ( hw, E1000_RDBAL(0), virt_to_bus ( adapter->rx_base ) ); + E1000_WRITE_REG ( hw, E1000_RDBAH(0), 0 ); + E1000_WRITE_REG ( hw, E1000_RDLEN(0), adapter->rx_ring_size ); + + E1000_WRITE_REG ( hw, E1000_RDH(0), 0 ); + E1000_WRITE_REG ( hw, E1000_RDT(0), NUM_RX_DESC - 1 ); + + /* Enable Receives */ + rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | + E1000_RCTL_MPE; + E1000_WRITE_REG ( hw, E1000_RCTL, rctl ); + E1000_WRITE_FLUSH ( hw ); + + DBG ( "E1000_RDBAL(0): %#08x\n", E1000_READ_REG ( hw, E1000_RDBAL(0) ) ); + DBG ( "E1000_RDLEN(0): %d\n", E1000_READ_REG ( hw, E1000_RDLEN(0) ) ); + DBG ( "E1000_RCTL: %#08x\n", E1000_READ_REG ( hw, E1000_RCTL ) ); +} + +/** + * e1000_process_rx_packets - process received packets + * + * @v netdev network interface device structure + **/ +static void e1000_process_rx_packets ( struct net_device *netdev ) +{ + struct e1000_adapter *adapter = netdev_priv ( netdev ); + uint32_t i; + uint32_t rx_status; + uint32_t rx_len; + uint32_t rx_err; + struct e1000_rx_desc *rx_curr_desc; + + /* Process received packets + */ + while ( 1 ) { + + i = adapter->rx_curr; + + rx_curr_desc = ( void * ) ( adapter->rx_base ) + + ( i * sizeof ( *adapter->rx_base ) ); + rx_status = rx_curr_desc->status; + + DBG2 ( "Before DD Check RX_status: %#08x\n", rx_status ); + + if ( ! ( rx_status & E1000_RXD_STAT_DD ) ) + break; + + if ( adapter->rx_iobuf[i] == NULL ) + break; + + DBG ( "E1000_RCTL = %#08x\n", E1000_READ_REG ( &adapter->hw, E1000_RCTL ) ); + + rx_len = rx_curr_desc->length; + + DBG ( "Received packet, rx_curr: %d rx_status: %#08x rx_len: %d\n", + i, rx_status, rx_len ); + + rx_err = rx_curr_desc->errors; + + iob_put ( adapter->rx_iobuf[i], rx_len ); + + if ( rx_err & E1000_RXD_ERR_FRAME_ERR_MASK ) { + + netdev_rx_err ( netdev, adapter->rx_iobuf[i], -EINVAL ); + DBG ( "e1000_poll: Corrupted packet received!" + " rx_err: %#08x\n", rx_err ); + } else { + /* Add this packet to the receive queue. */ + netdev_rx ( netdev, adapter->rx_iobuf[i] ); + } + adapter->rx_iobuf[i] = NULL; + + memset ( rx_curr_desc, 0, sizeof ( *rx_curr_desc ) ); + + adapter->rx_curr = ( adapter->rx_curr + 1 ) % NUM_RX_DESC; + } +} + +/** + * e1000_reset - Put e1000 NIC in known initial state + * + * @v adapter e1000 private structure + **/ +void e1000_reset ( struct e1000_adapter *adapter ) +{ + struct e1000_mac_info *mac = &adapter->hw.mac; + u32 pba = 0; + + DBG ( "e1000_reset\n" ); + + switch (mac->type) { + case e1000_82542: + case e1000_82543: + case e1000_82544: + case e1000_82540: + case e1000_82541: + case e1000_82541_rev_2: + pba = E1000_PBA_48K; + break; + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + pba = E1000_PBA_48K; + break; + case e1000_82547: + case e1000_82547_rev_2: + pba = E1000_PBA_30K; + break; + case e1000_undefined: + case e1000_num_macs: + break; + } + + E1000_WRITE_REG ( &adapter->hw, E1000_PBA, pba ); + + /* Allow time for pending master requests to run */ + e1000_reset_hw ( &adapter->hw ); + + if ( mac->type >= e1000_82544 ) + E1000_WRITE_REG ( &adapter->hw, E1000_WUC, 0 ); + + if ( e1000_init_hw ( &adapter->hw ) ) + DBG ( "Hardware Error\n" ); + + e1000_reset_adaptive ( &adapter->hw ); + e1000_get_phy_info ( &adapter->hw ); + + e1000_init_manageability ( adapter ); +} + +/** Functions that implement the gPXE driver API **/ + +/** + * e1000_close - Disables a network interface + * + * @v netdev network interface device structure + * + **/ +static void e1000_close ( struct net_device *netdev ) +{ + struct e1000_adapter *adapter = netdev_priv ( netdev ); + struct e1000_hw *hw = &adapter->hw; + uint32_t rctl; + uint32_t icr; + + DBG ( "e1000_close\n" ); + + /* Acknowledge interrupts */ + icr = E1000_READ_REG ( hw, E1000_ICR ); + + e1000_irq_disable ( adapter ); + + /* disable receives */ + rctl = E1000_READ_REG ( hw, E1000_RCTL ); + E1000_WRITE_REG ( hw, E1000_RCTL, rctl & ~E1000_RCTL_EN ); + E1000_WRITE_FLUSH ( hw ); + + e1000_reset_hw ( hw ); + + e1000_free_tx_resources ( adapter ); + e1000_free_rx_resources ( adapter ); +} + +/** + * e1000_transmit - Transmit a packet + * + * @v netdev Network device + * @v iobuf I/O buffer + * + * @ret rc Returns 0 on success, negative on failure + */ +static int e1000_transmit ( struct net_device *netdev, struct io_buffer *iobuf ) +{ + struct e1000_adapter *adapter = netdev_priv( netdev ); + struct e1000_hw *hw = &adapter->hw; + uint32_t tx_curr = adapter->tx_tail; + struct e1000_tx_desc *tx_curr_desc; + + DBG ("e1000_transmit\n"); + + if ( adapter->tx_fill_ctr == NUM_TX_DESC ) { + DBG ("TX overflow\n"); + return -ENOBUFS; + } + + /* Save pointer to iobuf we have been given to transmit, + netdev_tx_complete() will need it later + */ + adapter->tx_iobuf[tx_curr] = iobuf; + + tx_curr_desc = ( void * ) ( adapter->tx_base ) + + ( tx_curr * sizeof ( *adapter->tx_base ) ); + + DBG ( "tx_curr_desc = %#08lx\n", virt_to_bus ( tx_curr_desc ) ); + DBG ( "tx_curr_desc + 16 = %#08lx\n", virt_to_bus ( tx_curr_desc ) + 16 ); + DBG ( "iobuf->data = %#08lx\n", virt_to_bus ( iobuf->data ) ); + + /* Add the packet to TX ring + */ + tx_curr_desc->buffer_addr = + virt_to_bus ( iobuf->data ); + tx_curr_desc->lower.data = + E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP | + E1000_TXD_CMD_IFCS | iob_len ( iobuf ); + tx_curr_desc->upper.data = 0; + + DBG ( "TX fill: %d tx_curr: %d addr: %#08lx len: %zd\n", adapter->tx_fill_ctr, + tx_curr, virt_to_bus ( iobuf->data ), iob_len ( iobuf ) ); + + /* Point to next free descriptor */ + adapter->tx_tail = ( adapter->tx_tail + 1 ) % NUM_TX_DESC; + adapter->tx_fill_ctr++; + + /* Write new tail to NIC, making packet available for transmit + */ + wmb(); + E1000_WRITE_REG ( hw, E1000_TDT(0), adapter->tx_tail ); + + return 0; +} + +/** + * e1000_poll - Poll for received packets + * + * @v netdev Network device + */ +static void e1000_poll ( struct net_device *netdev ) +{ + struct e1000_adapter *adapter = netdev_priv( netdev ); + struct e1000_hw *hw = &adapter->hw; + + uint32_t icr; + + DBGP ( "e1000_poll\n" ); + + /* Acknowledge interrupts */ + icr = E1000_READ_REG ( hw, E1000_ICR ); + if ( ! icr ) + return; + + DBG ( "e1000_poll: intr_status = %#08x\n", icr ); + + e1000_process_tx_packets ( netdev ); + + e1000_process_rx_packets ( netdev ); + + e1000_refill_rx_ring(adapter); +} + +/** + * e1000_irq - enable or Disable interrupts + * + * @v adapter e1000 adapter + * @v action requested interrupt action + **/ +static void e1000_irq ( struct net_device *netdev, int enable ) +{ + struct e1000_adapter *adapter = netdev_priv ( netdev ); + + DBG ( "e1000_irq\n" ); + + if ( enable ) { + e1000_irq_enable ( adapter ); + } else { + e1000_irq_disable ( adapter ); + } +} + +static struct net_device_operations e1000_operations; + +/** + * e1000_probe - Initial configuration of e1000 NIC + * + * @v pci PCI device + * @v id PCI IDs + * + * @ret rc Return status code + **/ +int e1000_probe ( struct pci_device *pdev, + const struct pci_device_id *id __unused ) +{ + int i, err; + struct net_device *netdev; + struct e1000_adapter *adapter; + unsigned long mmio_start, mmio_len; + + DBG ( "e1000_probe\n" ); + + err = -ENOMEM; + + /* Allocate net device ( also allocates memory for netdev->priv + and makes netdev-priv point to it ) */ + netdev = alloc_etherdev ( sizeof ( struct e1000_adapter ) ); + if ( ! netdev ) + goto err_alloc_etherdev; + + /* Associate e1000-specific network operations operations with + * generic network device layer */ + netdev_init ( netdev, &e1000_operations ); + + /* Associate this network device with given PCI device */ + pci_set_drvdata ( pdev, netdev ); + netdev->dev = &pdev->dev; + + /* Initialize driver private storage */ + adapter = netdev_priv ( netdev ); + memset ( adapter, 0, ( sizeof ( *adapter ) ) ); + + adapter->pdev = pdev; + + adapter->ioaddr = pdev->ioaddr; + adapter->hw.io_base = pdev->ioaddr; + + adapter->irqno = pdev->irq; + adapter->netdev = netdev; + adapter->hw.back = adapter; + + adapter->tx_ring_size = sizeof ( *adapter->tx_base ) * NUM_TX_DESC; + adapter->rx_ring_size = sizeof ( *adapter->rx_base ) * NUM_RX_DESC; + + mmio_start = pci_bar_start ( pdev, PCI_BASE_ADDRESS_0 ); + mmio_len = pci_bar_size ( pdev, PCI_BASE_ADDRESS_0 ); + + DBG ( "mmio_start: %#08lx\n", mmio_start ); + DBG ( "mmio_len: %#08lx\n", mmio_len ); + + /* Fix up PCI device */ + adjust_pci_device ( pdev ); + + err = -EIO; + + adapter->hw.hw_addr = ioremap ( mmio_start, mmio_len ); + DBG ( "adapter->hw.hw_addr: %p\n", adapter->hw.hw_addr ); + + if ( ! adapter->hw.hw_addr ) + goto err_ioremap; + + /* Hardware features, flags and workarounds */ + if (adapter->hw.mac.type >= e1000_82540) { + adapter->flags |= E1000_FLAG_HAS_SMBUS; + adapter->flags |= E1000_FLAG_HAS_INTR_MODERATION; + } + + if (adapter->hw.mac.type == e1000_82543) + adapter->flags |= E1000_FLAG_BAD_TX_CARRIER_STATS_FD; + + adapter->hw.phy.autoneg_wait_to_complete = true; + adapter->hw.mac.adaptive_ifs = true; + + /* setup the private structure */ + if ( ( err = e1000_sw_init ( adapter ) ) ) + goto err_sw_init; + + if ((err = e1000_init_mac_params(&adapter->hw))) + goto err_hw_init; + + if ((err = e1000_init_nvm_params(&adapter->hw))) + goto err_hw_init; + + /* Force auto-negotiated speed and duplex */ + adapter->hw.mac.autoneg = 1; + + if ((err = e1000_init_phy_params(&adapter->hw))) + goto err_hw_init; + + DBG ( "adapter->hw.mac.type: %#08x\n", adapter->hw.mac.type ); + + /* before reading the EEPROM, reset the controller to + * put the device in a known good starting state + */ + err = e1000_reset_hw ( &adapter->hw ); + if ( err < 0 ) { + DBG ( "Hardware Initialization Failed\n" ); + goto err_reset; + } + /* make sure the NVM is good */ + + if ( e1000_validate_nvm_checksum(&adapter->hw) < 0 ) { + DBG ( "The NVM Checksum Is Not Valid\n" ); + err = -EIO; + goto err_eeprom; + } + + /* copy the MAC address out of the EEPROM */ + if ( e1000_read_mac_addr ( &adapter->hw ) ) + DBG ( "EEPROM Read Error\n" ); + + memcpy ( netdev->hw_addr, adapter->hw.mac.perm_addr, ETH_ALEN ); + + /* reset the hardware with the new settings */ + e1000_reset ( adapter ); + + /* Mark as link up; we don't yet handle link state */ + netdev_link_up ( netdev ); + + if ( ( err = register_netdev ( netdev ) ) != 0) + goto err_register; + + for (i = 0; i < 6; i++) + DBG ("%02x%s", netdev->ll_addr[i], i == 5 ? "\n" : ":"); + + DBG ( "e1000_probe succeeded!\n" ); + + /* No errors, return success */ + return 0; + +/* Error return paths */ +err_reset: +err_register: +err_hw_init: +err_eeprom: + if (!e1000_check_reset_block(&adapter->hw)) + e1000_phy_hw_reset(&adapter->hw); + if (adapter->hw.flash_address) + iounmap(adapter->hw.flash_address); +err_sw_init: + iounmap ( adapter->hw.hw_addr ); +err_ioremap: + netdev_put ( netdev ); +err_alloc_etherdev: + return err; +} + +/** + * e1000_remove - Device Removal Routine + * + * @v pdev PCI device information struct + * + **/ +void e1000_remove ( struct pci_device *pdev ) +{ + struct net_device *netdev = pci_get_drvdata ( pdev ); + struct e1000_adapter *adapter = netdev_priv ( netdev ); + + DBG ( "e1000_remove\n" ); + + if ( adapter->hw.flash_address ) + iounmap ( adapter->hw.flash_address ); + if ( adapter->hw.hw_addr ) + iounmap ( adapter->hw.hw_addr ); + + unregister_netdev ( netdev ); + e1000_reset_hw ( &adapter->hw ); + netdev_nullify ( netdev ); + netdev_put ( netdev ); +} + +/** + * e1000_open - Called when a network interface is made active + * + * @v netdev network interface device structure + * @ret rc Return status code, 0 on success, negative value on failure + * + **/ +static int e1000_open ( struct net_device *netdev ) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + int err; + + DBG ( "e1000_open\n" ); + + /* allocate transmit descriptors */ + err = e1000_setup_tx_resources ( adapter ); + if ( err ) { + DBG ( "Error setting up TX resources!\n" ); + goto err_setup_tx; + } + + /* allocate receive descriptors */ + err = e1000_setup_rx_resources ( adapter ); + if ( err ) { + DBG ( "Error setting up RX resources!\n" ); + goto err_setup_rx; + } + + e1000_configure_tx ( adapter ); + + e1000_configure_rx ( adapter ); + + DBG ( "E1000_RXDCTL(0): %#08x\n", E1000_READ_REG ( &adapter->hw, E1000_RXDCTL(0) ) ); + + return 0; + +err_setup_rx: + e1000_free_tx_resources ( adapter ); +err_setup_tx: + e1000_reset ( adapter ); + + return err; +} + +/** e1000 net device operations */ +static struct net_device_operations e1000_operations = { + .open = e1000_open, + .close = e1000_close, + .transmit = e1000_transmit, + .poll = e1000_poll, + .irq = e1000_irq, +}; diff --git a/src/drivers/net/e1000/e1000_manage.c b/src/drivers/net/e1000/e1000_manage.c new file mode 100644 index 000000000..3362942e1 --- /dev/null +++ b/src/drivers/net/e1000/e1000_manage.c @@ -0,0 +1,389 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +#if 0 + +#include "e1000_api.h" + +static u8 e1000_calculate_checksum(u8 *buffer, u32 length); + +/** + * e1000_calculate_checksum - Calculate checksum for buffer + * @buffer: pointer to EEPROM + * @length: size of EEPROM to calculate a checksum for + * + * Calculates the checksum for some buffer on a specified length. The + * checksum calculated is returned. + **/ +static u8 e1000_calculate_checksum(u8 *buffer, u32 length) +{ + u32 i; + u8 sum = 0; + + DEBUGFUNC("e1000_calculate_checksum"); + + if (!buffer) + return 0; + + for (i = 0; i < length; i++) + sum += buffer[i]; + + return (u8) (0 - sum); +} + +/** + * e1000_mng_enable_host_if_generic - Checks host interface is enabled + * @hw: pointer to the HW structure + * + * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND + * + * This function checks whether the HOST IF is enabled for command operation + * and also checks whether the previous command is completed. It busy waits + * in case of previous command is not completed. + **/ +s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw) +{ + u32 hicr; + s32 ret_val = E1000_SUCCESS; + u8 i; + + DEBUGFUNC("e1000_mng_enable_host_if_generic"); + + /* Check that the host interface is enabled. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + if ((hicr & E1000_HICR_EN) == 0) { + DEBUGOUT("E1000_HOST_EN bit disabled.\n"); + ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND; + goto out; + } + /* check the previous command is completed */ + for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_C)) + break; + msec_delay_irq(1); + } + + if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { + DEBUGOUT("Previous command timeout failed .\n"); + ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_check_mng_mode_generic - Generic check management mode + * @hw: pointer to the HW structure + * + * Reads the firmware semaphore register and returns true (>0) if + * manageability is enabled, else false (0). + **/ +bool e1000_check_mng_mode_generic(struct e1000_hw *hw) +{ + u32 fwsm; + + DEBUGFUNC("e1000_check_mng_mode_generic"); + + fwsm = E1000_READ_REG(hw, E1000_FWSM); + + return (fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); +} + +/** + * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on TX + * @hw: pointer to the HW structure + * + * Enables packet filtering on transmit packets if manageability is enabled + * and host interface is enabled. + **/ +bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw) +{ + struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; + u32 *buffer = (u32 *)&hw->mng_cookie; + u32 offset; + s32 ret_val, hdr_csum, csum; + u8 i, len; + bool tx_filter = true; + + DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic"); + + /* No manageability, no filtering */ + if (!hw->mac.ops.check_mng_mode(hw)) { + tx_filter = false; + goto out; + } + + /* + * If we can't read from the host interface for whatever + * reason, disable filtering. + */ + ret_val = hw->mac.ops.mng_enable_host_if(hw); + if (ret_val != E1000_SUCCESS) { + tx_filter = false; + goto out; + } + + /* Read in the header. Length and offset are in dwords. */ + len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; + offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; + for (i = 0; i < len; i++) { + *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, + E1000_HOST_IF, + offset + i); + } + hdr_csum = hdr->checksum; + hdr->checksum = 0; + csum = e1000_calculate_checksum((u8 *)hdr, + E1000_MNG_DHCP_COOKIE_LENGTH); + /* + * If either the checksums or signature don't match, then + * the cookie area isn't considered valid, in which case we + * take the safe route of assuming Tx filtering is enabled. + */ + if (hdr_csum != csum) + goto out; + if (hdr->signature != E1000_IAMT_SIGNATURE) + goto out; + + /* Cookie area is valid, make the final check for filtering. */ + if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) + tx_filter = false; + +out: + hw->mac.tx_pkt_filtering = tx_filter; + return tx_filter; +} + +/** + * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface + * @length: size of the buffer + * + * Writes the DHCP information to the host interface. + **/ +s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer, + u16 length) +{ + struct e1000_host_mng_command_header hdr; + s32 ret_val; + u32 hicr; + + DEBUGFUNC("e1000_mng_write_dhcp_info_generic"); + + hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; + hdr.command_length = length; + hdr.reserved1 = 0; + hdr.reserved2 = 0; + hdr.checksum = 0; + + /* Enable the host interface */ + ret_val = hw->mac.ops.mng_enable_host_if(hw); + if (ret_val) + goto out; + + /* Populate the host interface with the contents of "buffer". */ + ret_val = hw->mac.ops.mng_host_if_write(hw, buffer, length, + sizeof(hdr), &(hdr.checksum)); + if (ret_val) + goto out; + + /* Write the manageability command header */ + ret_val = hw->mac.ops.mng_write_cmd_header(hw, &hdr); + if (ret_val) + goto out; + + /* Tell the ARC a new command is pending. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); + +out: + return ret_val; +} + +/** + * e1000_mng_write_cmd_header_generic - Writes manageability command header + * @hw: pointer to the HW structure + * @hdr: pointer to the host interface command header + * + * Writes the command header after does the checksum calculation. + **/ +s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr) +{ + u16 i, length = sizeof(struct e1000_host_mng_command_header); + + DEBUGFUNC("e1000_mng_write_cmd_header_generic"); + + /* Write the whole command header structure with new checksum. */ + + hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); + + length >>= 2; + /* Write the relevant command block into the ram area. */ + for (i = 0; i < length; i++) { + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i, + *((u32 *) hdr + i)); + E1000_WRITE_FLUSH(hw); + } + + return E1000_SUCCESS; +} + +/** + * e1000_mng_host_if_write_generic - Write to the manageability host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface buffer + * @length: size of the buffer + * @offset: location in the buffer to write to + * @sum: sum of the data (not checksum) + * + * This function writes the buffer content at the offset given on the host if. + * It also does alignment considerations to do the writes in most efficient + * way. Also fills up the sum of the buffer in *buffer parameter. + **/ +s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, + u16 length, u16 offset, u8 *sum) +{ + u8 *tmp; + u8 *bufptr = buffer; + u32 data = 0; + s32 ret_val = E1000_SUCCESS; + u16 remaining, i, j, prev_bytes; + + DEBUGFUNC("e1000_mng_host_if_write_generic"); + + /* sum = only sum of the data and it is not checksum */ + + if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { + ret_val = -E1000_ERR_PARAM; + goto out; + } + + tmp = (u8 *)&data; + prev_bytes = offset & 0x3; + offset >>= 2; + + if (prev_bytes) { + data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset); + for (j = prev_bytes; j < sizeof(u32); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data); + length -= j - prev_bytes; + offset++; + } + + remaining = length & 0x3; + length -= remaining; + + /* Calculate length in DWORDs */ + length >>= 2; + + /* + * The device driver writes the relevant command block into the + * ram area. + */ + for (i = 0; i < length; i++) { + for (j = 0; j < sizeof(u32); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, + data); + } + if (remaining) { + for (j = 0; j < sizeof(u32); j++) { + if (j < remaining) + *(tmp + j) = *bufptr++; + else + *(tmp + j) = 0; + + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, data); + } + +out: + return ret_val; +} + +/** + * e1000_enable_mng_pass_thru - Enable processing of ARP's + * @hw: pointer to the HW structure + * + * Verifies the hardware needs to allow ARPs to be processed by the host. + **/ +bool e1000_enable_mng_pass_thru(struct e1000_hw *hw) +{ + u32 manc; + u32 fwsm, factps; + bool ret_val = false; + + DEBUGFUNC("e1000_enable_mng_pass_thru"); + + if (!hw->mac.asf_firmware_present) + goto out; + + manc = E1000_READ_REG(hw, E1000_MANC); + + if (!(manc & E1000_MANC_RCV_TCO_EN) || + !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) + goto out; + + if (hw->mac.arc_subsystem_valid) { + fwsm = E1000_READ_REG(hw, E1000_FWSM); + factps = E1000_READ_REG(hw, E1000_FACTPS); + + if (!(factps & E1000_FACTPS_MNGCG) && + ((fwsm & E1000_FWSM_MODE_MASK) == + (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { + ret_val = true; + goto out; + } + } else { + if ((manc & E1000_MANC_SMBUS_EN) && + !(manc & E1000_MANC_ASF_EN)) { + ret_val = true; + goto out; + } + } + +out: + return ret_val; +} + +#endif diff --git a/src/drivers/net/e1000/e1000_manage.h b/src/drivers/net/e1000/e1000_manage.h new file mode 100644 index 000000000..14467aa6c --- /dev/null +++ b/src/drivers/net/e1000/e1000_manage.h @@ -0,0 +1,84 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +#ifndef _E1000_MANAGE_H_ +#define _E1000_MANAGE_H_ + +bool e1000_check_mng_mode_generic(struct e1000_hw *hw); +bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw); +s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw); +s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, + u16 length, u16 offset, u8 *sum); +s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr); +s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, + u8 *buffer, u16 length); +bool e1000_enable_mng_pass_thru(struct e1000_hw *hw); + +enum e1000_mng_mode { + e1000_mng_mode_none = 0, + e1000_mng_mode_asf, + e1000_mng_mode_pt, + e1000_mng_mode_ipmi, + e1000_mng_mode_host_if_only +}; + +#define E1000_FACTPS_MNGCG 0x20000000 + +#define E1000_FWSM_MODE_MASK 0xE +#define E1000_FWSM_MODE_SHIFT 1 + +#define E1000_MNG_IAMT_MODE 0x3 +#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 +#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 +#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 +#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 +#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1 +#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 + +#define E1000_VFTA_ENTRY_SHIFT 5 +#define E1000_VFTA_ENTRY_MASK 0x7F +#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F + +#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */ +#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */ +#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI command limit */ + +#define E1000_HICR_EN 0x01 /* Enable bit - RO */ +/* Driver sets this bit when done to put command in RAM */ +#define E1000_HICR_C 0x02 +#define E1000_HICR_SV 0x04 /* Status Validity */ +#define E1000_HICR_FW_RESET_ENABLE 0x40 +#define E1000_HICR_FW_RESET 0x80 + +/* Intel(R) Active Management Technology signature */ +#define E1000_IAMT_SIGNATURE 0x544D4149 + +#endif diff --git a/src/drivers/net/e1000/e1000_nvm.c b/src/drivers/net/e1000/e1000_nvm.c new file mode 100644 index 000000000..488252f42 --- /dev/null +++ b/src/drivers/net/e1000/e1000_nvm.c @@ -0,0 +1,923 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +#include "e1000_api.h" + +static void e1000_reload_nvm_generic(struct e1000_hw *hw); + +/** + * e1000_init_nvm_ops_generic - Initialize NVM function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_nvm_ops_generic(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + DEBUGFUNC("e1000_init_nvm_ops_generic"); + + /* Initialize function pointers */ + nvm->ops.init_params = e1000_null_ops_generic; + nvm->ops.acquire = e1000_null_ops_generic; + nvm->ops.read = e1000_null_read_nvm; + nvm->ops.release = e1000_null_nvm_generic; + nvm->ops.reload = e1000_reload_nvm_generic; + nvm->ops.update = e1000_null_ops_generic; + nvm->ops.valid_led_default = e1000_null_led_default; + nvm->ops.validate = e1000_null_ops_generic; + nvm->ops.write = e1000_null_write_nvm; +} + +/** + * e1000_null_nvm_read - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_read_nvm(struct e1000_hw *hw __unused, u16 a __unused, + u16 b __unused, u16 *c __unused) +{ + DEBUGFUNC("e1000_null_read_nvm"); + return E1000_SUCCESS; +} + +/** + * e1000_null_nvm_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_nvm_generic(struct e1000_hw *hw __unused) +{ + DEBUGFUNC("e1000_null_nvm_generic"); + return; +} + +/** + * e1000_null_led_default - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_led_default(struct e1000_hw *hw __unused, + u16 *data __unused) +{ + DEBUGFUNC("e1000_null_led_default"); + return E1000_SUCCESS; +} + +/** + * e1000_null_write_nvm - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_write_nvm(struct e1000_hw *hw __unused, u16 a __unused, + u16 b __unused, u16 *c __unused) +{ + DEBUGFUNC("e1000_null_write_nvm"); + return E1000_SUCCESS; +} + +/** + * e1000_raise_eec_clk - Raise EEPROM clock + * @hw: pointer to the HW structure + * @eecd: pointer to the EEPROM + * + * Enable/Raise the EEPROM clock bit. + **/ +static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ + *eecd = *eecd | E1000_EECD_SK; + E1000_WRITE_REG(hw, E1000_EECD, *eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->nvm.delay_usec); +} + +/** + * e1000_lower_eec_clk - Lower EEPROM clock + * @hw: pointer to the HW structure + * @eecd: pointer to the EEPROM + * + * Clear/Lower the EEPROM clock bit. + **/ +static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ + *eecd = *eecd & ~E1000_EECD_SK; + E1000_WRITE_REG(hw, E1000_EECD, *eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->nvm.delay_usec); +} + +/** + * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM + * @hw: pointer to the HW structure + * @data: data to send to the EEPROM + * @count: number of bits to shift out + * + * We need to shift 'count' bits out to the EEPROM. So, the value in the + * "data" parameter will be shifted out to the EEPROM one bit at a time. + * In order to do this, "data" must be broken down into bits. + **/ +static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u32 mask; + + DEBUGFUNC("e1000_shift_out_eec_bits"); + + mask = 0x01 << (count - 1); + if (nvm->type == e1000_nvm_eeprom_microwire) + eecd &= ~E1000_EECD_DO; + else + if (nvm->type == e1000_nvm_eeprom_spi) + eecd |= E1000_EECD_DO; + + do { + eecd &= ~E1000_EECD_DI; + + if (data & mask) + eecd |= E1000_EECD_DI; + + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + + usec_delay(nvm->delay_usec); + + e1000_raise_eec_clk(hw, &eecd); + e1000_lower_eec_clk(hw, &eecd); + + mask >>= 1; + } while (mask); + + eecd &= ~E1000_EECD_DI; + E1000_WRITE_REG(hw, E1000_EECD, eecd); +} + +/** + * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM + * @hw: pointer to the HW structure + * @count: number of bits to shift in + * + * In order to read a register from the EEPROM, we need to shift 'count' bits + * in from the EEPROM. Bits are "shifted in" by raising the clock input to + * the EEPROM (setting the SK bit), and then reading the value of the data out + * "DO" bit. During this "shifting in" process the data in "DI" bit should + * always be clear. + **/ +static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) +{ + u32 eecd; + u32 i; + u16 data; + + DEBUGFUNC("e1000_shift_in_eec_bits"); + + eecd = E1000_READ_REG(hw, E1000_EECD); + + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + data = 0; + + for (i = 0; i < count; i++) { + data <<= 1; + e1000_raise_eec_clk(hw, &eecd); + + eecd = E1000_READ_REG(hw, E1000_EECD); + + eecd &= ~E1000_EECD_DI; + if (eecd & E1000_EECD_DO) + data |= 1; + + e1000_lower_eec_clk(hw, &eecd); + } + + return data; +} + +/** + * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion + * @hw: pointer to the HW structure + * @ee_reg: EEPROM flag for polling + * + * Polls the EEPROM status bit for either read or write completion based + * upon the value of 'ee_reg'. + **/ +s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) +{ + u32 attempts = 100000; + u32 i, reg = 0; + s32 ret_val = -E1000_ERR_NVM; + + DEBUGFUNC("e1000_poll_eerd_eewr_done"); + + for (i = 0; i < attempts; i++) { + if (ee_reg == E1000_NVM_POLL_READ) + reg = E1000_READ_REG(hw, E1000_EERD); + else + reg = E1000_READ_REG(hw, E1000_EEWR); + + if (reg & E1000_NVM_RW_REG_DONE) { + ret_val = E1000_SUCCESS; + break; + } + + usec_delay(5); + } + + return ret_val; +} + +/** + * e1000_acquire_nvm_generic - Generic request for access to EEPROM + * @hw: pointer to the HW structure + * + * Set the EEPROM access request bit and wait for EEPROM access grant bit. + * Return successful if access grant bit set, else clear the request for + * EEPROM access and return -E1000_ERR_NVM (-1). + **/ +s32 e1000_acquire_nvm_generic(struct e1000_hw *hw) +{ + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + s32 timeout = E1000_NVM_GRANT_ATTEMPTS; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_acquire_nvm_generic"); + + E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ); + eecd = E1000_READ_REG(hw, E1000_EECD); + + while (timeout) { + if (eecd & E1000_EECD_GNT) + break; + usec_delay(5); + eecd = E1000_READ_REG(hw, E1000_EECD); + timeout--; + } + + if (!timeout) { + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + DEBUGOUT("Could not acquire NVM grant\n"); + ret_val = -E1000_ERR_NVM; + } + + return ret_val; +} + +/** + * e1000_standby_nvm - Return EEPROM to standby state + * @hw: pointer to the HW structure + * + * Return the EEPROM to a standby state. + **/ +static void e1000_standby_nvm(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + + DEBUGFUNC("e1000_standby_nvm"); + + if (nvm->type == e1000_nvm_eeprom_microwire) { + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + + e1000_raise_eec_clk(hw, &eecd); + + /* Select EEPROM */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + + e1000_lower_eec_clk(hw, &eecd); + } else + if (nvm->type == e1000_nvm_eeprom_spi) { + /* Toggle CS to flush commands */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + eecd &= ~E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + } +} + +/** + * e1000_stop_nvm - Terminate EEPROM command + * @hw: pointer to the HW structure + * + * Terminates the current command by inverting the EEPROM's chip select pin. + **/ +void e1000_stop_nvm(struct e1000_hw *hw) +{ + u32 eecd; + + DEBUGFUNC("e1000_stop_nvm"); + + eecd = E1000_READ_REG(hw, E1000_EECD); + if (hw->nvm.type == e1000_nvm_eeprom_spi) { + /* Pull CS high */ + eecd |= E1000_EECD_CS; + e1000_lower_eec_clk(hw, &eecd); + } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) { + /* CS on Microwire is active-high */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + e1000_raise_eec_clk(hw, &eecd); + e1000_lower_eec_clk(hw, &eecd); + } +} + +/** + * e1000_release_nvm_generic - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit. + **/ +void e1000_release_nvm_generic(struct e1000_hw *hw) +{ + u32 eecd; + + DEBUGFUNC("e1000_release_nvm_generic"); + + e1000_stop_nvm(hw); + + eecd = E1000_READ_REG(hw, E1000_EECD); + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, E1000_EECD, eecd); +} + +/** + * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write + * @hw: pointer to the HW structure + * + * Setups the EEPROM for reading and writing. + **/ +static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + s32 ret_val = E1000_SUCCESS; + u16 timeout = 0; + u8 spi_stat_reg; + + DEBUGFUNC("e1000_ready_nvm_eeprom"); + + if (nvm->type == e1000_nvm_eeprom_microwire) { + /* Clear SK and DI */ + eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + /* Set CS */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + } else + if (nvm->type == e1000_nvm_eeprom_spi) { + /* Clear SK and CS */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + usec_delay(1); + timeout = NVM_MAX_RETRY_SPI; + + /* + * Read "Status Register" repeatedly until the LSB is cleared. + * The EEPROM will signal that the command has been completed + * by clearing bit 0 of the internal status register. If it's + * not cleared within 'timeout', then error out. + */ + while (timeout) { + e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, + hw->nvm.opcode_bits); + spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); + if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) + break; + + usec_delay(5); + e1000_standby_nvm(hw); + timeout--; + } + + if (!timeout) { + DEBUGOUT("SPI NVM Status error\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + } + +out: + return ret_val; +} + +/** + * e1000_read_nvm_spi - Read EEPROM's using SPI + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM. + **/ +s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i = 0; + s32 ret_val; + u16 word_in; + u8 read_opcode = NVM_READ_OPCODE_SPI; + + DEBUGFUNC("e1000_read_nvm_spi"); + + /* + * A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + e1000_standby_nvm(hw); + + if ((nvm->address_bits == 8) && (offset >= 128)) + read_opcode |= NVM_A8_OPCODE_SPI; + + /* Send the READ command (opcode + addr) */ + e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); + + /* + * Read the data. SPI NVMs increment the address with each byte + * read and will roll over if reading beyond the end. This allows + * us to read the whole NVM from any offset + */ + for (i = 0; i < words; i++) { + word_in = e1000_shift_in_eec_bits(hw, 16); + data[i] = (word_in >> 8) | (word_in << 8); + } + +release: + nvm->ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_read_nvm_microwire - Reads EEPROM's using microwire + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM. + **/ +s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i = 0; + s32 ret_val; + u8 read_opcode = NVM_READ_OPCODE_MICROWIRE; + + DEBUGFUNC("e1000_read_nvm_microwire"); + + /* + * A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + for (i = 0; i < words; i++) { + /* Send the READ command (opcode + addr) */ + e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)(offset + i), + nvm->address_bits); + + /* + * Read the data. For microwire, each word requires the + * overhead of setup and tear-down. + */ + data[i] = e1000_shift_in_eec_bits(hw, 16); + e1000_standby_nvm(hw); + } + +release: + nvm->ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_read_nvm_eerd - Reads EEPROM using EERD register + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM using the EERD register. + **/ +s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i, eerd = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_nvm_eerd"); + + /* + * A check for invalid values: offset too large, too many words, + * too many words for the offset, and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + for (i = 0; i < words; i++) { + eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + + E1000_NVM_RW_REG_START; + + E1000_WRITE_REG(hw, E1000_EERD, eerd); + ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); + if (ret_val) + break; + + data[i] = (E1000_READ_REG(hw, E1000_EERD) >> + E1000_NVM_RW_REG_DATA); + } + +out: + return ret_val; +} + +/** + * e1000_write_nvm_spi - Write to EEPROM using SPI + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * Writes data to EEPROM at offset using SPI interface. + * + * If e1000_update_nvm_checksum is not called after this function , the + * EEPROM will most likely contain an invalid checksum. + **/ +s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val; + u16 widx = 0; + + DEBUGFUNC("e1000_write_nvm_spi"); + + /* + * A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + goto out; + + while (widx < words) { + u8 write_opcode = NVM_WRITE_OPCODE_SPI; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + e1000_standby_nvm(hw); + + /* Send the WRITE ENABLE command (8 bit opcode) */ + e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, + nvm->opcode_bits); + + e1000_standby_nvm(hw); + + /* + * Some SPI eeproms use the 8th address bit embedded in the + * opcode + */ + if ((nvm->address_bits == 8) && (offset >= 128)) + write_opcode |= NVM_A8_OPCODE_SPI; + + /* Send the Write command (8-bit opcode + addr) */ + e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), + nvm->address_bits); + + /* Loop to allow for up to whole page write of eeprom */ + while (widx < words) { + u16 word_out = data[widx]; + word_out = (word_out >> 8) | (word_out << 8); + e1000_shift_out_eec_bits(hw, word_out, 16); + widx++; + + if ((((offset + widx) * 2) % nvm->page_size) == 0) { + e1000_standby_nvm(hw); + break; + } + } + } + + msec_delay(10); +release: + nvm->ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_nvm_microwire - Writes EEPROM using microwire + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * Writes data to EEPROM at offset using microwire interface. + * + * If e1000_update_nvm_checksum is not called after this function , the + * EEPROM will most likely contain an invalid checksum. + **/ +s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val; + u32 eecd; + u16 words_written = 0; + u16 widx = 0; + + DEBUGFUNC("e1000_write_nvm_microwire"); + + /* + * A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE, + (u16)(nvm->opcode_bits + 2)); + + e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); + + e1000_standby_nvm(hw); + + while (words_written < words) { + e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE, + nvm->opcode_bits); + + e1000_shift_out_eec_bits(hw, (u16)(offset + words_written), + nvm->address_bits); + + e1000_shift_out_eec_bits(hw, data[words_written], 16); + + e1000_standby_nvm(hw); + + for (widx = 0; widx < 200; widx++) { + eecd = E1000_READ_REG(hw, E1000_EECD); + if (eecd & E1000_EECD_DO) + break; + usec_delay(50); + } + + if (widx == 200) { + DEBUGOUT("NVM Write did not complete\n"); + ret_val = -E1000_ERR_NVM; + goto release; + } + + e1000_standby_nvm(hw); + + words_written++; + } + + e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE, + (u16)(nvm->opcode_bits + 2)); + + e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); + +release: + nvm->ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_read_pba_num_generic - Read device part number + * @hw: pointer to the HW structure + * @pba_num: pointer to device part number + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in pba_num. + **/ +s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num) +{ + s32 ret_val; + u16 nvm_data; + + DEBUGFUNC("e1000_read_pba_num_generic"); + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + *pba_num = (u32)(nvm_data << 16); + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + *pba_num |= nvm_data; + +out: + return ret_val; +} + +/** + * e1000_read_mac_addr_generic - Read device MAC address + * @hw: pointer to the HW structure + * + * Reads the device MAC address from the EEPROM and stores the value. + * Since devices with two ports use the same EEPROM, we increment the + * last bit in the MAC address for the second port. + **/ +s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) +{ + u32 rar_high; + u32 rar_low; + u16 i; + + rar_high = E1000_READ_REG(hw, E1000_RAH(0)); + rar_low = E1000_READ_REG(hw, E1000_RAL(0)); + + for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) + hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); + + for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) + hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); + + for (i = 0; i < ETH_ADDR_LEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i]; + + return E1000_SUCCESS; +} + +/** + * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_validate_nvm_checksum_generic"); + + for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + checksum += nvm_data; + } + + if (checksum != (u16) NVM_SUM) { + DEBUGOUT("NVM Checksum Invalid\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_update_nvm_checksum_generic - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. + **/ +s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_update_nvm_checksum"); + + for (i = 0; i < NVM_CHECKSUM_REG; i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error while updating checksum.\n"); + goto out; + } + checksum += nvm_data; + } + checksum = (u16) NVM_SUM - checksum; + ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); + if (ret_val) + DEBUGOUT("NVM Write Error while updating checksum.\n"); + +out: + return ret_val; +} + +/** + * e1000_reload_nvm_generic - Reloads EEPROM + * @hw: pointer to the HW structure + * + * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the + * extended control register. + **/ +static void e1000_reload_nvm_generic(struct e1000_hw *hw) +{ + u32 ctrl_ext; + + DEBUGFUNC("e1000_reload_nvm_generic"); + + usec_delay(10); + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); +} diff --git a/src/drivers/net/e1000/e1000_nvm.h b/src/drivers/net/e1000/e1000_nvm.h new file mode 100644 index 000000000..1585417cf --- /dev/null +++ b/src/drivers/net/e1000/e1000_nvm.h @@ -0,0 +1,63 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +#ifndef _E1000_NVM_H_ +#define _E1000_NVM_H_ + +void e1000_init_nvm_ops_generic(struct e1000_hw *hw); +s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); +void e1000_null_nvm_generic(struct e1000_hw *hw); +s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data); +s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); +s32 e1000_acquire_nvm_generic(struct e1000_hw *hw); + +s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg); +s32 e1000_read_mac_addr_generic(struct e1000_hw *hw); +s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num); +s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data); +s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw); +s32 e1000_write_nvm_eewr(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw); +void e1000_stop_nvm(struct e1000_hw *hw); +void e1000_release_nvm_generic(struct e1000_hw *hw); + +#define E1000_STM_OPCODE 0xDB00 + +#endif diff --git a/src/drivers/net/e1000/e1000_osdep.h b/src/drivers/net/e1000/e1000_osdep.h index cdbf8d163..5cd8e3910 100644 --- a/src/drivers/net/e1000/e1000_osdep.h +++ b/src/drivers/net/e1000/e1000_osdep.h @@ -1,7 +1,7 @@ /******************************************************************************* Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2006 Intel Corporation. + Copyright(c) 1999 - 2008 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -26,118 +26,93 @@ *******************************************************************************/ -FILE_LICENCE ( GPL2_ONLY ); +FILE_LICENCE ( GPL2_OR_LATER ); -/* glue for the OS independent part of e1000 +/* glue for the OS-dependent part of e1000 * includes register access macros */ #ifndef _E1000_OSDEP_H_ #define _E1000_OSDEP_H_ -#include <stdint.h> -#include <stdlib.h> -#include <stdio.h> -#include <gpxe/io.h> -#include <errno.h> -#include <unistd.h> -#include <byteswap.h> -#include <gpxe/pci.h> -#include <gpxe/if_ether.h> -#include <gpxe/ethernet.h> -#include <gpxe/iobuf.h> -#include <gpxe/netdevice.h> +#define u8 unsigned char +#define bool boolean_t +#define dma_addr_t unsigned long +#define __le16 uint16_t +#define __le32 uint32_t +#define __le64 uint64_t +#define __iomem + +#define ETH_FCS_LEN 4 + +typedef int spinlock_t; typedef enum { -#undef FALSE - FALSE = 0, -#undef TRUE - TRUE = 1 + false = 0, + true = 1 } boolean_t; -/* Debugging #defines */ +#define usec_delay(x) udelay(x) +#define msec_delay(x) mdelay(x) +#define msec_delay_irq(x) mdelay(x) + +#define PCI_COMMAND_REGISTER PCI_COMMAND +#define CMD_MEM_WRT_INVALIDATE PCI_COMMAND_INVALIDATE +#define ETH_ADDR_LEN ETH_ALEN -#if 1 #define DEBUGFUNC(F) DBG(F "\n") -#else -#define DEBUGFUNC(F) -#endif -#if 1 #define DEBUGOUT(S) DBG(S) #define DEBUGOUT1(S, A...) DBG(S, A) -#else -#define DEBUGOUT(S) -#define DEBUGOUT1(S, A...) -#endif #define DEBUGOUT2 DEBUGOUT1 -#define DEBUGOUT3 DEBUGOUT1 -#define DEBUGOUT7 DEBUGOUT1 +#define DEBUGOUT3 DEBUGOUT2 +#define DEBUGOUT7 DEBUGOUT3 + +#define E1000_REGISTER(a, reg) (((a)->mac.type >= e1000_82543) \ + ? reg \ + : e1000_translate_register_82542(reg)) #define E1000_WRITE_REG(a, reg, value) \ - writel((value), ((a)->hw_addr + \ - (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg))) + writel((value), ((a)->hw_addr + E1000_REGISTER(a, reg))) -#define E1000_READ_REG(a, reg) \ - readl((a)->hw_addr + \ - (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg)) +#define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_REGISTER(a, reg))) #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \ - writel((value), ((a)->hw_addr + \ - (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ - ((offset) << 2))) + writel((value), ((a)->hw_addr + E1000_REGISTER(a, reg) + ((offset) << 2))) -#define E1000_READ_REG_ARRAY(a, reg, offset) \ - readl((a)->hw_addr + \ - (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ - ((offset) << 2)) +#define E1000_READ_REG_ARRAY(a, reg, offset) ( \ + readl((a)->hw_addr + E1000_REGISTER(a, reg) + ((offset) << 2))) #define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY #define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY -#define E1000_WRITE_REG_ARRAY_WORD(a, reg, offset, value) \ - writew((value), ((a)->hw_addr + \ - (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ - ((offset) << 1))) +#define E1000_WRITE_REG_ARRAY_WORD(a, reg, offset, value) ( \ + writew((value), ((a)->hw_addr + E1000_REGISTER(a, reg) + ((offset) << 1)))) -#define E1000_READ_REG_ARRAY_WORD(a, reg, offset) \ - readw((a)->hw_addr + \ - (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ - ((offset) << 1)) +#define E1000_READ_REG_ARRAY_WORD(a, reg, offset) ( \ + readw((a)->hw_addr + E1000_REGISTER(a, reg) + ((offset) << 1))) -#define E1000_WRITE_REG_ARRAY_BYTE(a, reg, offset, value) \ - writeb((value), ((a)->hw_addr + \ - (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ - (offset))) +#define E1000_WRITE_REG_ARRAY_BYTE(a, reg, offset, value) ( \ + writeb((value), ((a)->hw_addr + E1000_REGISTER(a, reg) + (offset)))) -#define E1000_READ_REG_ARRAY_BYTE(a, reg, offset) \ - readb((a)->hw_addr + \ - (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ - (offset)) +#define E1000_READ_REG_ARRAY_BYTE(a, reg, offset) ( \ + readb((a)->hw_addr + E1000_REGISTER(a, reg) + (offset))) -#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) +#define E1000_WRITE_REG_IO(a, reg, offset) do { \ + outl(reg, ((a)->io_base)); \ + outl(offset, ((a)->io_base + 4)); } while(0) -#define E1000_WRITE_ICH_FLASH_REG(a, reg, value) \ - writel((value), ((a)->flash_address + reg)) +#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS) -#define E1000_READ_ICH_FLASH_REG(a, reg) \ - readl((a)->flash_address + reg) +#define E1000_WRITE_FLASH_REG(a, reg, value) ( \ + writel((value), ((a)->flash_address + reg))) -#define E1000_WRITE_ICH_FLASH_REG16(a, reg, value) \ - writew((value), ((a)->flash_address + reg)) +#define E1000_WRITE_FLASH_REG16(a, reg, value) ( \ + writew((value), ((a)->flash_address + reg))) -#define E1000_READ_ICH_FLASH_REG16(a, reg) \ - readw((a)->flash_address + reg) +#define E1000_READ_FLASH_REG(a, reg) (readl((a)->flash_address + reg)) -#define msleep(n) mdelay(n) +#define E1000_READ_FLASH_REG16(a, reg) (readw((a)->flash_address + reg)) #endif /* _E1000_OSDEP_H_ */ - -/* - * Local variables: - * c-basic-offset: 8 - * c-indent-level: 8 - * tab-width: 8 - * End: - */ diff --git a/src/drivers/net/e1000/e1000_phy.c b/src/drivers/net/e1000/e1000_phy.c new file mode 100644 index 000000000..b3cad4809 --- /dev/null +++ b/src/drivers/net/e1000/e1000_phy.c @@ -0,0 +1,2308 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +#include "e1000_api.h" + +#if 0 +/* Cable length tables */ +static const u16 e1000_m88_cable_length_table[] = + { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; +#define M88E1000_CABLE_LENGTH_TABLE_SIZE \ + (sizeof(e1000_m88_cable_length_table) / \ + sizeof(e1000_m88_cable_length_table[0])) + +static const u16 e1000_igp_2_cable_length_table[] = + { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, + 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, + 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, + 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, + 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, + 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, + 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, + 104, 109, 114, 118, 121, 124}; +#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ + (sizeof(e1000_igp_2_cable_length_table) / \ + sizeof(e1000_igp_2_cable_length_table[0])) +#endif + +/** + * e1000_init_phy_ops_generic - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_phy_ops_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + DEBUGFUNC("e1000_init_phy_ops_generic"); + + /* Initialize function pointers */ + phy->ops.init_params = e1000_null_ops_generic; + phy->ops.acquire = e1000_null_ops_generic; + phy->ops.check_polarity = e1000_null_ops_generic; + phy->ops.check_reset_block = e1000_null_ops_generic; + phy->ops.commit = e1000_null_ops_generic; +#if 0 + phy->ops.force_speed_duplex = e1000_null_ops_generic; +#endif + phy->ops.get_cfg_done = e1000_null_ops_generic; +#if 0 + phy->ops.get_cable_length = e1000_null_ops_generic; +#endif + phy->ops.get_info = e1000_null_ops_generic; + phy->ops.read_reg = e1000_null_read_reg; + phy->ops.release = e1000_null_phy_generic; + phy->ops.reset = e1000_null_ops_generic; + phy->ops.set_d0_lplu_state = e1000_null_lplu_state; + phy->ops.set_d3_lplu_state = e1000_null_lplu_state; + phy->ops.write_reg = e1000_null_write_reg; + phy->ops.power_up = e1000_null_phy_generic; + phy->ops.power_down = e1000_null_phy_generic; +} + +/** + * e1000_null_read_reg - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_read_reg(struct e1000_hw *hw __unused, u32 offset __unused, + u16 *data __unused) +{ + DEBUGFUNC("e1000_null_read_reg"); + return E1000_SUCCESS; +} + +/** + * e1000_null_phy_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_phy_generic(struct e1000_hw *hw __unused) +{ + DEBUGFUNC("e1000_null_phy_generic"); + return; +} + +/** + * e1000_null_lplu_state - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_lplu_state(struct e1000_hw *hw __unused, bool active __unused) +{ + DEBUGFUNC("e1000_null_lplu_state"); + return E1000_SUCCESS; +} + +/** + * e1000_null_write_reg - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_write_reg(struct e1000_hw *hw __unused, u32 offset __unused, + u16 data __unused) +{ + DEBUGFUNC("e1000_null_write_reg"); + return E1000_SUCCESS; +} + +/** + * e1000_check_reset_block_generic - Check if PHY reset is blocked + * @hw: pointer to the HW structure + * + * Read the PHY management control register and check whether a PHY reset + * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise + * return E1000_BLK_PHY_RESET (12). + **/ +s32 e1000_check_reset_block_generic(struct e1000_hw *hw) +{ + u32 manc; + + DEBUGFUNC("e1000_check_reset_block"); + + manc = E1000_READ_REG(hw, E1000_MANC); + + return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? + E1000_BLK_PHY_RESET : E1000_SUCCESS; +} + +/** + * e1000_get_phy_id - Retrieve the PHY ID and revision + * @hw: pointer to the HW structure + * + * Reads the PHY registers and stores the PHY ID and possibly the PHY + * revision in the hardware structure. + **/ +s32 e1000_get_phy_id(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_id; + + DEBUGFUNC("e1000_get_phy_id"); + + if (!(phy->ops.read_reg)) + goto out; + + ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); + if (ret_val) + goto out; + + phy->id = (u32)(phy_id << 16); + usec_delay(20); + ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); + if (ret_val) + goto out; + + phy->id |= (u32)(phy_id & PHY_REVISION_MASK); + phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); + +out: + return ret_val; +} + +/** + * e1000_phy_reset_dsp_generic - Reset PHY DSP + * @hw: pointer to the HW structure + * + * Reset the digital signal processor. + **/ +s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_phy_reset_dsp_generic"); + + if (!(hw->phy.ops.write_reg)) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); + +out: + return ret_val; +} + +/** + * e1000_read_phy_reg_mdic - Read MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the MDI control register in the PHY at offset and stores the + * information read to data. + **/ +s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, mdic = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_phy_reg_mdic"); + + /* + * Set up Op-code, Phy Address, and register offset in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = ((offset << E1000_MDIC_REG_SHIFT) | + (phy->addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_READ)); + + E1000_WRITE_REG(hw, E1000_MDIC, mdic); + + /* + * Poll the ready bit to see if the MDI read completed + * Increasing the time out as testing showed failures with + * the lower time out + */ + for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { + usec_delay(50); + mdic = E1000_READ_REG(hw, E1000_MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Read did not complete\n"); + ret_val = -E1000_ERR_PHY; + goto out; + } + if (mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + ret_val = -E1000_ERR_PHY; + goto out; + } + *data = (u16) mdic; + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_mdic - Write MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write to register at offset + * + * Writes data to MDI control register in the PHY at offset. + **/ +s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, mdic = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_phy_reg_mdic"); + + /* + * Set up Op-code, Phy Address, and register offset in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = (((u32)data) | + (offset << E1000_MDIC_REG_SHIFT) | + (phy->addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_WRITE)); + + E1000_WRITE_REG(hw, E1000_MDIC, mdic); + + /* + * Poll the ready bit to see if the MDI read completed + * Increasing the time out as testing showed failures with + * the lower time out + */ + for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { + usec_delay(50); + mdic = E1000_READ_REG(hw, E1000_MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Write did not complete\n"); + ret_val = -E1000_ERR_PHY; + goto out; + } + if (mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + ret_val = -E1000_ERR_PHY; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_read_phy_reg_m88 - Read m88 PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_phy_reg_m88"); + + if (!(hw->phy.ops.acquire)) + goto out; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_m88 - Write m88 PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_phy_reg_m88"); + + if (!(hw->phy.ops.acquire)) + goto out; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_read_phy_reg_igp - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_phy_reg_igp"); + + if (!(hw->phy.ops.acquire)) + goto out; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + ret_val = e1000_write_phy_reg_mdic(hw, + IGP01E1000_PHY_PAGE_SELECT, + (u16)offset); + if (ret_val) { + hw->phy.ops.release(hw); + goto out; + } + } + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_igp - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_phy_reg_igp"); + + if (!(hw->phy.ops.acquire)) + goto out; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + ret_val = e1000_write_phy_reg_mdic(hw, + IGP01E1000_PHY_PAGE_SELECT, + (u16)offset); + if (ret_val) { + hw->phy.ops.release(hw); + goto out; + } + } + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_read_kmrn_reg_generic - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary. Then reads the PHY register at offset + * using the kumeran interface. The information retrieved is stored in data. + * Release any acquired semaphores before exiting. + **/ +s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data) +{ + u32 kmrnctrlsta; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_kmrn_reg_generic"); + + if (!(hw->phy.ops.acquire)) + goto out; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; + E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + + usec_delay(2); + + kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); + *data = (u16)kmrnctrlsta; + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_kmrn_reg_generic - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary. Then write the data to PHY register + * at the offset using the kumeran interface. Release any acquired semaphores + * before exiting. + **/ +s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data) +{ + u32 kmrnctrlsta; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_kmrn_reg_generic"); + + if (!(hw->phy.ops.acquire)) + goto out; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | data; + E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + + usec_delay(2); + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock + * and downshift values are set also. + **/ +s32 e1000_copper_link_setup_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_setup_m88"); + + if (phy->reset_disable) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* Enable CRS on TX. This must be set for half-duplex operation. */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + goto out; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + + /* + * Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (phy->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + + /* + * Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if (phy->disable_polarity_correction == 1) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + goto out; + + if (phy->revision < E1000_REVISION_4) { + /* + * Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + goto out; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if ((phy->revision == E1000_REVISION_2) && + (phy->id == M88E1111_I_PHY_ID)) { + /* 82573L PHY - set the downshift counter to 5x. */ + phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; + phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; + } else { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); + } + ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + goto out; + } + + /* Commit the changes. */ + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_copper_link_setup_igp - Setup igp PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for + * igp PHY's. + **/ +s32 e1000_copper_link_setup_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_copper_link_setup_igp"); + + if (phy->reset_disable) { + ret_val = E1000_SUCCESS; + goto out; + } + + ret_val = hw->phy.ops.reset(hw); + if (ret_val) { + DEBUGOUT("Error resetting the PHY.\n"); + goto out; + } + + /* + * Wait 100ms for MAC to configure PHY from NVM settings, to avoid + * timeout issues when LFS is enabled. + */ + msec_delay(100); + + /* + * The NVM settings will configure LPLU in D3 for + * non-IGP1 PHYs. + */ + if (phy->type == e1000_phy_igp) { + /* disable lplu d3 during driver init */ + ret_val = hw->phy.ops.set_d3_lplu_state(hw, false); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D3\n"); + goto out; + } + } + + /* disable lplu d0 during driver init */ + if (hw->phy.ops.set_d0_lplu_state) { + ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D0\n"); + goto out; + } + } + /* Configure mdi-mdix settings */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCR_AUTO_MDIX; + + switch (phy->mdix) { + case 1: + data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 2: + data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 0: + default: + data |= IGP01E1000_PSCR_AUTO_MDIX; + break; + } + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); + if (ret_val) + goto out; + + /* set auto-master slave resolution settings */ + if (hw->mac.autoneg) { + /* + * when autonegotiation advertisement is only 1000Mbps then we + * should disable SmartSpeed and enable Auto MasterSlave + * resolution as hardware default. + */ + if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { + /* Disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + + /* Set auto Master/Slave resolution process */ + ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); + if (ret_val) + goto out; + + data &= ~CR_1000T_MS_ENABLE; + ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); + if (ret_val) + goto out; + } + + ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); + if (ret_val) + goto out; + + /* load defaults for future use */ + phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? + ((data & CR_1000T_MS_VALUE) ? + e1000_ms_force_master : + e1000_ms_force_slave) : + e1000_ms_auto; + + switch (phy->ms_type) { + case e1000_ms_force_master: + data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); + break; + case e1000_ms_force_slave: + data |= CR_1000T_MS_ENABLE; + data &= ~(CR_1000T_MS_VALUE); + break; + case e1000_ms_auto: + data &= ~CR_1000T_MS_ENABLE; + default: + break; + } + ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link + * @hw: pointer to the HW structure + * + * Performs initial bounds checking on autoneg advertisement parameter, then + * configure to advertise the full capability. Setup the PHY to autoneg + * and restart the negotiation process between the link partner. If + * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. + **/ +s32 e1000_copper_link_autoneg(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_ctrl; + + DEBUGFUNC("e1000_copper_link_autoneg"); + + /* + * Perform some bounds checking on the autoneg advertisement + * parameter. + */ + phy->autoneg_advertised &= phy->autoneg_mask; + + /* + * If autoneg_advertised is zero, we assume it was not defaulted + * by the calling code so we set to advertise full capability. + */ + if (phy->autoneg_advertised == 0) + phy->autoneg_advertised = phy->autoneg_mask; + + DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); + ret_val = e1000_phy_setup_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error Setting up Auto-Negotiation\n"); + goto out; + } + DEBUGOUT("Restarting Auto-Neg\n"); + + /* + * Restart auto-negotiation by setting the Auto Neg Enable bit and + * the Auto Neg Restart bit in the PHY control register. + */ + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); + if (ret_val) + goto out; + + phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); + if (ret_val) + goto out; + + /* + * Does the user want to wait for Auto-Neg to complete here, or + * check at a later time (for example, callback routine). + */ + if (phy->autoneg_wait_to_complete) { + ret_val = hw->mac.ops.wait_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error while waiting for " + "autoneg to complete\n"); + goto out; + } + } + + hw->mac.get_link_status = true; + +out: + return ret_val; +} + +/** + * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation + * @hw: pointer to the HW structure + * + * Reads the MII auto-neg advertisement register and/or the 1000T control + * register and if the PHY is already setup for auto-negotiation, then + * return successful. Otherwise, setup advertisement and flow control to + * the appropriate values for the wanted auto-negotiation. + **/ +s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 mii_autoneg_adv_reg; + u16 mii_1000t_ctrl_reg = 0; + + DEBUGFUNC("e1000_phy_setup_autoneg"); + + phy->autoneg_advertised &= phy->autoneg_mask; + + /* Read the MII Auto-Neg Advertisement Register (Address 4). */ + ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); + if (ret_val) + goto out; + + if (phy->autoneg_mask & ADVERTISE_1000_FULL) { + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, + &mii_1000t_ctrl_reg); + if (ret_val) + goto out; + } + + /* + * Need to parse both autoneg_advertised and fc and set up + * the appropriate PHY registers. First we will parse for + * autoneg_advertised software override. Since we can advertise + * a plethora of combinations, we need to check each bit + * individually. + */ + + /* + * First we clear all the 10/100 mb speed bits in the Auto-Neg + * Advertisement Register (Address 4) and the 1000 mb speed bits in + * the 1000Base-T Control Register (Address 9). + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | + NWAY_AR_100TX_HD_CAPS | + NWAY_AR_10T_FD_CAPS | + NWAY_AR_10T_HD_CAPS); + mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); + + DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised); + + /* Do we want to advertise 10 Mb Half Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_10_HALF) { + DEBUGOUT("Advertise 10mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; + } + + /* Do we want to advertise 10 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_10_FULL) { + DEBUGOUT("Advertise 10mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; + } + + /* Do we want to advertise 100 Mb Half Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_100_HALF) { + DEBUGOUT("Advertise 100mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; + } + + /* Do we want to advertise 100 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_100_FULL) { + DEBUGOUT("Advertise 100mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; + } + + /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ + if (phy->autoneg_advertised & ADVERTISE_1000_HALF) + DEBUGOUT("Advertise 1000mb Half duplex request denied!\n"); + + /* Do we want to advertise 1000 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { + DEBUGOUT("Advertise 1000mb Full duplex\n"); + mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + } + + /* + * Check for a software override of the flow control settings, and + * setup the PHY advertisement registers accordingly. If + * auto-negotiation is enabled, then software will have to set the + * "PAUSE" bits to the correct value in the Auto-Negotiation + * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- + * negotiation. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * but we do not support receiving pause frames). + * 3: Both Rx and Tx flow control (symmetric) are enabled. + * other: No software override. The flow control configuration + * in the EEPROM is used. + */ + switch (hw->fc.current_mode) { + case e1000_fc_none: + /* + * Flow control (Rx & Tx) is completely disabled by a + * software over-ride. + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_rx_pause: + /* + * Rx Flow control is enabled, and Tx Flow control is + * disabled, by a software over-ride. + * + * Since there really isn't a way to advertise that we are + * capable of Rx Pause ONLY, we will advertise that we + * support both symmetric and asymmetric Rx PAUSE. Later + * (in e1000_config_fc_after_link_up) we will disable the + * hw's ability to send PAUSE frames. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_tx_pause: + /* + * Tx Flow control is enabled, and Rx Flow control is + * disabled, by a software over-ride. + */ + mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; + mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; + break; + case e1000_fc_full: + /* + * Flow control (both Rx and Tx) is enabled by a software + * over-ride. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); + if (ret_val) + goto out; + + DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + + if (phy->autoneg_mask & ADVERTISE_1000_FULL) { + ret_val = phy->ops.write_reg(hw, + PHY_1000T_CTRL, + mii_1000t_ctrl_reg); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_setup_copper_link_generic - Configure copper link settings + * @hw: pointer to the HW structure + * + * Calls the appropriate function to configure the link for auto-neg or forced + * speed and duplex. Then we check for link, once link is established calls + * to configure collision distance and flow control are called. If link is + * not established, we return -E1000_ERR_PHY (-2). + **/ +s32 e1000_setup_copper_link_generic(struct e1000_hw *hw) +{ + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_setup_copper_link_generic"); + + if (hw->mac.autoneg) { + /* + * Setup autoneg and flow control advertisement and perform + * autonegotiation. + */ + ret_val = e1000_copper_link_autoneg(hw); + if (ret_val) + goto out; + } else { +#if 0 + /* + * PHY will be set to 10H, 10F, 100H or 100F + * depending on user settings. + */ + DEBUGOUT("Forcing Speed and Duplex\n"); + ret_val = hw->phy.ops.force_speed_duplex(hw); + if (ret_val) { + DEBUGOUT("Error Forcing Speed and Duplex\n"); + goto out; + } +#endif + } + + /* + * Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + ret_val = e1000_phy_has_link_generic(hw, + COPPER_LINK_UP_LIMIT, + 10, + &link); + if (ret_val) + goto out; + + if (link) { + DEBUGOUT("Valid link established!!!\n"); + e1000_config_collision_dist_generic(hw); + ret_val = e1000_config_fc_after_link_up_generic(hw); + } else { + DEBUGOUT("Unable to establish link!!!\n"); + } + +out: + return ret_val; +} + +#if 0 +/** + * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. Clears the + * auto-crossover to force MDI manually. Waits for link and returns + * successful if link up is successful, else -E1000_ERR_PHY (-2). + **/ +s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_igp"); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + goto out; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + goto out; + + /* + * Clear Auto-Crossover to force MDI manually. IGP requires MDI + * forced whenever speed and duplex are forced. + */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if (ret_val) + goto out; + + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if (ret_val) + goto out; + + DEBUGOUT1("IGP PSCR: %X\n", phy_data); + + usec_delay(1); + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, + PHY_FORCE_LIMIT, + 100000, + &link); + if (ret_val) + goto out; + + if (!link) + DEBUGOUT("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, + PHY_FORCE_LIMIT, + 100000, + &link); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. Clears the + * auto-crossover to force MDI manually. Resets the PHY to commit the + * changes. If time expires while waiting for link up, we reset the DSP. + * After reset, TX_CLK and CRS on Tx must be set. Return successful upon + * successful completion, else return corresponding error code. + **/ +s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_m88"); + + /* + * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI + * forced whenever speed and duplex are forced. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + goto out; + + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + goto out; + + DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + goto out; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + goto out; + + /* Reset the phy to commit changes. */ + ret_val = hw->phy.ops.commit(hw); + if (ret_val) + goto out; + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + goto out; + + if (!link) { + /* + * We didn't get link. + * Reset the DSP and cross our fingers. + */ + ret_val = phy->ops.write_reg(hw, + M88E1000_PHY_PAGE_SELECT, + 0x001d); + if (ret_val) + goto out; + ret_val = e1000_phy_reset_dsp_generic(hw); + if (ret_val) + goto out; + } + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + goto out; + } + + ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + goto out; + + /* + * Resetting the phy means we need to re-force TX_CLK in the + * Extended PHY Specific Control Register to 25MHz clock from + * the reset value of 2.5MHz. + */ + phy_data |= M88E1000_EPSCR_TX_CLK_25; + ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + goto out; + + /* + * In addition, we must re-enable CRS on Tx for both half and full + * duplex. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + goto out; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + +out: + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex + * @hw: pointer to the HW structure + * + * Forces the speed and duplex settings of the PHY. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_ife"); + + if (phy->type != e1000_phy_ife) { + ret_val = e1000_phy_force_speed_duplex_igp(hw); + goto out; + } + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data); + if (ret_val) + goto out; + + e1000_phy_force_speed_duplex_setup(hw, &data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data); + if (ret_val) + goto out; + + /* Disable MDI-X support for 10/100 */ + ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); + if (ret_val) + goto out; + + data &= ~IFE_PMC_AUTO_MDIX; + data &= ~IFE_PMC_FORCE_MDIX; + + ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data); + if (ret_val) + goto out; + + DEBUGOUT1("IFE PMC: %X\n", data); + + usec_delay(1); + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, + PHY_FORCE_LIMIT, + 100000, + &link); + if (ret_val) + goto out; + + if (!link) + DEBUGOUT("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, + PHY_FORCE_LIMIT, + 100000, + &link); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex + * @hw: pointer to the HW structure + * @phy_ctrl: pointer to current value of PHY_CONTROL + * + * Forces speed and duplex on the PHY by doing the following: disable flow + * control, force speed/duplex on the MAC, disable auto speed detection, + * disable auto-negotiation, configure duplex, configure speed, configure + * the collision distance, write configuration to CTRL register. The + * caller must write to the PHY_CONTROL register for these settings to + * take affect. + **/ +void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 ctrl; + + DEBUGFUNC("e1000_phy_force_speed_duplex_setup"); + + /* Turn off flow control when forcing speed/duplex */ + hw->fc.current_mode = e1000_fc_none; + + /* Force speed/duplex on the mac */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~E1000_CTRL_SPD_SEL; + + /* Disable Auto Speed Detection */ + ctrl &= ~E1000_CTRL_ASDE; + + /* Disable autoneg on the phy */ + *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; + + /* Forcing Full or Half Duplex? */ + if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { + ctrl &= ~E1000_CTRL_FD; + *phy_ctrl &= ~MII_CR_FULL_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } else { + ctrl |= E1000_CTRL_FD; + *phy_ctrl |= MII_CR_FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } + + /* Forcing 10mb or 100mb? */ + if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { + ctrl |= E1000_CTRL_SPD_100; + *phy_ctrl |= MII_CR_SPEED_100; + *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); + DEBUGOUT("Forcing 100mb\n"); + } else { + ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + *phy_ctrl |= MII_CR_SPEED_10; + *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); + DEBUGOUT("Forcing 10mb\n"); + } + + e1000_config_collision_dist_generic(hw); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); +} +#endif + +/** + * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is true, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_generic"); + + if (!(hw->phy.ops.read_reg)) + goto out; + + ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); + if (ret_val) + goto out; + + if (!active) { + data &= ~IGP02E1000_PM_D3_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + goto out; + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= IGP02E1000_PM_D3_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + goto out; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + } + +out: + return ret_val; +} + +/** + * e1000_check_downshift_generic - Checks whether a downshift in speed occurred + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns 1 + * + * A downshift is detected by querying the PHY link health. + **/ +s32 e1000_check_downshift_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, offset, mask; + + DEBUGFUNC("e1000_check_downshift_generic"); + + switch (phy->type) { + case e1000_phy_m88: + case e1000_phy_gg82563: + offset = M88E1000_PHY_SPEC_STATUS; + mask = M88E1000_PSSR_DOWNSHIFT; + break; + case e1000_phy_igp_2: + case e1000_phy_igp: + case e1000_phy_igp_3: + offset = IGP01E1000_PHY_LINK_HEALTH; + mask = IGP01E1000_PLHR_SS_DOWNGRADE; + break; + default: + /* speed downshift not supported */ + phy->speed_downgraded = false; + ret_val = E1000_SUCCESS; + goto out; + } + + ret_val = phy->ops.read_reg(hw, offset, &phy_data); + + if (!ret_val) + phy->speed_downgraded = (phy_data & mask) ? true : false; + +out: + return ret_val; +} + +/** + * e1000_check_polarity_m88 - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY specific status register. + **/ +s32 e1000_check_polarity_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_check_polarity_m88"); + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); + + if (!ret_val) + phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + + return ret_val; +} + +/** + * e1000_check_polarity_igp - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY port status register, and the + * current speed (since there is no polarity at 100Mbps). + **/ +s32 e1000_check_polarity_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data, offset, mask; + + DEBUGFUNC("e1000_check_polarity_igp"); + + /* + * Polarity is determined based on the speed of + * our connection. + */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); + if (ret_val) + goto out; + + if ((data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + offset = IGP01E1000_PHY_PCS_INIT_REG; + mask = IGP01E1000_PHY_POLARITY_MASK; + } else { + /* + * This really only applies to 10Mbps since + * there is no polarity for 100Mbps (always 0). + */ + offset = IGP01E1000_PHY_PORT_STATUS; + mask = IGP01E1000_PSSR_POLARITY_REVERSED; + } + + ret_val = phy->ops.read_reg(hw, offset, &data); + + if (!ret_val) + phy->cable_polarity = (data & mask) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + +out: + return ret_val; +} + +/** + * e1000_check_polarity_ife - Check cable polarity for IFE PHY + * @hw: pointer to the HW structure + * + * Polarity is determined on the polarity reversal feature being enabled. + **/ +s32 e1000_check_polarity_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, offset, mask; + + DEBUGFUNC("e1000_check_polarity_ife"); + + /* + * Polarity is determined based on the reversal feature being enabled. + */ + if (phy->polarity_correction) { + offset = IFE_PHY_EXTENDED_STATUS_CONTROL; + mask = IFE_PESC_POLARITY_REVERSED; + } else { + offset = IFE_PHY_SPECIAL_CONTROL; + mask = IFE_PSC_FORCE_POLARITY; + } + + ret_val = phy->ops.read_reg(hw, offset, &phy_data); + + if (!ret_val) + phy->cable_polarity = (phy_data & mask) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + + return ret_val; +} + +/** + * e1000_wait_autoneg_generic - Wait for auto-neg completion + * @hw: pointer to the HW structure + * + * Waits for auto-negotiation to complete or for the auto-negotiation time + * limit to expire, which ever happens first. + **/ +s32 e1000_wait_autoneg_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 i, phy_status; + + DEBUGFUNC("e1000_wait_autoneg_generic"); + + if (!(hw->phy.ops.read_reg)) + return E1000_SUCCESS; + + /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ + for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + if (phy_status & MII_SR_AUTONEG_COMPLETE) + break; + msec_delay(100); + } + + /* + * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation + * has completed. + */ + return ret_val; +} + +/** + * e1000_phy_has_link_generic - Polls PHY for link + * @hw: pointer to the HW structure + * @iterations: number of times to poll for link + * @usec_interval: delay between polling attempts + * @success: pointer to whether polling was successful or not + * + * Polls the PHY status register for link, 'iterations' number of times. + **/ +s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, + u32 usec_interval, bool *success) +{ + s32 ret_val = E1000_SUCCESS; + u16 i, phy_status; + + DEBUGFUNC("e1000_phy_has_link_generic"); + + if (!(hw->phy.ops.read_reg)) + return E1000_SUCCESS; + + for (i = 0; i < iterations; i++) { + /* + * Some PHYs require the PHY_STATUS register to be read + * twice due to the link bit being sticky. No harm doing + * it across the board. + */ + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) { + /* + * If the first read fails, another entity may have + * ownership of the resources, wait and try again to + * see if they have relinquished the resources yet. + */ + usec_delay(usec_interval); + } + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + if (phy_status & MII_SR_LINK_STATUS) + break; + if (usec_interval >= 1000) + msec_delay_irq(usec_interval/1000); + else + usec_delay(usec_interval); + } + + *success = (i < iterations) ? true : false; + + return ret_val; +} + +#if 0 +/** + * e1000_get_cable_length_m88 - Determine cable length for m88 PHY + * @hw: pointer to the HW structure + * + * Reads the PHY specific status register to retrieve the cable length + * information. The cable length is determined by averaging the minimum and + * maximum values to get the "average" cable length. The m88 PHY has four + * possible cable length values, which are: + * Register Value Cable Length + * 0 < 50 meters + * 1 50 - 80 meters + * 2 80 - 110 meters + * 3 110 - 140 meters + * 4 > 140 meters + **/ +s32 e1000_get_cable_length_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, index; + + DEBUGFUNC("e1000_get_cable_length_m88"); + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + goto out; + + index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT; + if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE + 1) { + ret_val = E1000_ERR_PHY; + goto out; + } + + phy->min_cable_length = e1000_m88_cable_length_table[index]; + phy->max_cable_length = e1000_m88_cable_length_table[index+1]; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + +out: + return ret_val; +} + +/** + * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY + * @hw: pointer to the HW structure + * + * The automatic gain control (agc) normalizes the amplitude of the + * received signal, adjusting for the attenuation produced by the + * cable. By reading the AGC registers, which represent the + * combination of coarse and fine gain value, the value can be put + * into a lookup table to obtain the approximate cable length + * for each channel. + **/ +s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_data, i, agc_value = 0; + u16 cur_agc_index, max_agc_index = 0; + u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; + u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = + {IGP02E1000_PHY_AGC_A, + IGP02E1000_PHY_AGC_B, + IGP02E1000_PHY_AGC_C, + IGP02E1000_PHY_AGC_D}; + + DEBUGFUNC("e1000_get_cable_length_igp_2"); + + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { + ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); + if (ret_val) + goto out; + + /* + * Getting bits 15:9, which represent the combination of + * coarse and fine gain values. The result is a number + * that can be put into the lookup table to obtain the + * approximate cable length. + */ + cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & + IGP02E1000_AGC_LENGTH_MASK; + + /* Array index bound check. */ + if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || + (cur_agc_index == 0)) { + ret_val = -E1000_ERR_PHY; + goto out; + } + + /* Remove min & max AGC values from calculation. */ + if (e1000_igp_2_cable_length_table[min_agc_index] > + e1000_igp_2_cable_length_table[cur_agc_index]) + min_agc_index = cur_agc_index; + if (e1000_igp_2_cable_length_table[max_agc_index] < + e1000_igp_2_cable_length_table[cur_agc_index]) + max_agc_index = cur_agc_index; + + agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; + } + + agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + + e1000_igp_2_cable_length_table[max_agc_index]); + agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); + + /* Calculate cable length with the error range of +/- 10 meters. */ + phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? + (agc_value - IGP02E1000_AGC_RANGE) : 0; + phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + +out: + return ret_val; +} +#endif + +/** + * e1000_get_phy_info_m88 - Retrieve PHY information + * @hw: pointer to the HW structure + * + * Valid for only copper links. Read the PHY status register (sticky read) + * to verify that link is up. Read the PHY special control register to + * determine the polarity and 10base-T extended distance. Read the PHY + * special status register to determine MDI/MDIx and current speed. If + * speed is 1000, then determine cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_m88"); + + if (hw->phy.media_type != e1000_media_type_copper) { + DEBUGOUT("Phy info is only valid for copper media\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + goto out; + + phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) + ? true : false; + + ret_val = e1000_check_polarity_m88(hw); + if (ret_val) + goto out; + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + goto out; + + phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false; + + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { +#if 0 + ret_val = hw->phy.ops.get_cable_length(hw); +#endif + ret_val = -E1000_ERR_CONFIG; + if (ret_val) + goto out; + + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + goto out; + + phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + /* Set values to "undefined" */ + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + +out: + return ret_val; +} + +/** + * e1000_get_phy_info_igp - Retrieve igp PHY information + * @hw: pointer to the HW structure + * + * Read PHY status to determine if link is up. If link is up, then + * set/determine 10base-T extended distance and polarity correction. Read + * PHY port status to determine MDI/MDIx and speed. Based on the speed, + * determine on the cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_igp"); + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + phy->polarity_correction = true; + + ret_val = e1000_check_polarity_igp(hw); + if (ret_val) + goto out; + + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); + if (ret_val) + goto out; + + phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false; + +#if 0 + if ((data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + ret_val = hw->phy.ops.get_cable_length(hw); + if (ret_val) + goto out; + + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); + if (ret_val) + goto out; + + phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { +#endif + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; +#if 0 + } +#endif + +out: + return ret_val; +} + +/** + * e1000_phy_sw_reset_generic - PHY software reset + * @hw: pointer to the HW structure + * + * Does a software reset of the PHY by reading the PHY control register and + * setting/write the control register reset bit to the PHY. + **/ +s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 phy_ctrl; + + DEBUGFUNC("e1000_phy_sw_reset_generic"); + + if (!(hw->phy.ops.read_reg)) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); + if (ret_val) + goto out; + + phy_ctrl |= MII_CR_RESET; + ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); + if (ret_val) + goto out; + + usec_delay(1); + +out: + return ret_val; +} + +/** + * e1000_phy_hw_reset_generic - PHY hardware reset + * @hw: pointer to the HW structure + * + * Verify the reset block is not blocking us from resetting. Acquire + * semaphore (if necessary) and read/set/write the device control reset + * bit in the PHY. Wait the appropriate delay time for the device to + * reset and release the semaphore (if necessary). + **/ +s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u32 ctrl; + + DEBUGFUNC("e1000_phy_hw_reset_generic"); + + ret_val = phy->ops.check_reset_block(hw); + if (ret_val) { + ret_val = E1000_SUCCESS; + goto out; + } + + ret_val = phy->ops.acquire(hw); + if (ret_val) + goto out; + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); + E1000_WRITE_FLUSH(hw); + + usec_delay(phy->reset_delay_us); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + usec_delay(150); + + phy->ops.release(hw); + + ret_val = phy->ops.get_cfg_done(hw); + +out: + return ret_val; +} + +/** + * e1000_get_cfg_done_generic - Generic configuration done + * @hw: pointer to the HW structure + * + * Generic function to wait 10 milli-seconds for configuration to complete + * and return success. + **/ +s32 e1000_get_cfg_done_generic(struct e1000_hw *hw __unused) +{ + DEBUGFUNC("e1000_get_cfg_done_generic"); + + msec_delay_irq(10); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_init_script_igp3 - Inits the IGP3 PHY + * @hw: pointer to the HW structure + * + * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. + **/ +s32 e1000_phy_init_script_igp3(struct e1000_hw *hw) +{ + DEBUGOUT("Running IGP 3 PHY init script\n"); + + /* PHY init IGP 3 */ + /* Enable rise/fall, 10-mode work in class-A */ + hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); + /* Remove all caps from Replica path filter */ + hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); + /* Bias trimming for ADC, AFE and Driver (Default) */ + hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); + /* Increase Hybrid poly bias */ + hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); + /* Add 4% to Tx amplitude in Gig mode */ + hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); + /* Disable trimming (TTT) */ + hw->phy.ops.write_reg(hw, 0x2011, 0x0000); + /* Poly DC correction to 94.6% + 2% for all channels */ + hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); + /* ABS DC correction to 95.9% */ + hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); + /* BG temp curve trim */ + hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); + /* Increasing ADC OPAMP stage 1 currents to max */ + hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); + /* Force 1000 ( required for enabling PHY regs configuration) */ + hw->phy.ops.write_reg(hw, 0x0000, 0x0140); + /* Set upd_freq to 6 */ + hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); + /* Disable NPDFE */ + hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); + /* Disable adaptive fixed FFE (Default) */ + hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); + /* Enable FFE hysteresis */ + hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); + /* Fixed FFE for short cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); + /* Fixed FFE for medium cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); + /* Fixed FFE for long cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); + /* Enable Adaptive Clip Threshold */ + hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); + /* AHT reset limit to 1 */ + hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); + /* Set AHT master delay to 127 msec */ + hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); + /* Set scan bits for AHT */ + hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); + /* Set AHT Preset bits */ + hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); + /* Change integ_factor of channel A to 3 */ + hw->phy.ops.write_reg(hw, 0x1895, 0x0003); + /* Change prop_factor of channels BCD to 8 */ + hw->phy.ops.write_reg(hw, 0x1796, 0x0008); + /* Change cg_icount + enable integbp for channels BCD */ + hw->phy.ops.write_reg(hw, 0x1798, 0xD008); + /* + * Change cg_icount + enable integbp + change prop_factor_master + * to 8 for channel A + */ + hw->phy.ops.write_reg(hw, 0x1898, 0xD918); + /* Disable AHT in Slave mode on channel A */ + hw->phy.ops.write_reg(hw, 0x187A, 0x0800); + /* + * Enable LPLU and disable AN to 1000 in non-D0a states, + * Enable SPD+B2B + */ + hw->phy.ops.write_reg(hw, 0x0019, 0x008D); + /* Enable restart AN on an1000_dis change */ + hw->phy.ops.write_reg(hw, 0x001B, 0x2080); + /* Enable wh_fifo read clock in 10/100 modes */ + hw->phy.ops.write_reg(hw, 0x0014, 0x0045); + /* Restart AN, Speed selection is 1000 */ + hw->phy.ops.write_reg(hw, 0x0000, 0x1340); + + return E1000_SUCCESS; +} + +/** + * e1000_get_phy_type_from_id - Get PHY type from id + * @phy_id: phy_id read from the phy + * + * Returns the phy type from the id. + **/ +enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id) +{ + enum e1000_phy_type phy_type = e1000_phy_unknown; + + switch (phy_id) { + case M88E1000_I_PHY_ID: + case M88E1000_E_PHY_ID: + case M88E1111_I_PHY_ID: + case M88E1011_I_PHY_ID: + phy_type = e1000_phy_m88; + break; + case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ + phy_type = e1000_phy_igp_2; + break; + case GG82563_E_PHY_ID: + phy_type = e1000_phy_gg82563; + break; + case IGP03E1000_E_PHY_ID: + phy_type = e1000_phy_igp_3; + break; + case IFE_E_PHY_ID: + case IFE_PLUS_E_PHY_ID: + case IFE_C_E_PHY_ID: + phy_type = e1000_phy_ife; + break; + default: + phy_type = e1000_phy_unknown; + break; + } + return phy_type; +} + +/** + * e1000_determine_phy_address - Determines PHY address. + * @hw: pointer to the HW structure + * + * This uses a trial and error method to loop through possible PHY + * addresses. It tests each by reading the PHY ID registers and + * checking for a match. + **/ +s32 e1000_determine_phy_address(struct e1000_hw *hw) +{ + s32 ret_val = -E1000_ERR_PHY_TYPE; + u32 phy_addr = 0; + u32 i; + enum e1000_phy_type phy_type = e1000_phy_unknown; + + hw->phy.id = phy_type; + + for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { + hw->phy.addr = phy_addr; + i = 0; + + do { + e1000_get_phy_id(hw); + phy_type = e1000_get_phy_type_from_id(hw->phy.id); + + /* + * If phy_type is valid, break - we found our + * PHY address + */ + if (phy_type != e1000_phy_unknown) { + ret_val = E1000_SUCCESS; + goto out; + } + msec_delay(1); + i++; + } while (i < 10); + } + +out: + return ret_val; +} + +/** + * e1000_power_up_phy_copper - Restore copper link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, restore the link to previous + * settings. + **/ +void e1000_power_up_phy_copper(struct e1000_hw *hw) +{ + u16 mii_reg = 0; + + /* The PHY will retain its settings across a power down/up cycle */ + hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); + mii_reg &= ~MII_CR_POWER_DOWN; + hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); +} + +/** + * e1000_power_down_phy_copper - Restore copper link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, restore the link to previous + * settings. + **/ +void e1000_power_down_phy_copper(struct e1000_hw *hw) +{ + u16 mii_reg = 0; + + /* The PHY will retain its settings across a power down/up cycle */ + hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); + mii_reg |= MII_CR_POWER_DOWN; + hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); + msec_delay(1); +} diff --git a/src/drivers/net/e1000/e1000_phy.h b/src/drivers/net/e1000/e1000_phy.h new file mode 100644 index 000000000..93bd7a1b0 --- /dev/null +++ b/src/drivers/net/e1000/e1000_phy.h @@ -0,0 +1,171 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +#ifndef _E1000_PHY_H_ +#define _E1000_PHY_H_ + +void e1000_init_phy_ops_generic(struct e1000_hw *hw); +s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data); +void e1000_null_phy_generic(struct e1000_hw *hw); +s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active); +s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_check_downshift_generic(struct e1000_hw *hw); +s32 e1000_check_polarity_m88(struct e1000_hw *hw); +s32 e1000_check_polarity_igp(struct e1000_hw *hw); +s32 e1000_check_polarity_ife(struct e1000_hw *hw); +s32 e1000_check_reset_block_generic(struct e1000_hw *hw); +s32 e1000_copper_link_autoneg(struct e1000_hw *hw); +s32 e1000_copper_link_setup_igp(struct e1000_hw *hw); +s32 e1000_copper_link_setup_m88(struct e1000_hw *hw); +#if 0 +s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw); +s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw); +s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw); +#endif +#if 0 +s32 e1000_get_cable_length_m88(struct e1000_hw *hw); +s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw); +#endif +s32 e1000_get_cfg_done_generic(struct e1000_hw *hw); +s32 e1000_get_phy_id(struct e1000_hw *hw); +s32 e1000_get_phy_info_igp(struct e1000_hw *hw); +s32 e1000_get_phy_info_m88(struct e1000_hw *hw); +s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw); +#if 0 +void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl); +#endif +s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw); +s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw); +s32 e1000_phy_setup_autoneg(struct e1000_hw *hw); +s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active); +s32 e1000_setup_copper_link_generic(struct e1000_hw *hw); +s32 e1000_wait_autoneg_generic(struct e1000_hw *hw); +s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_phy_reset_dsp(struct e1000_hw *hw); +s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, + u32 usec_interval, bool *success); +s32 e1000_phy_init_script_igp3(struct e1000_hw *hw); +enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id); +s32 e1000_determine_phy_address(struct e1000_hw *hw); +void e1000_power_up_phy_copper(struct e1000_hw *hw); +void e1000_power_down_phy_copper(struct e1000_hw *hw); +s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data); + +#define E1000_MAX_PHY_ADDR 4 + +/* IGP01E1000 Specific Registers */ +#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */ +#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */ +#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */ +#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */ +#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */ +#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality */ +#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */ +#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */ +#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */ +#define IGP_PAGE_SHIFT 5 +#define PHY_REG_MASK 0x1F + +#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 +#define IGP01E1000_PHY_POLARITY_MASK 0x0078 + +#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 +#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */ + +#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 + +/* Enable flexible speed on link-up */ +#define IGP01E1000_GMII_FLEX_SPD 0x0010 +#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */ + +#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ +#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */ +#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */ + +#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 + +#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 +#define IGP01E1000_PSSR_MDIX 0x0800 +#define IGP01E1000_PSSR_SPEED_MASK 0xC000 +#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 + +#define IGP02E1000_PHY_CHANNEL_NUM 4 +#define IGP02E1000_PHY_AGC_A 0x11B1 +#define IGP02E1000_PHY_AGC_B 0x12B1 +#define IGP02E1000_PHY_AGC_C 0x14B1 +#define IGP02E1000_PHY_AGC_D 0x18B1 + +#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */ +#define IGP02E1000_AGC_LENGTH_MASK 0x7F +#define IGP02E1000_AGC_RANGE 15 + +#define IGP03E1000_PHY_MISC_CTRL 0x1B +#define IGP03E1000_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Manually Set Duplex */ + +#define E1000_CABLE_LENGTH_UNDEFINED 0xFF + +#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000 +#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16 +#define E1000_KMRNCTRLSTA_REN 0x00200000 +#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */ +#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */ +#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */ +#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */ + +#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 +#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */ +#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */ +#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */ + +/* IFE PHY Extended Status Control */ +#define IFE_PESC_POLARITY_REVERSED 0x0100 + +/* IFE PHY Special Control */ +#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 +#define IFE_PSC_FORCE_POLARITY 0x0020 +#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 + +/* IFE PHY Special Control and LED Control */ +#define IFE_PSCL_PROBE_MODE 0x0020 +#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ +#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ + +/* IFE PHY MDIX Control */ +#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ +#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */ +#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */ + +#endif diff --git a/src/drivers/net/e1000/e1000_regs.h b/src/drivers/net/e1000/e1000_regs.h new file mode 100644 index 000000000..579c0707b --- /dev/null +++ b/src/drivers/net/e1000/e1000_regs.h @@ -0,0 +1,329 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2008 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +FILE_LICENCE ( GPL2_OR_LATER ); + +#ifndef _E1000_REGS_H_ +#define _E1000_REGS_H_ + +#define E1000_CTRL 0x00000 /* Device Control - RW */ +#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ +#define E1000_STATUS 0x00008 /* Device Status - RO */ +#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ +#define E1000_EERD 0x00014 /* EEPROM Read - RW */ +#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ +#define E1000_FLA 0x0001C /* Flash Access - RW */ +#define E1000_MDIC 0x00020 /* MDI Control - RW */ +#define E1000_SCTL 0x00024 /* SerDes Control - RW */ +#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ +#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ +#define E1000_FEXT 0x0002C /* Future Extended - RW */ +#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */ +#define E1000_FCT 0x00030 /* Flow Control Type - RW */ +#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */ +#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ +#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ +#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ +#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ +#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ +#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ +#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ +#define E1000_RCTL 0x00100 /* Rx Control - RW */ +#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ +#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */ +#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */ +#define E1000_TCTL 0x00400 /* Tx Control - RW */ +#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */ +#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */ +#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */ +#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ +#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ +#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ +#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ +#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ +#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ +#define E1000_PBS 0x01008 /* Packet Buffer Size */ +#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ +#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ +#define E1000_FLASHT 0x01028 /* FLASH Timer Register */ +#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ +#define E1000_FLSWCTL 0x01030 /* FLASH control register */ +#define E1000_FLSWDATA 0x01034 /* FLASH data register */ +#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ +#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ +#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */ +#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */ +#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */ +#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */ +#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */ +#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ +#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ +#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ +#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ +#define E1000_RDFPCQ(_n) (0x02430 + (0x4 * (_n))) +#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */ +#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */ +/* Split and Replication Rx Control - RW */ +#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */ +#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */ +#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */ +#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */ +#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */ +#define E1000_RXCTL(_n) (0x0C014 + (0x40 * (_n))) +#define E1000_RQDPC(_n) (0x0C030 + (0x40 * (_n))) +#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */ +#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */ +/* + * Convenience macros + * + * Note: "_n" is the queue number of the register to be written to. + * + * Example usage: + * E1000_RDBAL_REG(current_rx_queue) + */ +#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \ + (0x0C000 + ((_n) * 0x40))) +#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \ + (0x0C004 + ((_n) * 0x40))) +#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \ + (0x0C008 + ((_n) * 0x40))) +#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \ + (0x0C00C + ((_n) * 0x40))) +#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \ + (0x0C010 + ((_n) * 0x40))) +#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \ + (0x0C018 + ((_n) * 0x40))) +#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \ + (0x0C028 + ((_n) * 0x40))) +#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \ + (0x0E000 + ((_n) * 0x40))) +#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \ + (0x0E004 + ((_n) * 0x40))) +#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \ + (0x0E008 + ((_n) * 0x40))) +#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \ + (0x0E010 + ((_n) * 0x40))) +#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \ + (0x0E018 + ((_n) * 0x40))) +#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \ + (0x0E028 + ((_n) * 0x40))) +#define E1000_TARC(_n) (0x03840 + (_n << 8)) +#define E1000_DCA_TXCTRL(_n) (0x03814 + (_n << 8)) +#define E1000_DCA_RXCTRL(_n) (0x02814 + (_n << 8)) +#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \ + (0x0E038 + ((_n) * 0x40))) +#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \ + (0x0E03C + ((_n) * 0x40))) +#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */ +#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ +#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */ +#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ +#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4)) +#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \ + (0x054E0 + ((_i - 16) * 8))) +#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \ + (0x054E4 + ((_i - 16) * 8))) +#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8)) +#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4)) +#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4)) +#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8)) +#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8)) +#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8)) +#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ +#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ +#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ +#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ +#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ +#define E1000_TDPUMB 0x0357C /* DMA Tx Descriptor uC Mail Box - RW */ +#define E1000_TDPUAD 0x03580 /* DMA Tx Descriptor uC Addr Command - RW */ +#define E1000_TDPUWD 0x03584 /* DMA Tx Descriptor uC Data Write - RW */ +#define E1000_TDPURD 0x03588 /* DMA Tx Descriptor uC Data Read - RW */ +#define E1000_TDPUCTL 0x0358C /* DMA Tx Descriptor uC Control - RW */ +#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */ +#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */ +#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */ +#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ +#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ +#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ +#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ +#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ +#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ +#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ +#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ +#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ +#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ +#define E1000_COLC 0x04028 /* Collision Count - R/clr */ +#define E1000_DC 0x04030 /* Defer Count - R/clr */ +#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */ +#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ +#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ +#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ +#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */ +#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */ +#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */ +#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */ +#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */ +#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */ +#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */ +#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */ +#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */ +#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */ +#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */ +#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */ +#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */ +#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */ +#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */ +#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */ +#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */ +#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */ +#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */ +#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */ +#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */ +#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */ +#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */ +#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */ +#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */ +#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ +#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */ +#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */ +#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */ +#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */ +#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */ +#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */ +#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */ +#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */ +#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */ +#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */ +#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */ +#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */ +#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */ +#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */ +#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */ +#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */ +#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */ +#define E1000_IAC 0x04100 /* Interrupt Assertion Count */ +#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */ +#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */ +#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */ +#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */ +#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */ +#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */ +#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */ +#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ + +#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */ +#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */ +#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */ +#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */ +#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */ +#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */ +#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */ +#define E1000_RPTHC 0x04104 /* Rx Packets To Host */ +#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */ +#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */ +#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */ +#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */ +#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */ +#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */ +#define E1000_LENERRS 0x04138 /* Length Errors Count */ +#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */ +#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */ +#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */ +#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */ +#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */ +#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Page - RW */ +#define E1000_1GSTAT_RCV 0x04228 /* 1GSTAT Code Violation Packet Count - RW */ +#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */ +#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */ +#define E1000_RFCTL 0x05008 /* Receive Filter Control*/ +#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ +#define E1000_RA 0x05400 /* Receive Address - RW Array */ +#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ +#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */ +#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */ +#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */ +#define E1000_WUC 0x05800 /* Wakeup Control - RW */ +#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ +#define E1000_WUS 0x05810 /* Wakeup Status - RO */ +#define E1000_MANC 0x05820 /* Management Control - RW */ +#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ +#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ +#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ +#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ +#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ +#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */ +#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ +#define E1000_HOST_IF 0x08800 /* Host Interface */ +#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ +#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ + +#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */ +#define E1000_MDPHYA 0x0003C /* PHY address - RW */ +#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */ +#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */ +#define E1000_CCMCTL 0x05B48 /* CCM Control Register */ +#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */ +#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */ +#define E1000_GCR 0x05B00 /* PCI-Ex Control */ +#define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */ +#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ +#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ +#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ +#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ +#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ +#define E1000_SWSM 0x05B50 /* SW Semaphore */ +#define E1000_FWSM 0x05B54 /* FW Semaphore */ +#define E1000_SWSM2 0x05B58 /* Driver-only SW semaphore (not used by BOOT agents) */ +#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */ +#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */ +#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ +#define E1000_HICR 0x08F00 /* Host Interface Control */ + +/* RSS registers */ +#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ +#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ +#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */ +#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate Interrupt Ext*/ +#define E1000_IMIRVP 0x05AC0 /* Immediate Interrupt Rx VLAN Priority - RW */ +#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Allocation Register + * (_i) - RW */ +#define E1000_MSIXTADD(_i) (0x0C000 + ((_i) * 0x10)) /* MSI-X Table entry addr + * low reg - RW */ +#define E1000_MSIXTUADD(_i) (0x0C004 + ((_i) * 0x10)) /* MSI-X Table entry addr + * upper reg - RW */ +#define E1000_MSIXTMSG(_i) (0x0C008 + ((_i) * 0x10)) /* MSI-X Table entry + * message reg - RW */ +#define E1000_MSIXVCTRL(_i) (0x0C00C + ((_i) * 0x10)) /* MSI-X Table entry + * vector ctrl reg - RW */ +#define E1000_MSIXPBA 0x0E000 /* MSI-X Pending bit array */ +#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW */ +#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */ +#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ +#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ + +#endif diff --git a/src/include/gpxe/errfile.h b/src/include/gpxe/errfile.h index 1a6b48277..5388b63a1 100644 --- a/src/include/gpxe/errfile.h +++ b/src/include/gpxe/errfile.h @@ -104,8 +104,7 @@ FILE_LICENCE ( GPL2_OR_LATER ); #define ERRFILE_via_velocity ( ERRFILE_DRIVER | 0x00450000 ) #define ERRFILE_w89c840 ( ERRFILE_DRIVER | 0x00460000 ) #define ERRFILE_ipoib ( ERRFILE_DRIVER | 0x00470000 ) -#define ERRFILE_e1000 ( ERRFILE_DRIVER | 0x00480000 ) -#define ERRFILE_e1000_hw ( ERRFILE_DRIVER | 0x00490000 ) +#define ERRFILE_e1000_main ( ERRFILE_DRIVER | 0x00480000 ) #define ERRFILE_mtnic ( ERRFILE_DRIVER | 0x004a0000 ) #define ERRFILE_phantom ( ERRFILE_DRIVER | 0x004b0000 ) #define ERRFILE_ne2k_isa ( ERRFILE_DRIVER | 0x004c0000 ) |