diff options
Diffstat (limited to 'src/crypto/bigint.c')
-rw-r--r-- | src/crypto/bigint.c | 63 |
1 files changed, 41 insertions, 22 deletions
diff --git a/src/crypto/bigint.c b/src/crypto/bigint.c index 4b37c062b..735fcdf61 100644 --- a/src/crypto/bigint.c +++ b/src/crypto/bigint.c @@ -287,27 +287,22 @@ void bigint_reduce_raw ( bigint_element_t *modulus0, bigint_element_t *value0, * @v invertend0 Element 0 of odd big integer to be inverted * @v inverse0 Element 0 of big integer to hold result * @v size Number of elements in invertend and result - * @v tmp Temporary working space */ void bigint_mod_invert_raw ( const bigint_element_t *invertend0, - bigint_element_t *inverse0, - unsigned int size, void *tmp ) { + bigint_element_t *inverse0, unsigned int size ) { const bigint_t ( size ) __attribute__ (( may_alias )) *invertend = ( ( const void * ) invertend0 ); bigint_t ( size ) __attribute__ (( may_alias )) *inverse = ( ( void * ) inverse0 ); - struct { - bigint_t ( size ) residue; - } *temp = tmp; - const unsigned int width = ( 8 * sizeof ( bigint_element_t ) ); + bigint_element_t accum; + bigint_element_t bit; unsigned int i; /* Sanity check */ - assert ( invertend->element[0] & 1 ); + assert ( bigint_bit_is_set ( invertend, 0 ) ); - /* Initialise temporary working space and output value */ - memset ( &temp->residue, 0xff, sizeof ( temp->residue ) ); - memset ( inverse, 0, sizeof ( *inverse ) ); + /* Initialise output */ + memset ( inverse, 0xff, sizeof ( *inverse ) ); /* Compute inverse modulo 2^(width) * @@ -315,23 +310,47 @@ void bigint_mod_invert_raw ( const bigint_element_t *invertend0, * presented in "A New Algorithm for Inversion mod p^k (Koç, * 2017)". * - * Each loop iteration calculates one bit of the inverse. The - * residue value is the two's complement negation of the value - * "b" as used by Koç, to allow for division by two using a - * logical right shift (since we have no arithmetic right - * shift operation for big integers). + * Each inner loop iteration calculates one bit of the + * inverse. The residue value is the two's complement + * negation of the value "b" as used by Koç, to allow for + * division by two using a logical right shift (since we have + * no arithmetic right shift operation for big integers). + * + * The residue is stored in the as-yet uncalculated portion of + * the inverse. The size of the residue therefore decreases + * by one element for each outer loop iteration. Trivial + * inspection of the algorithm shows that any higher bits + * could not contribute to the eventual output value, and so + * we may safely reuse storage this way. * * Due to the suffix property of inverses mod 2^k, the result * represents the least significant bits of the inverse modulo * an arbitrarily large 2^k. */ - for ( i = 0 ; i < ( 8 * sizeof ( *inverse ) ) ; i++ ) { - if ( temp->residue.element[0] & 1 ) { - inverse->element[ i / width ] |= - ( 1UL << ( i % width ) ); - bigint_add ( invertend, &temp->residue ); + for ( i = size ; i > 0 ; i-- ) { + const bigint_t ( i ) __attribute__ (( may_alias )) + *addend = ( ( const void * ) invertend ); + bigint_t ( i ) __attribute__ (( may_alias )) + *residue = ( ( void * ) inverse ); + + /* Calculate one element's worth of inverse bits */ + for ( accum = 0, bit = 1 ; bit ; bit <<= 1 ) { + if ( bigint_bit_is_set ( residue, 0 ) ) { + accum |= bit; + bigint_add ( addend, residue ); + } + bigint_shr ( residue ); } - bigint_shr ( &temp->residue ); + + /* Store in the element no longer required to hold residue */ + inverse->element[ i - 1 ] = accum; + } + + /* Correct order of inverse elements */ + for ( i = 0 ; i < ( size / 2 ) ; i++ ) { + accum = inverse->element[i]; + inverse->element[i] = inverse->element[ size - 1 - i ]; + inverse->element[ size - 1 - i ] = accum; } } |