| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently free an unclaimed cached DHCPACK immediately after
startup, in order to free up memory. This prevents the cached DHCPACK
from being applied to a device that is created after startup, such as
a VLAN device created via the "vcreate" command.
Retain any unclaimed DHCPACK after startup to allow it to be matched
against (and applied to) any device that gets created at runtime.
Free the DHCPACK during shutdown if it still remains unclaimed, in
order to exit with memory cleanly freed.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When chainloading iPXE from a VLAN device, the MAC address within the
cached DHCPACK will match the MAC address of the trunk device created
by iPXE, and the cached DHCPACK will then end up being erroneously
applied to the trunk device. This tends to break outbound IPv4
routing, since both the trunk and VLAN devices will have the same
assigned IPv4 address.
Fix by recording the VLAN tag along with the cached DHCPACK, and
treating the VLAN tag as part of the filter used to match the cached
DHCPACK against candidate network devices.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
EFI provides no API for determining the VLAN tag (if any) for a
specified device handle. There is the EFI_VLAN_CONFIG_PROTOCOL, but
that exists only on the trunk device handle (not on the VLAN device
handle), and provides no way to match VLAN tags against the trunk
device's child device handles.
The EDK2 codebase seems to rely solely on the device path to determine
the VLAN tag for a specified device handle: both NetLibGetVlanId() and
BmGetNetworkDescription() will parse the device path to search for a
VLAN_DEVICE_PATH component.
Add efi_path_vlan() which uses the same device path parsing logic to
determine the VLAN tag.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Provide a single central implementation of the logic for stepping
through elements of an EFI device path.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
UEFI implements VLAN support within the Managed Network Protocol (MNP)
driver, which may create child VLAN devices automatically based on
stored UEFI variables. These child devices do not themselves provide
a raw-packet interface via EFI_SIMPLE_NETWORK_PROTOCOL, and may be
consumed only via the EFI_MANAGED_NETWORK_PROTOCOL interface.
The device paths constructed for these child devices may conflict with
those for the EFI_SIMPLE_NETWORK_PROTOCOL instances that iPXE attempts
to install for its own VLAN devices. The upshot is that creating an
iPXE VLAN device (e.g. via the "vcreate" command) will fail if the
UEFI Managed Network Protocol has already created a device for the
same VLAN tag.
Fix by providing our own EFI_VLAN_CONFIG_PROTOCOL instance on the same
device handle as EFI_SIMPLE_NETWORK_PROTOCOL. This causes the MNP
driver to treat iPXE's device as supporting hardware VLAN offload, and
it will therefore not attempt to install its own instance of the
protocol.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The dangling pointer warning introduced in GCC 12 reports false
positives that result in build failures. In particular, storing the
address of a local code label used to record the current state of a
state machine (as done in crypto/deflate.c) is reported as an error.
There seems to be no way to mark the pointer type as being permitted
to hold such a value, so unconditionally disable the warning.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The array bounds checker on GCC 12 and newer reports a very large
number of false positives that result in build failures. In
particular, accesses through pointers to zero-length arrays (such as
those used by the linker table mechanism in include/ipxe/tables.h) are
reported as errors, contrary to the GCC documentation.
Work around this GCC issue by unconditionally disabling the warning.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
| |
Signed-off-by: Christian I. Nilsson <nikize@gmail.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The behaviour of PCI devices across a function-level reset seems to be
inconsistent in practice: some devices will preserve PCI BARs, some
will not.
Fix the behaviour of FLR on devices that do not preserve PCI BARs by
backing up and restoring PCI configuration space across the reset.
Preserve only the standard portion of the configuration space, since
there may be registers with unexpected side effects in the remaining
non-standardised space.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
| |
TLS relies upon the ability of ciphers to perform in-place decryption,
in order to avoid allocating additional I/O buffers for received data.
Add verification of in-place encryption and decryption to the cipher
self-tests.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The hash calculation is currently performed incorrectly when
decrypting in place, since the ciphertext will have been overwritten
with the plaintext before being used to update the hash value.
Restructure the code to allow for in-place encryption and decryption.
Choose to optimise for the decryption case, since we are likely to
decrypt much more data than we encrypt.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
| |
TLS relies upon the ability to reuse a cipher by resetting only the
initialisation vector while reusing the existing key.
Add verification of resetting the initialisation vector to the cipher
self-tests.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Reset the accumulated authentication state when cipher_setiv() is
called, to allow the cipher to be reused without resetting the key.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
All existing cipher suites use SHA-256 as the TLSv1.2 and above
handshake digest algorithm (even when using SHA-1 as the MAC digest
algorithm). Some GCM cipher suites use SHA-384 as the handshake
digest algorithm.
Allow the cipher suite to specify the handshake (and PRF) digest
algorithm to be used for TLSv1.2 and above.
This requires some restructuring to allow for the fact that the
ClientHello message must be included within the handshake digest, even
though the relevant digest algorithm is not yet known at the point
that the ClientHello is sent. Fortunately, the ClientHello may be
reproduced verbatim at the point of receiving the ServerHello, so we
rely on reconstructing (rather than storing) this message.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Always send the maximum supported version in our ClientHello message,
even when performing renegotiation (in which case the current version
may already be lower than the maximum supported version).
This is permitted by the specification, and allows the ClientHello to
be reconstructed verbatim at the point of selecting the handshake
digest algorithm in tls_new_server_hello().
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
Allow for AEAD cipher suites where the MAC length may be zero and the
authentication is instead provided by an authenticating cipher, with
the plaintext authentication tag appended to the ciphertext.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
Harden against padding oracle attacks by treating invalid block
padding as zero length padding, thereby deferring the failure until
after computing the (incorrect) MAC.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
| |
Restructure the encryption and decryption operations to allow for the
use of ciphers where the initialisation vector is constructed by
concatenating the fixed IV (derived as part of key expansion) with a
record IV (prepended to the ciphertext).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TLS stream and block ciphers use a MAC with a length equal to the
output length of the digest algorithm in use. For AEAD ciphers there
is no MAC, with the equivalent functionality provided by the cipher
algorithm's authentication tag.
Allow for the existence of AEAD cipher suites by making the MAC length
a parameter of the cipher suite.
Assume that the MAC key length is equal to the MAC length, since this
is true for all currently supported cipher suites.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
All TLS cipher types use a common structure for the per-record data
that is authenticated in addition to the plaintext itself. This data
is used as a prefix in the HMAC calculation for stream and block
ciphers, or as additional authenticated data for AEAD ciphers.
Define a "TLS authentication header" structure to hold this data as a
contiguous block, in order to meet the alignment requirement for AEAD
ciphers such as GCM.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
Adjust the length of the first received ciphertext data buffer to
ensure that all decryption operations respect the cipher's alignment
size.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The GCM cipher mode of operation (in common with other counter-based
modes of operation) has a notion of blocksize that does not neatly
fall into our current abstraction: it does operate in 16-byte blocks
but allows for an arbitrary overall data length (i.e. the final block
may be incomplete).
Model this by adding a concept of alignment size. Each call to
encrypt() or decrypt() must begin at a multiple of the alignment size
from the start of the data stream. This allows us to model GCM by
using a block size of 1 byte and an alignment size of 16 bytes.
As a side benefit, this same concept allows us to neatly model the
fact that raw AES can encrypt only a single 16-byte block, by
specifying an alignment size of zero on this cipher.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TLS block ciphers always use CBC (as per RFC 5246 section 6.2.3.2)
with a record initialisation vector length that is equal to the cipher
block size, and no fixed initialisation vector.
The initialisation vector for AEAD ciphers such as GCM is less
straightforward, and requires both a fixed and per-record component.
Extend the definition of a cipher suite to include fixed and record
initialisation vector lengths, and generate the fixed portion (if any)
as part of key expansion.
Do not add explicit calls to cipher_setiv() in tls_assemble_block()
and tls_split_block(), since the constraints imposed by RFC 5246 are
specifically chosen to allow implementations to avoid doing so.
(Instead, add a sanity check that the record initialisation vector
length is equal to the cipher block size.)
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The TLSv1.0 protocol was deprecated by RFC 8996 (along with TLSv1.1),
and has been disabled by default in iPXE since commit dc785b0fb
("[tls] Default to supporting only TLSv1.1 or above") in June 2020.
While there is value in continuing to support older protocols for
interoperability with older server appliances, the additional
complexity of supporting the implicit initialisation vector for
TLSv1.0 is not worth the cost.
Remove support for the obsolete TLSv1.0 protocol, to reduce complexity
of the implementation and simplify ongoing maintenance.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The DMA mapping is performed implicitly as part of the call to
dma_alloc(). The current implementation creates the IOMMU mapping for
the allocated and potentially uninitialised data before returning to
the caller (which will immediately zero out or otherwise initialise
the buffer). This leaves a small window within which a malicious PCI
device could potentially attempt to retrieve firmware-owned secrets
present in the uninitialised buffer. (Note that the hypothetically
malicious PCI device has no viable way to know the address of the
buffer from which to attempt a DMA read, rendering the attack
extremely implausible.)
Guard against any such hypothetical attacks by zeroing out the
allocated buffer prior to creating the coherent DMA mapping.
Suggested-by: Mateusz Siwiec <Mateusz.Siwiec@ioactive.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
bzimage_parse_cmdline() uses strcmp() to identify the named "vga=..."
kernel command line option values, which will give a false negative if
the option is not last on the command line.
Fix by temporarily changing the relevant command line separator (if
any) to a NUL terminator.
Debugged-by: Simon Rettberg <simon.rettberg@rz.uni-freiburg.de>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
Some ciphers (such as GCM) support the concept of a tag that can be
used to authenticate the encrypted data. Add a cipher method for
generating an authentication tag.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Some ciphers (such as GCM) support the concept of additional
authenticated data, which does not appear in the ciphertext but may
affect the operation of the cipher.
Allow cipher_encrypt() and cipher_decrypt() to be called with a NULL
destination buffer in order to pass additional data.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Allow for the key exchange mechanism to vary depending upon the
selected cipher suite.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Accept and record the ServerKeyExchange record, which is required for
key exchange mechanisms such as Ephemeral Diffie-Hellman (DHE).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The pre-master secret is currently constructed at the time of
instantiating the TLS connection. This precludes the use of key
exchange mechanisms such as Ephemeral Diffie-Hellman (DHE), which
require a ServerKeyExchange message to exchange additional key
material before the pre-master secret can be constructed.
Allow for the use of such cipher suites by deferring generation of the
master secret until the point of sending the ClientKeyExchange
message.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The master secret is currently constructed upon receiving the
ServerHello message. This precludes the use of key exchange
mechanisms such as Ephemeral Diffie-Hellman (DHE), which require a
ServerKeyExchange message to exchange additional key material before
the pre-master secret and master secret can be constructed.
Allow for the use of such cipher suites by deferring generation of the
master secret until the point of sending the ClientKeyExchange
message.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
Add an implementation of the Ephemeral Diffie-Hellman key exchange
algorithm as defined in RFC2631, with test vectors taken from the NIST
Cryptographic Toolkit.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Simplify the internal HMAC API so that the key is provided only at the
point of calling hmac_init(), and the (potentially reduced) key is
stored as part of the context for later use by hmac_final().
This simplifies the calling code, and avoids the need for callers such
as TLS to allocate a potentially variable length block in order to
retain a copy of the unmodified key.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The HMAC code is already tested indirectly via several consuming
algorithms that themselves provide self-tests (e.g. HMAC-DRBG, NTLM
authentication, and PeerDist content identification), but lacks any
direct test vectors.
Add explicit HMAC tests and ensure that corner cases such as empty
keys, block-length keys, and over-length keys are all covered.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some BIOSes in AWS EC2 (observed with a c6i.metal instance in
eu-west-2) will fail to assign an MMIO address to the ENA device,
which causes ioremap() to fail.
Experiments show that the ENA device is the only device behind its
bridge, even when multiple ENA devices are present, and that the BIOS
does assign a memory window to the bridge.
We may therefore choose to assign the device an MMIO address at the
start of the bridge's memory window.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Add a minimal driver for PCI bridges that can be used to locate the
bridge to which a PCI device is attached.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Pretty much all physical machines and off-the-shelf virtual machines
will provide a functional PCI BIOS. We therefore default to using
only the PCI BIOS, with no fallback to an alternative mechanism if the
PCI BIOS fails.
AWS EC2 provides the opportunity to experience some exceptions to this
rule. For example, the t3a.nano instances in eu-west-1 have no
functional PCI BIOS at all. As of commit 83516ba ("[cloud] Use
PCIAPI_DIRECT for cloud images") we therefore use direct Type 1
configuration space accesses in the images built and published for use
in the cloud.
Recent experience has discovered yet more variation in AWS EC2
instances. For example, some of the metal instance types have
multiple PCI host bridges and the direct Type 1 accesses therefore
see only a subset of the PCI devices.
Attempt to accommodate future such variations by making the PCI I/O
API selectable at runtime and choosing ECAM (if available), falling
back to the PCI BIOS (if available), then finally falling back to
direct Type 1 accesses.
This is implemented as a dedicated PCIAPI_CLOUD API, rather than by
having the PCI core select a suitable API at runtime (as was done for
timers in commit 302f1ee ("[time] Allow timer to be selected at
runtime"). The common case will remain that only the PCI BIOS API is
required, and we would prefer to retain the optimisations that come
from inlining the configuration space accesses in this common case.
Cloud images are (at present) disk images rather than ROM images, and
so the increased code size required for this design approach in the
PCIAPI_CLOUD case is acceptable.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Allow pcibios_discover() to return an empty range if the INT 1A,B101
PCI BIOS installation check call fails.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The ACPI MCFG table describes a direct mapping of PCI configuration
space into MMIO space. This mapping allows access to extended
configuration space (up to 4096 bytes) and also provides for the
existence of multiple host bridges.
Add support for the ECAM mechanism described by the ACPI MCFG table,
as a selectable PCI I/O API alongside the existing PCI BIOS and Type 1
mechanisms.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
| |
Allow pci_find_next() to discover devices beyond the first PCI
segment, by generalising pci_num_bus() (which implicitly assumes that
there is only a single PCI segment) with pci_discover() (which has the
ability to return an arbitrary contiguous chunk of PCI bus:dev.fn
address space).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|