diff options
Diffstat (limited to 'src/crypto/des.c')
-rw-r--r-- | src/crypto/des.c | 695 |
1 files changed, 695 insertions, 0 deletions
diff --git a/src/crypto/des.c b/src/crypto/des.c new file mode 100644 index 000000000..6918bec3e --- /dev/null +++ b/src/crypto/des.c @@ -0,0 +1,695 @@ +/* + * Copyright (C) 2024 Michael Brown <mbrown@fensystems.co.uk>. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of the + * License, or any later version. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA + * 02110-1301, USA. + * + * You can also choose to distribute this program under the terms of + * the Unmodified Binary Distribution Licence (as given in the file + * COPYING.UBDL), provided that you have satisfied its requirements. + */ + +FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL ); + +/** @file + * + * DES algorithm + * + * DES was not designed to be implemented in software, and therefore + * contains a large number of bit permutation operations that are + * essentially free in hardware (requiring only wires, no gates) but + * expensive in software. + * + * Since DES is no longer used as a practical block cipher for large + * volumes of data, we optimise for code size, and do not attempt to + * obtain fast throughput. + * + * The algorithm is specified in NIST SP 800-67, downloadable from + * https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf + */ + +#include <stdint.h> +#include <string.h> +#include <errno.h> +#include <byteswap.h> +#include <ipxe/rotate.h> +#include <ipxe/crypto.h> +#include <ipxe/ecb.h> +#include <ipxe/cbc.h> +#include <ipxe/init.h> +#include <ipxe/des.h> + +/** + * DES shift schedule + * + * The DES shift schedule (ordered from round 16 down to round 1) is + * {1,2,2,2,2,2,2,1,2,2,2,2,2,2,1,1}. In binary, this may be + * represented as {1,10,10,10,10,10,10,1,10,10,10,10,10,10,1,1} and + * concatenated (without padding) to produce a single binary integer + * 1101010101010110101010101011 (equal to 0x0d556aab in hexadecimal). + * + * This integer may then be consumed LSB-first, where a 1 bit + * indicates a shift and the generation of a round key, and a 0 bit + * indicates a shift without the generation of a round key. + */ +#define DES_SCHEDULE 0x0d556aab + +/** + * Define an element pair in a DES S-box + * + * @v x Upper element of element pair + * @v y Lower element of element pair + * + * DES S-box elements are 4-bit values. We encode two values per + * byte, ordering the elements so that the six-bit input value may be + * used directly as a lookup index. + * + * Specifically, if the input value is {r1,c3,c2,c1,c0,r0}, where + * {r1,r0} is the table row index and {c3,c2,c1,c0} is the table + * column index (as used in the DES specification), then: + * + * - {r1,c3,c2,c1,c0} is the byte index into the table + * + * - (4*r0) is the required bit shift to extract the 4-bit value + */ +#define SBYTE( x, y ) ( ( (y) << 4 ) | (x) ) + +/** + * Define a row pair in a DES S-box + * + * @v x0..xf Upper row of row pair + * @v y0..yf Lower row of row pair + */ +#define SBOX( x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, xa, xb, xc, xd, xe, xf, \ + y0, y1, y2, y3, y4, y5, y6, y7, y8, y9, ya, yb, yc, yd, ye, yf ) \ + SBYTE ( x0, y0 ), SBYTE ( x1, y1 ), SBYTE ( x2, y2 ), SBYTE ( x3, y3 ),\ + SBYTE ( x4, y4 ), SBYTE ( x5, y5 ), SBYTE ( x6, y6 ), SBYTE ( x7, y7 ),\ + SBYTE ( x8, y8 ), SBYTE ( x9, y9 ), SBYTE ( xa, ya ), SBYTE ( xb, yb ),\ + SBYTE ( xc, yc ), SBYTE ( xd, yd ), SBYTE ( xe, ye ), SBYTE ( xf, yf ) + +/** DES S-boxes S1..S8 */ +static const uint8_t des_s[8][32] = { { + /* S1 */ + SBOX ( 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, + 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 ), + SBOX ( 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, + 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 ) +}, { + /* S2 */ + SBOX ( 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, + 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 ), + SBOX ( 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, + 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 ) +}, { + /* S3 */ + SBOX ( 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, + 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 ), + SBOX ( 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, + 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 ) +}, { + /* S4 */ + SBOX ( 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, + 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 ), + SBOX ( 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, + 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 ) +}, { + /* S5 */ + SBOX ( 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, + 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 ), + SBOX ( 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, + 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 ) +}, { + /* S6 */ + SBOX ( 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, + 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 ), + SBOX ( 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, + 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 ) +}, { + /* S7 */ + SBOX ( 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, + 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 ), + SBOX ( 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, + 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 ) +}, { + /* S8 */ + SBOX ( 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, + 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 ), + SBOX ( 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, + 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 ) +} }; + +/** + * Define a bit index within permuted choice 2 (PC2) + * + * @v bit Bit index + * + * Permuted choice 2 (PC2) is used to select bits from a concatenated + * pair of 28-bit registers ("C" and "D") as part of the key schedule. + * We store these as 32-bit registers and so must add 4 to indexes + * above 28. + */ +#define DES_PC2( x ) ( (x) + ( ( (x) > 28 ) ? 4 : 0 ) ) + +/** + * Define six bits of permuted choice 2 (PC2) + * + * @v r1:r0 Bits corresponding to S-box row index + * @v c3:c0 Bits corresponding to S-box column index + * + * There are 8 steps within a DES round (one step per S-box). Each + * step requires six bits of the round key, corresponding to the S-box + * input value {r1,c3,c2,c1,c0,r0}, where {r1,r0} is the table row + * index and {c3,c2,c1,c0} is the table column index. + * + * As an optimisation, we store the least significant of the 6 bits in + * the sign bit of a signed 8-bit value, and the remaining 5 bits in + * the least significant 5 bits of the 8-bit value. See the comments + * in des_sbox() for further details. + */ +#define DES_PC2R( r1, c3, c2, c1, c0, r0 ) \ + DES_PC2 ( r0 ), /* LSB stored in sign bit */ \ + DES_PC2 ( r0 ), /* Unused bit */ \ + DES_PC2 ( r0 ), /* Unused bit */ \ + DES_PC2 ( r1 ), /* Remaining 5 bits */ \ + DES_PC2 ( c3 ), /* ... */ \ + DES_PC2 ( c2 ), /* ... */ \ + DES_PC2 ( c1 ), /* ... */ \ + DES_PC2 ( c0 ) /* ... */ + +/** + * A DES systematic permutation generator + * + * Many of the permutations used in DES comprise systematic bit + * patterns. We generate these permutations at runtime to save on + * code size. + */ +struct des_generator { + /** Permutation */ + uint8_t *permutation; + /** Seed value */ + uint32_t seed; +}; + +/** + * Define a DES permutation generator + * + * @v PERMUTATION Permutation + * @v OFFSET Fixed input bit offset (0 or 1) + * @v INV<n> Input bit index bit <n> should be inverted + * @v BIT<n> Source bit for input bit index bit <n> + * @ret generator Permutation generator + */ +#define DES_GENERATOR( PERMUTATION, OFFSET, INV5, BIT5, INV4, BIT4, \ + INV3, BIT3, INV2, BIT2, INV1, BIT1, INV0, BIT0 ) \ + { \ + .permutation = (PERMUTATION), \ + .seed = ( ( (INV0) << 31 ) | ( (BIT0) << 28 ) | \ + ( (INV1) << 27 ) | ( (BIT1) << 24 ) | \ + ( (INV2) << 23 ) | ( (BIT2) << 20 ) | \ + ( (INV3) << 19 ) | ( (BIT3) << 16 ) | \ + ( (INV4) << 15 ) | ( (BIT4) << 12 ) | \ + ( (INV5) << 11 ) | ( (BIT5) << 8 ) | \ + ( ( uint32_t ) sizeof (PERMUTATION) - 1 ) | \ + (OFFSET) ), \ + } + +/** DES permuted choice 1 (PC1) "C" register */ +static uint8_t des_pc1c[29]; + +/** DES permuted choice 1 (PC1) "D" register */ +static uint8_t des_pc1d[33]; + +/** DES permuted choice 2 (PC2) */ +static const uint8_t des_pc2[65] = { + DES_PC2R ( 14, 17, 11, 24, 1, 5 ), + DES_PC2R ( 3, 28, 15, 6, 21, 10 ), + DES_PC2R ( 23, 19, 12, 4, 26, 8 ), + DES_PC2R ( 16, 7, 27, 20, 13, 2 ), + DES_PC2R ( 41, 52, 31, 37, 47, 55 ), + DES_PC2R ( 30, 40, 51, 45, 33, 48 ), + DES_PC2R ( 44, 49, 39, 56, 34, 53 ), + DES_PC2R ( 46, 42, 50, 36, 29, 32 ), + 0 /* terminator */ +}; + +/** DES initial permutation (IP) */ +static uint8_t des_ip[65]; + +/** DES data permutation (P) */ +static const uint8_t des_p[33] = { + 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, + 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25, + 0 /* terminator */ +}; + +/** DES final / inverse initial permutation (FP / IP^-1) */ +static uint8_t des_fp[65]; + +/** DES permutation generators */ +static struct des_generator des_generators[] = { + + /* The DES initial permutation transforms the bit index + * {x5,x4,x3,x2,x1,x0}+1 into {~x2,~x1,~x0,x4,x3,~x5}+1 + */ + DES_GENERATOR ( des_ip, 1, 1, 2, 1, 1, 1, 0, 0, 4, 0, 3, 1, 5 ), + + /* The DES final permutation transforms the bit index + * {x5,x4,x3,x2,x1,x0}+1 into {~x0,x2,x1,~x5,~x4,~x3}+1 + * + * There is an asymmetry in the DES block diagram for the last + * of the 16 rounds, which is functionally equivalent to + * performing 16 identical rounds and then swapping the left + * and right halves before applying the final permutation. We + * may therefore account for this asymmetry by inverting the + * MSB in each bit index, to point to the corresponding bit in + * the other half. + * + * This is equivalent to using a permutation that transforms + * {x5,x4,x3,x2,x1,x0}+1 into {x0,x2,x1,~x5,~x4,~x3}+1 + */ + DES_GENERATOR ( des_fp, 1, 0, 0, 0, 2, 0, 1, 1, 5, 1, 4, 1, 3 ), + + /* The "C" half of DES permuted choice 1 (PC1) transforms the + * bit index {x5,x4,x3,x2,x1,x0}+1 into {~x2,~x1,~x0,x5,x4,x3}+1 + */ + DES_GENERATOR ( des_pc1c, 1, 1, 2, 1, 1, 1, 0, 0, 5, 0, 4, 0, 3 ), + + /* The "D" half of DES permuted choice 1 (PC1) transforms the + * bit index {x5,x4,x3,x2,x1,x0}+1 into {~x2,~x1,~x0,~x5,~x4,~x3}+0 + * + * Due to the idosyncratic design choice of using 28-bit + * registers in the DES key expansion schedule, the final four + * permutation values appear at indices [28:31] instead of + * [24:27]. This is adjusted for in @c des_setkey(). + */ + DES_GENERATOR ( des_pc1d, 0, 1, 2, 1, 1, 1, 0, 1, 5, 1, 4, 1, 3 ), +}; + +/** + * Generate DES permutation + * + * @v generator Generator + */ +static __attribute__ (( noinline )) void +des_generate ( struct des_generator *generator ) { + uint8_t *permutation = generator->permutation; + uint32_t seed = generator->seed; + unsigned int index = 0; + uint8_t accum; + uint8_t bit; + + /* Generate permutations + * + * This loop is optimised for code size on a + * register-constrained architecture such as i386. + */ + do { + /* Rotate seed to access MSB's bit descriptor */ + seed = ror32 ( seed, 8 ); + + /* Initialise accumulator with six flag bits */ + accum = 0xfc; + + /* Accumulate bits until all six flag bits are cleared */ + do { + /* Extract specified bit from index. Use a + * rotation instead of a shift, since this + * will allow the mask to be elided. + */ + bit = ror8 ( index, ( seed & 0x07 ) ); + seed = ror32 ( seed, 3 ); + + /* Toggle bit if applicable */ + bit ^= seed; + seed = ror32 ( seed, 1 ); + + /* Add bit to accumulator and clear one flag bit */ + accum <<= 1; + accum |= ( bit & 0x01 ); + + } while ( accum & 0x80 ); + + /* Add constant offset if applicable */ + accum += ( seed & 0x01 ); + + /* Store permutation */ + permutation[index] = accum; + + /* Loop until reaching length (which is always even) */ + } while ( ++index < ( seed & 0xfe ) ); + DBGC2 ( permutation, "DES generated permutation %p:\n", permutation ); + DBGC2_HDA ( permutation, 0, permutation, + ( ( seed & 0xfe ) + 1 /* zero terminator */ ) ); +} + +/** + * Initialise permutations + */ +static void des_init ( void ) { + unsigned int i; + + /* Generate all generated permutations */ + for ( i = 0 ; i < ( sizeof ( des_generators ) / + sizeof ( des_generators[0] ) ) ; i++ ) { + des_generate ( &des_generators[i] ); + } +} + +/** Initialisation function */ +struct init_fn des_init_fn __init_fn ( INIT_NORMAL ) = { + .initialise = des_init, +}; + +/** + * Perform bit permutation + * + * @v permutation Bit permutation (zero-terminated) + * @v in Input value + * @v out Output value + */ +static void des_permute ( const uint8_t *permutation, const uint8_t *in, + uint8_t *out ) { + uint8_t mask = 0x80; + uint8_t accum = 0; + unsigned int bit; + + /* Extract individual input bits to construct output value */ + while ( ( bit = *(permutation++) ) ) { + bit--; + if ( in[ bit / 8 ] & ( 0x80 >> ( bit % 8 ) ) ) + accum |= mask; + *out = accum; + mask = ror8 ( mask, 1 ); + if ( mask == 0x80 ) { + out++; + accum = 0; + } + } +} + +/** + * Perform DES S-box substitution + * + * @v in 32-bit input value (native endian) + * @v rkey 48-bit round key + * @ret out 32-bit output value (native endian) + */ +static uint32_t des_sbox ( uint32_t in, const union des_round_key *rkey ) { + uint32_t out = 0; + uint32_t lookup; + int32_t key; + uint8_t sub; + unsigned int i; + + /* Perform input expansion, key addition, and S-box substitution */ + for ( i = 0 ; i < 8 ; i++ ) { + + /* Rotate input and output */ + out = rol32 ( out, 4 ); + in = rol32 ( in, 4 ); + + /* Extract step key from relevant 6 bits of round key + * + * The least significant of the 6 bits (corresponding + * to bit r0 in the S-box lookup index) is stored in + * the sign bit of the step key byte. It will + * therefore be propagated via sign extension to the + * MSB of the 32-bit step key. + * + * The remaining 5 of the 6 bits (corresponding to + * bits {r1,c3,c2,c1,c0} in the S-box lookup index) + * are stored in the least significant 5 bits of the + * step key byte and will end up in the least + * significant 5 bits of the 32-bit step key. + */ + key = rkey->step[i]; + + /* Add step key to input to produce S-box lookup index + * + * We do not ever perform an explicit expansion of the + * input value from 32 to 48 bits. Instead, we rotate + * the 32-bit input value by 4 bits on each step, and + * extract the relevant 6 bits. + * + * The least significant of the 6 bits (corresponding + * to bit r0 in the S-box lookup index) is currently + * in the MSB of the 32-bit (rotated) input value. + * + * The remaining 5 of the 6 bits (corresponding to + * bits {r1,c3,c2,c1,c0} in the S-box lookup index) + * are currently in the least significant 5 bits of + * the 32-bit (rotated) input value. + * + * This aligns with the placement of the bits in the + * step key (see above), and we can therefore perform + * a single XOR to add the 6-bit step key to the + * relevant 6 bits of the input value. + */ + lookup = ( in ^ key ); + + /* Look up S[i][in ^ key] from S-box + * + * We have bits {r1,c3,c2,c1,c0} in the least + * significant 5 bits of the lookup index, and so can + * use the masked lookup index directly as a byte + * index into the relevant S-box to extract the byte + * containing both {r1,c3,c2,c1,c0,'0'} and + * {r1,c3,c2,c1,c0,'1'}. + * + * We then use the MSB of the 32-bit lookup index to + * extract the relevant nibble for the full lookup + * index {r1,c3,c2,c1,c0,r0}. + */ + sub = des_s[i][ lookup & 0x1f ]; + sub >>= ( ( lookup >> 29 ) & 4 ); + sub &= 0x0f; + + /* Substitute S[i][input ^ key] into output */ + out |= sub; + } + + return out; +} + +/** + * Perform a single DES round + * + * @v block DES block + * @v rkey 48-bit round key + */ +static void des_round ( union des_block *block, + const union des_round_key *rkey ) { + union des_dword sbox; + uint32_t left; + uint32_t right; + + /* Extract left and right halves L[n-1] and R[n-1] */ + left = block->left.dword; + right = block->right.dword; + DBGC2 ( block, "DES L=%08x R=%08x K=%08x%08x", be32_to_cpu ( left ), + be32_to_cpu ( right ), be32_to_cpu ( rkey->dword[0] ), + be32_to_cpu ( rkey->dword[1] ) ); + + /* L[n] = R[n-1] */ + block->left.dword = right; + + /* Calculate Feistel function f(R[n-1], K[n]) */ + sbox.dword = cpu_to_be32 ( des_sbox ( be32_to_cpu ( right ), rkey ) ); + des_permute ( des_p, sbox.byte, block->right.byte ); + + /* R[n] = L[n-1] + f(R[n-1], K[n]) */ + block->right.dword ^= left; + DBGC2 ( block, " => L=%08x R=%08x\n", + be32_to_cpu ( block->left.dword ), + be32_to_cpu ( block->right.dword ) ); +} + +/** + * Perform all DES rounds + * + * @v in Input DES block + * @v out Output DES block + * @v rkey Starting 48-bit round key + * @v offset Byte offset between round keys + */ +static void des_rounds ( const union des_block *in, union des_block *out, + const union des_round_key *rkey, + ssize_t offset ) { + union des_block tmp; + unsigned int i; + + /* Apply initial permutation */ + des_permute ( des_ip, in->byte, tmp.byte ); + + /* Perform all DES rounds, consuming keys in the specified order */ + for ( i = 0 ; i < DES_ROUNDS ; i++ ) { + des_round ( &tmp, rkey ); + rkey = ( ( ( void * ) rkey ) + offset ); + } + + /* Apply final permutation */ + DBGC ( &tmp, "DES %scrypted %08x%08x => ", + ( ( offset > 0 ) ? "en" : "de" ), be32_to_cpu ( in->dword[0] ), + be32_to_cpu ( in->dword[1] ) ); + des_permute ( des_fp, tmp.byte, out->byte ); + DBGC ( &tmp, "%08x%08x\n", be32_to_cpu ( out->dword[0] ), + be32_to_cpu ( out->dword[1] ) ); +} + +/** + * Rotate 28-bit word + * + * @v dword 28-bit dword value + * @ret dword Rotated 28-bit dword value + */ +static uint32_t des_rol28 ( uint32_t dword ) { + int32_t sdword; + + /* Convert to native-endian */ + sdword = be32_to_cpu ( dword ); + + /* Signed shift right by 4 places to copy bit 31 to bits 27:31 */ + sdword >>= 4; + + /* Rotate left */ + sdword = rol32 ( sdword, 1 ); + + /* Shift left by 4 places to restore bit positions */ + sdword <<= 4; + + /* Convert back to big-endian */ + dword = cpu_to_be32 ( sdword ); + + return dword; +} + +/** + * Set key + * + * @v ctx Context + * @v key Key + * @v keylen Key length + * @ret rc Return status code + */ +static int des_setkey ( void *ctx, const void *key, size_t keylen ) { + struct des_context *des = ctx; + union des_round_key *rkey = des->rkey; + union des_block reg; + uint32_t schedule; + + /* Validate key length */ + if ( keylen != DES_BLOCKSIZE ) + return -EINVAL; + DBGC ( des, "DES %p new key:\n", des ); + DBGC_HDA ( des, 0, key, keylen ); + + /* Apply permuted choice 1 */ + des_permute ( des_pc1c, key, reg.c.byte ); + des_permute ( des_pc1d, key, reg.d.byte ); + reg.d.byte[3] <<= 4; /* see comment for @c des_pc1d */ + DBGC2 ( des, "DES %p C[ 0]=%07x D[ 0]=%07x\n", + des, ( be32_to_cpu ( reg.c.dword ) >> 4 ), + ( be32_to_cpu ( reg.d.dword ) >> 4 ) ); + + /* Generate round keys */ + for ( schedule = DES_SCHEDULE ; schedule ; schedule >>= 1 ) { + + /* Shift 28-bit words */ + reg.c.dword = des_rol28 ( reg.c.dword ); + reg.d.dword = des_rol28 ( reg.d.dword ); + + /* Skip rounds according to shift schedule */ + if ( ! ( schedule & 1 ) ) + continue; + + /* Apply permuted choice 2 */ + des_permute ( des_pc2, reg.byte, rkey->byte ); + DBGC2 ( des, "DES %p C[%2zd]=%07x D[%2zd]=%07x K[%2zd]=" + "%08x%08x\n", des, ( ( rkey - des->rkey ) + 1 ), + ( be32_to_cpu ( reg.c.dword ) >> 4 ), + ( ( rkey - des->rkey ) + 1 ), + ( be32_to_cpu ( reg.d.dword ) >> 4 ), + ( ( rkey - des->rkey ) + 1 ), + be32_to_cpu ( rkey->dword[0] ), + be32_to_cpu ( rkey->dword[1] ) ); + + /* Move to next key */ + rkey++; + } + + /* Sanity check */ + assert ( rkey == &des->rkey[DES_ROUNDS] ); + + return 0; +} + +/** + * Encrypt data + * + * @v ctx Context + * @v src Data to encrypt + * @v dst Buffer for encrypted data + * @v len Length of data + */ +static void des_encrypt ( void *ctx, const void *src, void *dst, size_t len ) { + struct des_context *des = ctx; + + /* Sanity check */ + assert ( len == DES_BLOCKSIZE ); + + /* Cipher using keys in forward direction */ + des_rounds ( src, dst, &des->rkey[0], sizeof ( des->rkey[0] ) ); +} + +/** + * Decrypt data + * + * @v ctx Context + * @v src Data to decrypt + * @v dst Buffer for decrypted data + * @v len Length of data + */ +static void des_decrypt ( void *ctx, const void *src, void *dst, size_t len ) { + struct des_context *des = ctx; + + /* Sanity check */ + assert ( len == DES_BLOCKSIZE ); + + /* Cipher using keys in reverse direction */ + des_rounds ( src, dst, &des->rkey[ DES_ROUNDS - 1 ], + -sizeof ( des->rkey[0] ) ); +} + +/** Basic DES algorithm */ +struct cipher_algorithm des_algorithm = { + .name = "des", + .ctxsize = sizeof ( struct des_context ), + .blocksize = DES_BLOCKSIZE, + .alignsize = 0, + .authsize = 0, + .setkey = des_setkey, + .setiv = cipher_null_setiv, + .encrypt = des_encrypt, + .decrypt = des_decrypt, + .auth = cipher_null_auth, +}; + +/* DES in Electronic Codebook mode */ +ECB_CIPHER ( des_ecb, des_ecb_algorithm, + des_algorithm, struct des_context, DES_BLOCKSIZE ); + +/* DES in Cipher Block Chaining mode */ +CBC_CIPHER ( des_cbc, des_cbc_algorithm, + des_algorithm, struct des_context, DES_BLOCKSIZE ); |