| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
| |
Running with flat physical addressing is a fairly common early boot
environment. Rename UACCESS_EFI to UACCESS_FLAT so that this code may
be reused in non-UEFI boot environments that also use flat physical
addressing.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Montgomery multiplication requires calculating the inverse of the
modulus modulo a larger power of two.
Add bigint_mod_invert() to calculate the inverse of any (odd) big
integer modulo an arbitrary power of two, using a lightly modified
version of the algorithm presented in "A New Algorithm for Inversion
mod p^k (KoƧ, 2017)".
The power of two is taken to be 2^k, where k is the number of bits
available in the big integer representation of the invertend. The
inverse modulo any smaller power of two may be obtained simply by
masking off the relevant bits in the inverse.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Allow scripts to read basic information from USB device descriptors
via the settings mechanism. For example:
echo USB vendor ID: ${usb/${busloc}.8.2}
echo USB device ID: ${usb/${busloc}.10.2}
echo USB manufacturer name: ${usb/${busloc}.14.0}
The general syntax is
usb/<bus:dev>.<offset>.<length>
where bus:dev is the USB bus:device address (as obtained via the
"usbscan" command, or from e.g. ${net0/busloc} for a USB network
device), and <offset> and <length> select the required portion of the
USB device descriptor.
Following the usage of SMBIOS settings tags, a <length> of zero may be
used to indicate that the byte at <offset> contains a USB string
descriptor index, and an <offset> of zero may be used to indicate that
the <length> contains a literal USB string descriptor index.
Since the byte at offset zero can never contain a string index, and a
literal string index can never be zero, the combination of both
<length> and <offset> being zero may be used to indicate that the
entire device descriptor is to be read as a raw hex dump.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
Implement a "usbscan" command as a direct analogy of the existing
"pciscan" command, allowing scripts to iterate over all detected USB
devices.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Faster modular multiplication algorithms such as Montgomery
multiplication will still require the ability to perform a single
direct modular reduction.
Neaten up the implementation of direct reduction and split it out into
a separate bigint_reduce() function, complete with its own unit tests.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Every architecture uses the same implementation for bigint_is_set(),
and there is no reason to suspect that a future CPU architecture will
provide a more efficient way to implement this operation.
Simplify the code by providing a single architecture-independent
implementation of bigint_is_set().
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
The big integer shift operations are misleadingly described as
rotations since the original x86 implementations are essentially
trivial loops around the relevant rotate-through-carry instruction.
The overall operation performed is a shift rather than a rotation.
Update the function names and descriptions to reflect this.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
An n-bit multiplication product may be added to up to two n-bit
integers without exceeding the range of a (2n)-bit integer:
(2^n - 1)*(2^n - 1) + (2^n - 1) + (2^n - 1) = 2^(2n) - 1
Exploit this to perform big integer multiplication in constant time
without requiring the caller to provide temporary carry space.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
All consumers of profile_timestamp() currently treat the value as an
unsigned long. Only the elapsed number of ticks is ever relevant: the
absolute value of the timestamp is not used. Profiling is used to
measure short durations that are generally fewer than a million CPU
cycles, for which an unsigned long is easily large enough.
Standardise the return type of profile_timestamp() as unsigned long
across all CPU architectures. This allows 32-bit architectures such
as i386 and riscv32 to omit all logic associated with retrieving the
upper 32 bits of the 64-bit hardware counter, which simplifies the
code and allows riscv32 and riscv64 to share the same implementation.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Big integer multiplication currently performs immediate carry
propagation from each step of the long multiplication, relying on the
fact that the overall result has a known maximum value to minimise the
number of carries performed without ever needing to explicitly check
against the result buffer size.
This is not a constant-time algorithm, since the number of carries
performed will be a function of the input values. We could make it
constant-time by always continuing to propagate the carry until
reaching the end of the result buffer, but this would introduce a
large number of redundant zero carries.
Require callers of bigint_multiply() to provide a temporary carry
storage buffer, of the same size as the result buffer. This allows
the carry-out from the accumulation of each double-element product to
be accumulated in the temporary carry space, and then added in via a
single call to bigint_add() after the multiplication is complete.
Since the structure of big integer multiplication is identical across
all current CPU architectures, provide a single shared implementation
of bigint_multiply(). The architecture-specific operation then
becomes the multiplication of two big integer elements and the
accumulation of the double-element product.
Note that any intermediate carry arising from accumulating the lower
half of the double-element product may be added to the upper half of
the double-element product without risk of overflow, since the result
of multiplying two n-bit integers can never have all n bits set in its
upper half. This simplifies the carry calculations for architectures
such as RISC-V and LoongArch64 that do not have a carry flag.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for building iPXE as a 64-bit or 32-bit RISC-V binary, for
either UEFI or Linux userspace platforms. For example:
# RISC-V 64-bit UEFI
make CROSS=riscv64-linux-gnu- bin-riscv64-efi/ipxe.efi
# RISC-V 32-bit UEFI
make CROSS=riscv64-linux-gnu- bin-riscv32-efi/ipxe.efi
# RISC-V 64-bit Linux
make CROSS=riscv64-linux-gnu- bin-riscv64-linux/tests.linux
qemu-riscv64 -L /usr/riscv64-linux-gnu/sys-root \
./bin-riscv64-linux/tests.linux
# RISC-V 32-bit Linux
make CROSS=riscv64-linux-gnu- SYSROOT=/usr/riscv32-linux-gnu/sys-root \
bin-riscv32-linux/tests.linux
qemu-riscv32 -L /usr/riscv32-linux-gnu/sys-root \
./bin-riscv32-linux/tests.linux
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
| |
Define a cpu_halt() function which is architecture-specific but
platform-independent, and merge the multiple architecture-specific
implementations of the EFI cpu_nap() function into a single central
efi_cpu_nap() that uses cpu_halt() if applicable.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
The definitions of the setjmp() and longjmp() functions are common to
all architectures, with only the definition of the jump buffer
structure being architecture-specific.
Move the architecture-specific portions to bits/setjmp.h and provide a
common setjmp.h for the function definitions.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
Move the <gdbmach.h> file to <bits/gdbmach.h>, and provide a common
dummy implementation for all architectures that have not yet
implemented support for GDB.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
Simplify the process of adding a new CPU architecture by providing
common implementations of typically empty architecture-specific header
files.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
| |
This patch adds support for the AQtion Ethernet controller, enabling
iPXE to recognize and utilize the specific models (AQC114, AQC113, and
AQC107).
Tested-by: Animesh Bhatt <animeshb@marvell.com>
Signed-off-by: Animesh Bhatt <animeshb@marvell.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add the "imgdecrypt" command that can be used to decrypt a detached
encrypted data image using a cipher key obtained from a separate CMS
envelope image. For example:
# Create non-detached encrypted CMS messages
#
openssl cms -encrypt -binary -aes-256-gcm -recip client.crt \
-in vmlinuz -outform DER -out vmlinuz.cms
openssl cms -encrypt -binary -aes-256-gcm -recip client.crt \
-in initrd.img -outform DER -out initrd.img.cms
# Detach data from envelopes (using iPXE's contrib/crypto/cmsdetach)
#
cmsdetach vmlinuz.cms -d vmlinuz.dat -e vmlinuz.env
cmsdetach initrd.img.cms -d initrd.img.dat -e initrd.img.env
and then within iPXE:
#!ipxe
imgfetch http://192.168.0.1/vmlinuz.dat
imgfetch http://192.168.0.1/initrd.img.dat
imgdecrypt vmlinuz.dat http://192.168.0.1/vmlinuz.env
imgdecrypt initrd.img.dat http://192.168.0.1/initrd.img.env
boot vmlinuz
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
Add support for decrypting images containing detached encrypted data
using a cipher key obtained from a separate CMS envelope image (in DER
or PEM format).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Some ASN.1 OID-identified algorithms require additional parameters,
such as an initialisation vector for a block cipher. The structure of
the parameters is defined by the individual algorithm.
Extend asn1_algorithm() to allow these additional parameters to be
returned via a separate ASN.1 cursor.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
| |
Reduce the number of dynamic allocations required to parse a CMS
message by retaining the ASN.1 cursor returned from image_asn1() for
the lifetime of the CMS message. This allows embedded ASN.1 cursors
to be used for parsed objects within the message, such as embedded
signatures.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instances of cipher and digest algorithms tend to get called
repeatedly to process substantial amounts of data. This is not true
for public-key algorithms, which tend to get called only once or twice
for a given key.
Simplify the public-key algorithm API so that there is no reusable
algorithm context. In particular, this allows callers to omit the
error handling currently required to handle memory allocation (or key
parsing) errors from pubkey_init(), and to omit the cleanup calls to
pubkey_final().
This change does remove the ability for a caller to distinguish
between a verification failure due to a memory allocation failure and
a verification failure due to a bad signature. This difference is not
material in practice: in both cases, for whatever reason, the caller
was unable to verify the signature and so cannot proceed further, and
the cause of the error will be visible to the user via the return
status code.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The TLS connection structure has grown to become unmanageably large as
new features and support for new TLS protocol versions have been added
over time.
Split out the portions of struct tls_connection that are specific to
client and server operations into separate structures, and simplify
some structure field names.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The TLS connection structure has grown to become unmanageably large as
new features and support for new TLS protocol versions have been added
over time.
Split out the portions of struct tls_connection that are specific to
transmit and receive operations into separate structures, and simplify
some structure field names.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Asymmetric keys are invariably encountered within ASN.1 structures
such as X.509 certificates, and the various large integers within an
RSA key are themselves encoded using ASN.1.
Simplify all code handling asymmetric keys by passing keys as a single
ASN.1 cursor, rather than separate data and length pointers.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Generalise the logic for identifying the matching PCI root bridge I/O
protocol to allow for identifying the closest matching PCI bus:dev.fn
address range, and use this to provide PCI address range discovery
(while continuing to inhibit automatic PCI bus probing).
This allows the "pciscan" command to work as expected under UEFI.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The UEFI device model requires us to not probe the PCI bus directly,
but instead to wait to be offered the opportunity to drive devices via
our driver service binding handle.
We currently inhibit PCI bus probing by having pci_discover() return
an empty range when using the EFI PCI I/O API. This has the unwanted
side effect that scanning the bus manually using the "pciscan" command
will also fail to discover any devices.
Separate out the concept of being allowed to probe PCI buses from the
mechanism for discovering PCI bus:dev.fn address ranges, so that this
limitation may be removed.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is some exploitable similarity between the data structures used
for representing CMS signatures and CMS encryption keys. In both
cases, the CMS message fundamentally encodes a list of participants
(either message signers or message recipients), where each participant
has an associated certificate and an opaque octet string representing
the signature or encrypted cipher key. The ASN.1 structures are not
identical, but are sufficiently similar to be worth exploiting: for
example, the SignerIdentifier and RecipientIdentifier data structures
are defined identically.
Rename data structures and functions, and add the concept of a CMS
message type.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Extend the definition of an ASN.1 OID-identified algorithm to include
a potential cipher suite, and add identifiers for AES-CBC and AES-GCM.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The cms_signature() and cms_verify() functions currently accept raw
data pointers. This will not be possible for cms_decrypt(), which
will need the ability to extract fragments of ASN.1 data from a
potentially large image.
Change cms_signature() and cms_verify() to accept an image as an input
parameter, and move the responsibility for setting the image trust
flag within cms_verify() since that now becomes a more natural fit.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
| |
Allow passing a NULL value for the certificate list to all functions
used for identifying an X.509 certificate from an existing set of
certificates, and rename function parameters to indicate that this
certificate list represents an unordered certificate store (rather
than an ordered certificate chain).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
| |
Centralise all current mechanisms for identifying an X.509 certificate
(by raw content, by subject, by issuer and serial number, and by
matching public key), and remove the certstore-specific and
CMS-specific variants of these functions.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Handling large ASN.1 objects such as encrypted CMS files will require
the ability to use the asn1_enter() and asn1_skip() family of
functions on partial object cursors, where a defined additional length
is known to exist after the end of the data buffer pointed to by the
ASN.1 object cursor.
We already have support for partial object cursors in the underlying
asn1_start() operation used by both asn1_enter() and asn1_skip(), and
this is used by the DER image probe routine to check that the
potential DER file comprises a single ASN.1 SEQUENCE object.
Add asn1_enter_partial() to formalise the process of entering an ASN.1
partial object, and refactor the DER image probe routine to use this
instead of open-coding calls to the underlying asn1_start() operation.
There is no need for an equivalent asn1_skip_partial() function, since
only objects that are wholly contained within the partial cursor may
be successfully skipped.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
The Google Virtual Ethernet NIC (GVE or gVNIC) is found only in Google
Cloud instances. There is essentially zero documentation available
beyond the mostly uncommented source code in the Linux kernel.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The DHCPv6 protocol does not itself provide a router address or a
prefix length. This information is instead obtained from the router
advertisements.
Our IPv6 minirouting table construction logic will first construct an
entry for each advertised prefix, and later update the entry to
include an address assigned within that prefix via stateful DHCPv6 (if
applicable).
This logic fails if the address assigned via stateful DHCPv6 does not
fall within any of the advertised prefixes (e.g. if the network is
configured to use DHCPv6-assigned /128 addresses with no advertised
on-link prefixes). We will currently treat this situation as
equivalent to having a manually assigned address with no corresponding
router address or prefix length: the routing table entry will use the
default /64 prefix length and will not include the router address.
DHCPv6 is triggered only in response to a router advertisement with
the "Managed Address Configuration (M)" or "Other Configuration (O)"
flags set, and a router address is therefore available at the point
that we initiate DHCPv6.
Record the router address when initiating DHCPv6, and expose this
router address as part of the DHCPv6 settings block. This allows the
routing table entry for any address assigned via stateful DHCPv6 to
correctly include the router address, even if the assigned address
does not fall within an advertised prefix.
Also provide a fixed /128 prefix length as part of the DHCPv6 settings
block. When an address assigned via stateful DHCPv6 does not fall
within an advertised prefix, this will cause the routing table entry
to have a /128 prefix length as expected. (When such an address does
fall within an advertised prefix, it will continue to use the
advertised prefix length.)
Originally-fixed-by: Guvenc Gulce <guevenc.guelce@sap.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In a small subnet (with a /31 or /32 subnet mask), all addresses
within the subnet are valid host addresses: there is no separate
network address or directed broadcast address.
The logic used in iPXE to determine whether or not to use a link-layer
broadcast address will currently fail in these subnets. In a /31
subnet, the higher of the two host addresses (i.e. the address with
all host bits set) will be treated as a broadcast address. In a /32
subnet, the single valid host address will be treated as a broadcast
address.
Fix by adding the concept of a host mask, defined such that an address
in the local subnet with all of the mask bits set to zero represents
the network address, and an address in the local subnet with all of
the mask bits set to one represents the directed broadcast address.
For most subnets, this is simply the inverse of the subnet mask. For
small subnets (/31 or /32) we can obtain the desired behaviour by
setting the host mask to all ones, so that only the local broadcast
address 255.255.255.255 will be treated as a broadcast address.
Originally-fixed-by: Lukas Stockner <lstockner@genesiscloud.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
Remove the now-unused generalised text widget user interface, along
with the associated concept of a widget set and the implementation of
a read-only label widget.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for presenting a dynamic user interface as an interactive
form, alongside the existing support for presenting a dynamic user
interface as a menu.
An interactive form may be used to allow a user to input (or edit)
values for multiple settings on a single screen, as a user-friendly
alternative to prompting for setting values via the "read" command.
In the present implementation, all input fields must fit on a single
screen (with no scrolling), and the only supported widget type is an
editable text box.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For interactive forms, the concept of a secret value becomes
meaningful (e.g. for password fields).
Add a flag to indicate that an item represents a secret value, and
allow this flag to be set via the "--secret" option of the "item"
command.
This flag has no meaning for menu items, but is silently accepted
anyway to keep the code size minimal.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
Generalise the ability to look up a dynamic user interface item by
index or by shortcut key, to allow for reuse of this code for
interactive forms.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently have an abstract model of a dynamic menu as a list of
items, each of which has a name, a description, and assorted metadata
such as a shortcut key. The "menu" and "item" commands construct
representations in this abstract model, and the "choose" command then
presents the items as a single-choice menu, with the selected item's
name used as the output value.
This same abstraction may be used to model a dynamic form as a list of
editable items, each of which has a corresponding setting name, an
optional description label, and assorted metadata such as a shortcut
key. By defining a "form" command as an alias for the "menu" command,
we could construct and present forms using commands such as:
#!ipxe
form Login to ${url}
item username Username or email address
item --secret password Password
present
or
#!ipxe
form Configure IPv4 networking for ${netX/ifname}
item netX/ip IPv4 address
item netX/netmask Subnet mask
item netX/gateway Gateway address
item netX/dns DNS server address
present
Reusing the same abstract model for both menus and forms allows us to
minimise the increase in code size, since the implementation of the
"form" and "item" commands is essentially zero-cost.
Rename everything within the abstract data model from "menu" to
"dynamic user interface" to reflect this generalisation.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for wraparound scrolling and allow the tab key to be used
to move forward through a list of elements, wrapping back around to
the beginning of the list on overflow.
This is mildly useful for a menu, and likely to be a strong user
expectation for an interactive form.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Switch terminology for the "item" command from "item <label> <text>"
to "item <name> <text>", in preparation for repurposing the "item"
command to cover interactive forms as well as menus.
Since this renaming affects only a positional parameter, it does not
break compatibility with any existing scripts.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
The msg() and alert() functions currently defined in settings_ui.c
provide a general-purpose facility for printing messages centred on
the screen.
Split this out to a separate file to allow for reuse by the form
presentation code.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The curses concept of a window has been supported but never actively
used in iPXE since the mucurses library was first implemented in 2006.
Simplify the code by removing the ability to place a widget set in a
specified window, and instead use the standard screen for all drawing
operations.
This simplification allows the widget set parameter to be omitted for
the draw_widget() and edit_widget() operations, since the only reason
for its inclusion was to provide access to the specified window.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
| |
Create a generic abstraction of a text widget, refactor the existing
editable text box widget to use this abstraction, add an
implementation of a non-editable text label widget, and generalise the
login user interface to use this generic widget abstraction.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|