| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
iPXE currently assumes that DMA-capable devices can directly address
physical memory using host addresses. This assumption fails when
using an IOMMU.
Define an internal DMA API with two implementations: a "flat"
implementation for use in legacy BIOS or other environments in which
flat physical addressing is guaranteed to be used and all allocated
physical addresses are guaranteed to be within a 32-bit address space,
and an "operations-based" implementation for use in UEFI or other
environments in which DMA mapping may require bus-specific handling.
The purpose of the fully inlined "flat" implementation is to allow the
trivial identity DMA mappings to be optimised out at build time,
thereby avoiding an increase in code size for legacy BIOS builds.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The malloc_dma() function allocates memory with specified physical
alignment, and is typically (though not exclusively) used to allocate
memory for DMA.
Rename to malloc_phys() to more closely match the functionality, and
to create name space for functions that specifically allocate and map
DMA-capable buffers.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Provide opened EFI PCI devices with access to the underlying
EFI_PCI_IO_PROTOCOL instance, in order to facilitate the future use of
the DMA mapping methods within the fast data path.
Do not require the use of this stored EFI_PCI_IO_PROTOCOL instance for
memory-mapped I/O (since the entire point of memory-mapped I/O as a
concept is to avoid this kind of unnecessary complexity) or for
slow-path PCI configuration space accesses (since these may be
required for access to PCI bus:dev.fn addresses that do not correspond
to a device bound via our driver binding protocol instance).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The legacy transmit descriptor index is not reset by anything short of
a full device reset. This can cause the legacy transmit ring to stall
after closing and reopening the device, since the hardware and
software indices will be out of sync.
Fix by performing a reset after closing the interface. Do this only
if operating in legacy mode, since in C+ mode the reset is not
required and would undesirably clear additional state (such as the C+
command register itself).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some UEFI systems (observed with a Supermicro X11SPG-TF motherboard)
seem to fail to provide a valid ACPI address space descriptor for the
MMIO address space associated with a PCI root bridge.
If no valid descriptor can be found, fall back to assuming that the
MMIO address space is identity mapped, thereby matching the behaviour
prior to commit 27e886c ("[efi] Use address offset as reported by
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL").
Debugged-by: Tore Anderson <tore@fud.no>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 87e39a9c9 ("[efi] Split efi_usb_path() out to a separate
function") unintentionally introduced an undefined symbol reference
from efi_path.o to usb_depth(), causing the USB subsystem to become a
dependency of all EFI builds.
Fix by converting usb_depth() to a static inline function.
Reported-by: Pico Mitchell <pico@randomapplications.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The UEFI specification allows uninstallation of a protocol interface
to fail. There is no sensible way for code to react to this, since
uninstallation is likely to be taking place on a code path that cannot
itself fail (e.g. a code path that is itself a failure path).
Where the protocol structure exists within a dynamically allocated
block of memory, this leads to possible use-after-free bugs. Work
around this unfortunate design choice by nullifying the protocol
(i.e. overwriting the method pointers with no-ops) and leaking the
memory containing the protocol structure.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Use the device path constructed via efi_describe() for the installed
EFI_BLOCK_IO_PROTOCOL device handle.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
| |
The UEFI specification provides a partial definition of an Infiniband
device path structure. Use this structure to construct what may be a
plausible path containing at least some of the information required to
identify an SRP target device.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
The ACPI table contents are typically large and are likely to cause
any preceding error messages to scroll off-screen.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is no standard defined for AoE device paths in the UEFI
specification, and it seems unlikely that any standard will be adopted
in future.
Choose to construct an AoE device path using a concatenation of the
network device path and a SATA device path, treating the AoE major and
minor numbers as the HBA port number and port multiplier port number
respectively.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Provide efi_netdev_path() as a standalone function, to allow for reuse
when constructing child device paths.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Provide efi_usb_path() as a standalone function, to allow for reuse by
the USB mass storage driver.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Allow arbitrary objects to support describing themselves using an EFI
device path.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Allow an interface operation to be declared as unused. This will
perform full type-checking and compilation of the implementing method,
without including any code in the resulting object (other than a NULL
entry in the interface operations table).
The intention is to provide a relatively clean way for interface
operation methods to be omitted in builds for which the operation is
not required (such as an operation to describe an object using an EFI
device path, which would not be required in a non-EFI build).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Now that IPv6 is enabled by default for UEFI builds, it is important
that iPXE does not delay unnecessarily in the (still relatively
common) case of a network that lacks IPv6 routers.
Apply the timeout values used for neighbour discovery to the router
discovery process.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
IPv6 PXE was included in the UEFI specification over eight years ago,
specifically in version 2.3 (Errata D).
http://www.uefi.org/sites/default/files/resources/UEFI_Spec_2_3_D.pdf
When iPXE is being chainloaded from a UEFI firmware performing a PXE
boot in an IPv6 network, it is essential that iPXE supports IPv6 as
well.
I understand that the reason for NET_PROTO_IPV6 being disabled by
default (in src/config/general.h) is that it would cause certain
space-constrained build targets to become too large. However, this
should not be an issue for EFI builds.
It is also worth noting that RFC 6540 makes a clear recommendation
that IPv6 support should not be considered optional.
https://tools.ietf.org/html/rfc6540
Modified-by: Michael Brown <mcb30@ipxe.org>
Signed-off-by: Tore Anderson <tore@fud.no>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The LACP responder reuses the received I/O buffer to construct the
response LACP (or marker) packet. Any received padding will therefore
be unintentionally included within the response.
Truncate the received I/O buffer to the expected length (which is
already defined in a way to allow for future protocol expansion)
before reusing it to construct the response.
Reported-by: Tore Anderson <tore@fud.no>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some external drivers (observed with the UEFI NII driver provided by
an HPE-branded Mellanox ConnectX-3 Pro) seem to cause LACP packets
transmitted by iPXE to be looped back as received packets. Since
iPXE's trivial LACP responder will send one response per received
packet, this results in an immediate LACP packet storm.
Detect looped back LACP packets (based on the received LACP actor MAC
address), and refuse to respond to such packets.
Reported-by: Tore Anderson <tore@fud.no>
Tested-by: Tore Anderson <tore@fud.no>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When iPXE is downloading a file from an EFI_FILE_PROTOCOL instance
backed by an EFI_BLOCK_IO_PROTOCOL instance provided by the same iPXE
binary (e.g. via a hooked SAN device), then it is possible for step()
to be invoked as a result of the calls into the EFI_BLOCK_IO_PROTOCOL
methods. This can potentially result in efi_local_step() being run
prematurely, before the file has been opened and before the parent
interface has been attached.
Fix by deferring starting the download process until immediately prior
to returning from efi_local_open().
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some UEFI BIOSes (observed with at least the Insyde UEFI BIOS on a
Microsoft Surface Go) provide a very broken version of the
UsbMassStorageDxe driver that is incapable of binding to the standard
EFI_USB_IO_PROTOCOL instances and instead relies on an undocumented
proprietary protocol (with GUID c965c76a-d71e-4e66-ab06-c6230d528425)
installed by the platform's custom version of UsbCoreDxe.
The upshot is that USB mass storage devices become inaccessible once
iPXE's native USB host controller drivers are loaded.
One possible workaround is to load a known working version of
UsbMassStorageDxe (e.g. from the EDK2 tree): this driver will
correctly bind to the standard EFI_USB_IO_PROTOCOL instances exposed
by iPXE. This workaround is ugly in practice, since it involves
embedding UsbMassStorageDxe.efi into the iPXE binary and including an
embedded script to perform the required "chain UsbMassStorageDxe.efi".
Provide a native USB mass storage driver for iPXE, allowing USB mass
storage devices to be exposed as iPXE SAN devices.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
iPXE will often have multiple drivers available for a USB device. For
example: some USB network devices will support both RNDIS and CDC-ECM,
and any device may be consumed by the fallback "usbio" driver under
UEFI in order to expose an EFI_USB_IO_PROTOCOL instance.
The driver scoring mechanism is used to select a device configuration
based on the availability of drivers for the interfaces exposed in
each configuration.
For the case of RNDIS versus CDC-ECM, this mechanism will always
produce the correct result since RNDIS and CDC-ECM will not exist
within the same configuration and so each configuration will receive a
score based on the relevant driver.
This guarantee does not hold for the "usbio" driver, which will match
against any device. It is a surprising coincidence that the "usbio"
driver seems to usually end up at the tail end of the USB drivers
list, thereby resulting in the expected behaviour.
Guarantee the expected behaviour by explicitly placing the "usbio"
driver at the end of the USB drivers list.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
For USB mass storage devices, we do not want to submit more bulk IN
packets than are required for the inbound data, since this will waste
memory.
Allow an upper limit to be specified on each refill attempt. The
endpoint will be refilled to the lower of this limit or the limit
specified by usb_refill_init().
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Closing and reopening a USB endpoint will clear any halt status
recorded by the host controller, but may leave the endpoint halted at
the device. This will cause the first packet submitted to the
reopened endpoint to be lost, before the automatic stall recovery
mechanism detects the halt and resets the endpoint.
This is relatively harmless for USB network or HID devices, since the
wire protocols will recover gracefully from dropped packets. Some
protocols (e.g. for USB mass storage devices) assume zero packet loss
and so would be adversely affected.
Fix by allowing any device endpoint halt status to be cleared on a
freshly opened endpoint.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
There appears to be no reason for avoiding recursion when calling
ConnectController(), and recursion provides the least surprising
behaviour.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
iPXE is already capable of loading EFI drivers on demand (via
e.g. "chain UsbMassStorageDxe.efi") but there is currently no way to
trigger connection of the driver to any preexisting handles.
Add an explicit call to (re)connect all drivers after successfully
loading an image with a code type that indicates a boot services
driver.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
A zero divisor will currently lead to a 16-bit integer overflow when
calculating the transmit padding, and a potential division by zero if
assertions are enabled.
Avoid these problems by treating a divisor value of zero as equivalent
to a divisor value of one (i.e. no alignment requirements).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
The length as returned by UsbGetSupportedLanguages() should not
include the length of the descriptor header itself.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
| |
Allow temporary debugging code to call efi_wrap_systab() to obtain a
pointer to the wrapper EFI system table. This can then be used to
e.g. forcibly overwrite the boot services table pointer used by an
already loaded and running UEFI driver, in order to trace calls made
by that driver.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The call to UninstallMultipleProtocolInterfaces() will implicitly
disconnect any relevant controllers, and there is no specified
requirement to explicitly call DisconnectController() prior to
callling UninstallMultipleProtocolInterfaces().
However, some UEFI implementations (observed with the USB keyboard
driver on a Microsoft Surface Go) will fail to implicitly disconnect
the controller and will consequently fail to uninstall the protocols.
The net effect is that unplugging and replugging a USB keyboard may
leave the keyboard in a non-functional state.
Work around these broken UEFI implementations by including an
unnecessary call to DisconnectController() before the call to
UninstallMultipleProtocolInterfaces().
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some UEFI USB drivers (e.g. the UsbKbDxe driver in EDK2) will react to
a reported EFI_USB_ERR_STALL by attempting to clear the endpoint halt.
This is redundant with iPXE's EFI_USB_IO_PROTOCOL implementation,
since endpoint stalls are cleared automatically by the USB core as
needed.
The UEFI USB driver's attempt to clear the endpoint halt can introduce
an unwanted 5 second delay per endpoint if the USB error was the
result of a device being physically removed, since the control
transfer will always time out.
Fix by reporting all USB errors as EFI_USB_ERR_SYSTEM instead of
EFI_USB_ERR_STALL.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some UEFI USB drivers (observed with the keyboard driver on a
Microsoft Surface Go) will react to an asynchronous USB transfer
failure by terminating the transfer from within the completion
handler. This closes the USB endpoint and, in the current
implementation, frees the containing structure.
This can lead to use-after-free bugs after the UEFI USB driver's
completion handler returns, since the calling code in iPXE expects
that a completion handler will not perform a control-flow action such
as terminating the transfer.
Fix by leaving the USB endpoint structure allocated until the device
is finally removed, as is already done (as an optimisation) for
control and bulk transfers.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The current error handling mechanism defers the endpoint reset until
the next use of the endpoint, on the basis that errors are detected
during completions and completion handling should not recursively call
usb_poll().
In the case of usb_control(), we are already at the level that calls
usb_poll() and can therefore safely perform the endpoint reset
immediately. This has no impact on functionality, but does make
debugging traces easier to read since the reset will appear
immediately after the causative error.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
| |
Retrieve the address windows and translation offsets for the
appropriate PCI root bridge and use them to adjust the PCI BAR address
prior to calling ioremap().
Originally-implemented-by: Pankaj Bansal <pankaj.bansal@nxp.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|