aboutsummaryrefslogtreecommitdiffstats
path: root/src/crypto/bigint.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/bigint.c')
-rw-r--r--src/crypto/bigint.c213
1 files changed, 176 insertions, 37 deletions
diff --git a/src/crypto/bigint.c b/src/crypto/bigint.c
index c7b6dafc9..a8b99ec3c 100644
--- a/src/crypto/bigint.c
+++ b/src/crypto/bigint.c
@@ -34,22 +34,14 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
* Big integer support
*/
+/** Modular direct reduction profiler */
+static struct profiler bigint_mod_profiler __profiler =
+ { .name = "bigint_mod" };
+
/** Modular multiplication overall profiler */
static struct profiler bigint_mod_multiply_profiler __profiler =
{ .name = "bigint_mod_multiply" };
-/** Modular multiplication multiply step profiler */
-static struct profiler bigint_mod_multiply_multiply_profiler __profiler =
- { .name = "bigint_mod_multiply.multiply" };
-
-/** Modular multiplication rescale step profiler */
-static struct profiler bigint_mod_multiply_rescale_profiler __profiler =
- { .name = "bigint_mod_multiply.rescale" };
-
-/** Modular multiplication subtract step profiler */
-static struct profiler bigint_mod_multiply_subtract_profiler __profiler =
- { .name = "bigint_mod_multiply.subtract" };
-
/**
* Conditionally swap big integers (in constant time)
*
@@ -145,6 +137,175 @@ void bigint_multiply_raw ( const bigint_element_t *multiplicand0,
}
/**
+ * Reduce big integer
+ *
+ * @v minuend0 Element 0 of big integer to be reduced
+ * @v minuend_size Number of elements in minuend
+ * @v modulus0 Element 0 of big integer modulus
+ * @v modulus_size Number of elements in modulus and result
+ * @v result0 Element 0 of big integer to hold result
+ * @v tmp Temporary working space
+ */
+void bigint_reduce_raw ( const bigint_element_t *minuend0,
+ unsigned int minuend_size,
+ const bigint_element_t *modulus0,
+ unsigned int modulus_size,
+ bigint_element_t *result0, void *tmp ) {
+ const bigint_t ( minuend_size ) __attribute__ (( may_alias ))
+ *minuend = ( ( const void * ) minuend0 );
+ const bigint_t ( modulus_size ) __attribute__ (( may_alias ))
+ *modulus = ( ( const void * ) modulus0 );
+ bigint_t ( modulus_size ) __attribute__ (( may_alias ))
+ *result = ( ( void * ) result0 );
+ struct {
+ bigint_t ( minuend_size ) minuend;
+ bigint_t ( minuend_size ) modulus;
+ } *temp = tmp;
+ const unsigned int width = ( 8 * sizeof ( bigint_element_t ) );
+ const bigint_element_t msb_mask = ( 1UL << ( width - 1 ) );
+ bigint_element_t *element;
+ unsigned int minuend_max;
+ unsigned int modulus_max;
+ unsigned int subshift;
+ bigint_element_t msb;
+ int offset;
+ int shift;
+ int i;
+
+ /* Start profiling */
+ profile_start ( &bigint_mod_profiler );
+
+ /* Sanity check */
+ assert ( minuend_size >= modulus_size );
+ assert ( sizeof ( *temp ) == bigint_reduce_tmp_len ( minuend ) );
+
+ /* Copy minuend and modulus to temporary working space */
+ bigint_shrink ( minuend, &temp->minuend );
+ bigint_grow ( modulus, &temp->modulus );
+
+ /* Normalise the modulus
+ *
+ * Scale the modulus by shifting left such that both modulus
+ * "m" and minuend "x" have the same most significant set bit.
+ * (If this is not possible, then the minuend is already less
+ * than the modulus, and we may therefore skip reduction
+ * completely.)
+ */
+ minuend_max = bigint_max_set_bit ( minuend );
+ modulus_max = bigint_max_set_bit ( modulus );
+ shift = ( minuend_max - modulus_max );
+ if ( shift < 0 )
+ goto skip;
+ subshift = ( shift & ( width - 1 ) );
+ offset = ( shift / width );
+ element = temp->modulus.element;
+ for ( i = ( ( minuend_max - 1 ) / width ) ; ; i-- ) {
+ element[i] = ( element[ i - offset ] << subshift );
+ if ( i <= offset )
+ break;
+ if ( subshift ) {
+ element[i] |= ( element[ i - offset - 1 ]
+ >> ( width - subshift ) );
+ }
+ }
+ for ( i-- ; i >= 0 ; i-- )
+ element[i] = 0;
+
+ /* Reduce the minuend "x" by iteratively adding or subtracting
+ * the scaled modulus "m".
+ *
+ * On each loop iteration, we maintain the invariant:
+ *
+ * -2m <= x < 2m
+ *
+ * If x is positive, we obtain the new minuend x' by
+ * subtracting m, otherwise we add m:
+ *
+ * 0 <= x < 2m => x' := x - m => -m <= x' < m
+ * -2m <= x < 0 => x' := x + m => -m <= x' < m
+ *
+ * and then halve the modulus (by shifting right):
+ *
+ * m' = m/2
+ *
+ * We therefore end up with:
+ *
+ * -m <= x' < m => -2m' <= x' < 2m'
+ *
+ * i.e. we have preseved the invariant while reducing the
+ * bounds on x' by one power of two.
+ *
+ * The issue remains of how to determine on each iteration
+ * whether or not x is currently positive, given that both
+ * input values are unsigned big integers that may use all
+ * available bits (including the MSB).
+ *
+ * On the first loop iteration, we may simply assume that x is
+ * positive, since it is unmodified from the input value and
+ * so is positive by definition (even if the MSB is set). We
+ * therefore unconditionally perform a subtraction on the
+ * first loop iteration.
+ *
+ * Let k be the MSB after normalisation. We then have:
+ *
+ * 2^k <= m < 2^(k+1)
+ * 2^k <= x < 2^(k+1)
+ *
+ * On the first loop iteration, we therefore have:
+ *
+ * x' = (x - m)
+ * < 2^(k+1) - 2^k
+ * < 2^k
+ *
+ * Any positive value of x' therefore has its MSB set to zero,
+ * and so we may validly treat the MSB of x' as a sign bit at
+ * the end of the first loop iteration.
+ *
+ * On all subsequent loop iterations, the starting value m is
+ * guaranteed to have its MSB set to zero (since it has
+ * already been shifted right at least once). Since we know
+ * from above that we preserve the loop invariant:
+ *
+ * -m <= x' < m
+ *
+ * we immediately know that any positive value of x' also has
+ * its MSB set to zero, and so we may validly treat the MSB of
+ * x' as a sign bit at the end of all subsequent loop
+ * iterations.
+ *
+ * After the last loop iteration (when m' has been shifted
+ * back down to the original value of the modulus), we may
+ * need to add a single multiple of m' to ensure that x' is
+ * positive, i.e. lies within the range 0 <= x' < m'. To
+ * allow for reusing the (inlined) expansion of
+ * bigint_subtract(), we achieve this via a potential
+ * additional loop iteration that performs the addition and is
+ * then guaranteed to terminate (since the result will be
+ * positive).
+ */
+ for ( msb = 0 ; ( msb || ( shift >= 0 ) ) ; shift-- ) {
+ if ( msb ) {
+ bigint_add ( &temp->modulus, &temp->minuend );
+ } else {
+ bigint_subtract ( &temp->modulus, &temp->minuend );
+ }
+ msb = ( temp->minuend.element[ minuend_size - 1 ] & msb_mask );
+ if ( shift > 0 )
+ bigint_shr ( &temp->modulus );
+ }
+
+ skip:
+ /* Sanity check */
+ assert ( ! bigint_is_geq ( &temp->minuend, &temp->modulus ) );
+
+ /* Copy result */
+ bigint_shrink ( &temp->minuend, result );
+
+ /* Stop profiling */
+ profile_stop ( &bigint_mod_profiler );
+}
+
+/**
* Perform modular multiplication of big integers
*
* @v multiplicand0 Element 0 of big integer to be multiplied
@@ -171,8 +332,6 @@ void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
bigint_t ( size * 2 ) result;
bigint_t ( size * 2 ) modulus;
} *temp = tmp;
- int shift;
- int i;
/* Start profiling */
profile_start ( &bigint_mod_multiply_profiler );
@@ -181,33 +340,13 @@ void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
assert ( sizeof ( *temp ) == bigint_mod_multiply_tmp_len ( modulus ) );
/* Perform multiplication */
- profile_start ( &bigint_mod_multiply_multiply_profiler );
bigint_multiply ( multiplicand, multiplier, &temp->result );
- profile_stop ( &bigint_mod_multiply_multiply_profiler );
-
- /* Rescale modulus to match result */
- profile_start ( &bigint_mod_multiply_rescale_profiler );
- bigint_grow ( modulus, &temp->modulus );
- shift = ( bigint_max_set_bit ( &temp->result ) -
- bigint_max_set_bit ( &temp->modulus ) );
- for ( i = 0 ; i < shift ; i++ )
- bigint_shl ( &temp->modulus );
- profile_stop ( &bigint_mod_multiply_rescale_profiler );
-
- /* Subtract multiples of modulus */
- profile_start ( &bigint_mod_multiply_subtract_profiler );
- for ( i = 0 ; i <= shift ; i++ ) {
- if ( bigint_is_geq ( &temp->result, &temp->modulus ) )
- bigint_subtract ( &temp->modulus, &temp->result );
- bigint_shr ( &temp->modulus );
- }
- profile_stop ( &bigint_mod_multiply_subtract_profiler );
- /* Resize result */
- bigint_shrink ( &temp->result, result );
+ /* Reduce result */
+ bigint_reduce ( &temp->result, modulus, result, temp );
/* Sanity check */
- assert ( bigint_is_geq ( modulus, result ) );
+ assert ( ! bigint_is_geq ( result, modulus ) );
/* Stop profiling */
profile_stop ( &bigint_mod_multiply_profiler );