| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Mellanox/Nvidia UEFI driver is built from the same codebase as the
iPXE driver, and appears to contain the bug that was fixed in commit
c11734e ("[golan] Use ETH_HLEN for inline header size"). This results
in identical failures when using the SNP or NII interface (via
e.g. snponly.efi) to drive a Mellanox card while EAPoL is enabled.
Work around the underlying UEFI driver bug by padding transmit I/O
buffers to the minimum Ethernet frame length before passing them to
the underlying driver's transmit function.
This padding is not technically necessary, since almost all modern
hardware will insert transmit padding as necessary (and where the
hardware does not support doing so, the underlying UEFI driver is
responsible for adding any necessary padding). However, it is
guaranteed to be harmless (other than a miniscule performance impact):
the Ethernet specification requires zero padding up to the minimum
frame length for packets that are transmitted onto the wire, and so
the receiver will see the same packet whether or not we manually
insert this padding in software.
The additional padding causes the underlying Mellanox driver to avoid
its faulty code path, since it will never be asked to transmit a very
short packet.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The driver does not correctly handle very short transmitted packets
such as EAPoL-Start where the entire DMA content lies within the
current send work queue entry inline header length of 18 bytes.
Fix by reducing the inline header length to the Ethernet frame header
length of 14 bytes.
Modified-by: Michael Brown <mcb30@ipxe.org>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Older versions of gcc (observed with gcc 4.8.5 on CentOS 7) complain
about having the label "err_ioremap" at the end of a compound
statement in bios_mp_start_all(). The label is correctly placed,
since it immediately follows the iounmap() that would be required to
undo a successful ioremap() in the non-error case.
Fix by adding an explicit "return" immediately after the label.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some SNP implementations (observed with a wifi adapter in a Dell
Latitude 3440 laptop) seem to require additional space in the
allocated receive buffers, otherwise full-length packets will be
silently dropped.
The EDK2 MnpDxe driver happens to allocate an additional 8 bytes of
padding (4 for a VLAN tag, 4 for the Ethernet frame checksum). Match
this behaviour since drivers are very likely to have been tested
against MnpDxe.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Intel and AMD distribute microcode updates, which are typically
applied by the BIOS and/or the booted operating system.
BIOS updates can be difficult to obtain and cumbersome to apply, and
are often neglected. Operating system updates may be subject to
strict change control processes, particularly for production
workloads. There is therefore value in being able to update the
microcode at boot time using a freshly downloaded microcode update
file, particularly in scenarios where the physical hardware and the
installed operating system are controlled by different parties (such
as in a public cloud infrastructure).
Add support for parsing Intel and AMD microcode update images, and for
applying the updates to all CPUs in the system.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
Provide an implementation of the iPXE multiprocessor API for BIOS,
based on sending broadcast INIT and SIPI interprocessor interrupts to
start up all application processors.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Application processors are started via INIT and SIPI interprocessor
interrupts: the INIT places the processor into a "wait for SIPI"
state, and the SIPI then starts the processor in real mode at a
page-aligned address derived from the SIPI vector number.
Add support for installing a real-mode SIPI handler that will switch
the CPU into protected mode with flat physical addressing, load
initial register contents, and then jump to the address of a
protected-mode SIPI handler. No stack pointer is set up, to avoid the
need to allocate stack space for each available processor.
We use 32-bit physical addressing in order to minimise the changes
required for a 64-bit build. The existing long mode transition code
relies on the existence of the stack, so we cannot easily switch the
application processor into long mode. We could use 32-bit virtual
addressing, but this runtime environment does not currently exist
outside of librm.S itself in a 64-bit build, and using it would
complicate the implementation of the protected-mode SIPI handler.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Provide an implementation of the iPXE multiprocessor API for EFI,
based on using EFI_MP_SERVICES to start up a wrapper function on all
application processors.
Note that the processor numbers used by EFI_MP_SERVICES are opaque
integers that bear no relation to the underlying CPU identity
(e.g. the APIC ID), and so we must rely on our own (architecture-
specific) implementation to determine the relevant CPU identifiers.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Define an API for executing very limited functions on application
processors in a multiprocessor system, along with an x86-only
implementation.
The normal iPXE runtime environment is effectively non-existent on
application processors. There is no ability to make firmware calls
(e.g. to write to a console), and there may be no stack space
available.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The return status from efi_block_local() indicates whether or not the
handle is eligible to be assigned a local virtual drive number. There
will always be several enumerated EFI_BLOCK_IO_PROTOCOL handles that
are not eligible for a local virtual drive number (e.g. the handles
corresponding to partitions, rather than to complete disks), and this
is not an interesting error to report.
Do not report errors from efi_block_local() as the overall error
status for a SAN boot, since doing so would be likely to mask a much
more relevant error from having previously attempted to scan for a
matching filesystem within an eligible block device handle.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Add a "--label" option that can be used to specify a filesystem label,
to be matched against the FAT volume label.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add an "--extra" option that can be used to specify an extra
(non-boot) filename that must exist within the booted filesystem.
Note that only files within the FAT-formatted bootable partition will
be visible to this filter. Files within the operating system's root
disk (e.g. "/etc/redhat-release") are not generally accessible to the
firmware and so cannot be used as the existence check filter filename.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Add a "--uuid" option which may be used to specify a boot device UUID,
to be matched against the GPT partition GUID.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
EFI provides no API for determining the partition GUID (if any) for a
specified device handle. The partition GUID appears to be exposed
only as part of the device path.
Add efi_path_guid() to extract the partition GUID (if any) from a
device path.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The drive specification alone does not necessarily contain enough
information to perform a SAN boot (or local disk boot) under UEFI. If
the next-stage bootloader is installed in the EFI system partition
under a non-standard name (e.g. "\EFI\debian\grubx64.efi") then this
explicit boot filename must also be specified.
Generalise this concept to use a "SAN boot configuration parameters"
structure (currently containing only the optional explicit boot
filename), to allow for easy expansion to provide other parameters
such as the partition UUID or volume label.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Extend the EFI SAN boot code to allow for booting from a local disk,
as is already possible with the BIOS SAN boot code.
There is unfortunately no direct UEFI equivalent of the BIOS drive
number. The UEFI shell does provide numbered mappings fs0:, blk0:,
etc, but these numberings exist only while the UEFI shell is running
and are not necessarily stable between shell invocations or across
reboots.
A substantial amount of existing third-party documentation for iPXE
will suggest using "sanboot --drive 0x80" to boot from a local disk
(when no SAN drives are present), since this suggestion has been
present in the official documentation for the "sanboot" command for
almost thirteen years. We therefore aim to ensure that this
instruction will also work for UEFI, i.e. that in a situation where
there are local disks but no SAN disks, then the first local disk will
be treated as being drive 0x80.
We therefore assign local disks the virtual drive numbers 0x80, 0x81,
etc, matching the numbering typically used in a BIOS environment.
Where a SAN disk is already occupying one of these drive numbers, the
local disks' virtual drive numbers will be incremented as necessary.
This provides a rough approximation of the equivalent functionality
under BIOS, where existing local disks' drive numbers are remapped to
make way for SAN disks.
We do not make any attempt to sort the list of local disks: the order
used for allocating virtual drive numbers will be whatever order is
returned by LocateHandle(). This will typically match the creation
order of the EFI handles, which will typically match the hardware
enumeration order of the devices, which will typically match user
expectations as to which local disk is first, second, etc.
We explicitly do not attempt to match the numbering used by the UEFI
shell (which initially sorts in increasing order of device path, but
does not renumber when new devices are added or removed). We can
never guarantee matching this partly transient UEFI shell numbering,
so it is best not to set any expectation that it will be matched.
(Using local drive numbers starting at 0x80 helps to avoid setting up
this impossible expectation, since the UEFI shell uses local drive
numbers starting at zero.)
Since floppy disks are essentially non-existent in any plausible UEFI
system, overload "--drive 0" to mean "boot from any drive containing
the specified (or default) boot filename".
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
Maintain the SAN device list in order of drive number, and provide
sandev_next() to locate the first SAN device at or above a given drive
number.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SAN devices created by iPXE are visible to the firmware, and may be
accessed using the firmware's standard block I/O device interface
(e.g. INT 13 for BIOS, or EFI_BLOCK_IO_PROTOCOL for UEFI). The iPXE
code to perform a SAN boot acts as a client of this standard block I/O
device interface, even when the underlying block I/O is being
performed by iPXE itself.
We rely on this separation to allow the "sanboot" command to be used
to boot from a local disk: since the code to perform a SAN boot does
not need direct access to an underlying iPXE SAN device, it may be
used to boot from any device providing the firmware's standard block
I/O device interface.
Clean up the EFI SAN boot code to require only a drive number and an
EFI_BLOCK_IO_PROTOCOL handle, in preparation for adding support for
booting from a local disk under UEFI.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The "sanboot" command allows a custom boot filename to be specified
via the "--filename" option. We currently rely on LoadImage() to
perform both the existence check and to load the image ready for
execution. This may give a false negative result if Secure Boot is
enabled and the boot file is not correctly signed.
Carry out the existence check using EFI_SIMPLE_FILE_SYSTEM_PROTOCOL
separately from loading the image via LoadImage().
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently use the SAN device pointer as the debug message stream
identifier. This pointer is not always available: for example, when
booting from a local disk there is no underlying SAN device.
Switch to using the drive number as the debug message colour stream
identifier, so that all block device debug messages may be colourised
consistently.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently call ConvertDevicePathToText() with DisplayOnly=TRUE when
constructing a device path to appear within a debug message. For
ATAPI device paths, this will unfortunately omit some key information:
the textual representation will not indicate which ATA bus or drive is
represented. This can lead to misleading debug messages that appear
to refer to identical devices.
Fix by setting DisplayOnly=FALSE to select the long form of device
path textual representations.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The ":uuid" and ":guid" settings types are currently format-only: it
is possible to format a setting as a UUID (via e.g. "show foo:uuid")
but it is not currently possible to parse a string into a UUID setting
(via e.g. "set foo:uuid 406343fe-998b-44be-8a28-44ca38cb202b").
Use uuid_aton() to implement parsing of these settings types, and add
appropriate test cases for both.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add uuid_aton() to parse a UUID value from a string (analogous to
inet_aton(), inet6_aton(), sock_aton(), etc), treating it as a
32-digit hex string with optional hyphen separators. The placement of
the separators is not checked: each byte within the hex string may be
separated by a hyphen, or not separated at all.
Add dedicated self-tests for UUID parsing and formatting (already
partially covered by the ":uuid" and ":guid" settings self-tests).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The UEFI shim installs wrappers around several boot services functions
before invoking its next stage bootloader, in an attempt to enforce
its desired behaviour upon the aforementioned bootloader. For
example, shim checks that the bootloader has either invoked
StartImage() or has called into the "shim lock protocol" before
allowing an ExitBootServices() call to proceed.
When invoking a shim, iPXE will also install boot services function
wrappers in order to work around assorted bugs in the UEFI shim code
that would otherwise prevent it from being used to boot a kernel. For
details on these workarounds, see commits 28184b7 ("[efi] Add support
for executing images via a shim") and 5b43181 ("[efi] Support versions
of shim that perform SBAT verification").
Using boot services function wrappers in this way is not intrinsically
problematic, provided that wrappers are installed before starting the
wrapped program, and uninstalled only after the wrapped program exits.
This strict ordering requirement ensures that all layers of wrappers
are called in the expected order, and that no calls are issued through
a no-longer-valid function pointer.
Unfortunately, the UEFI shim does not respect this strict ordering
requirement, and will instead uninstall (and reinstall) its wrappers
midway through the execution of the wrapped program. This leaves the
wrapped program with an inconsistent view of the boot services table,
leading to incorrect behaviour.
This results in a boot failure when a first shim is used to boot iPXE,
which then uses a second shim to boot a Linux kernel:
- First shim installs StartImage() and ExitBootServices() wrappers
- First shim invokes iPXE via its own PE loader
- iPXE installs ExitBootServices() wrapper
- iPXE invokes second shim via StartImage()
At this point, the first shim's StartImage() wrapper will illegally
uninstall its ExitBootServices() wrapper, without first checking that
nothing else has modified the ExitBootServices function pointer. This
effectively bypasses iPXE's own ExitBootServices() wrapper, which
causes a boot failure since the code within that wrapper does not get
called.
A proper fix would be for shim to install its wrappers before starting
the image and uninstall its wrappers only after the started image has
exited. Instead of repeatedly uninstalling and reinstalling its
wrappers while the wrapped program is running, shim should simply use
a flag to keep track of whether or not it needs to modify the
behaviour of the wrapped calls.
Experience shows that there is unfortunately no point in trying to get
a fix for this upstreamed into shim. We therefore work around the
shim bug by removing our ExitBootServices() wrapper and moving the
relevant code into our GetMemoryMap() wrapper.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for EAP-MSCHAPv2 (note that this is not the same as
PEAP-MSCHAPv2), controllable via the build configuration option
EAP_METHOD_MSCHAPV2 in config/general.h.
Our model for EAP does not encompass mutual authentication: we will
starting sending plaintext packets (e.g. DHCP requests) over the link
even before EAP completes, and our only use for an EAP success is to
mark the link as unblocked.
We therefore ignore the content of the EAP-MSCHAPv2 success request
(containing the MS-CHAPv2 authenticator response) and just send back
an EAP-MSCHAPv2 success response, so that the EAP authenticator will
complete the process and send through the real EAP success packet
(which will, in turn, cause us to unblock the link).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
RFC 3748 states that implementations must support the MD5-Challenge
method. However, some network environments may wish to disable it as
a matter of policy.
Allow support for MD5-Challenge to be controllable via the build
configuration option EAP_METHOD_MD5 in config/general.h.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Add debug messages for each EAP Request and Response, and to show the
list of methods offered when sending a Nak.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Several new relocations types have been added in LoongArch ABI version
2.10. In particular:
- R_LARCH_B16 (18-bit PC-relative jump)
- R_LARCH_B21 (23-bit PC-relative jump)
- R_LARCH_PCREL20_S2 (22-bit PC-relative offset)
Also relocation relaxations have been introduced. Recent GCC (13.2)
and binutils 2.41+ use these types of relocations, which confuses
elf2efi tool. As a result, iPXE EFI images for LoongArch fail to
build with the following error:
Unrecognised relocation type 103
Fix by ignoring R_LARCH_B{16,21} and R_LARCH_PCREL20_S2 (as with other
PC-relative relocations), and by ignoring relaxations (R_LARCH_RELAX).
Relocation relaxations are basically optimizations: ignoring them
results in a correct binary (although it might be suboptimal).
Modified-by: Michael Brown <mcb30@ipxe.org>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Done with the help of this Perl script:
$MARKER = 'PCI_ROM'; # a regex
$AB = 1; # At Begin
@HEAD = ();
@ITEMS = ();
@TAIL = ();
foreach $fn (@ARGV) {
open(IN, $fn) or die "Can't open file '$fn': $!\n";
while (<IN>) {
if (/$MARKER/) {
push @ITEMS, $_;
$AB = 0; # not anymore at begin
}
else {
if ($AB) {
push @HEAD, $_;
}
else {
push @TAIL, $_;
}
}
}
} continue {
close IN;
open(OUT, ">$fn") or die "Can't open file '$fn' for output: $!\n";
print OUT @HEAD;
print OUT sort @ITEMS;
print OUT @TAIL;
close OUT;
# For a next file
$AB = 1;
@HEAD = ();
@ITEMS = ();
@TAIL = ();
}
Executed that script while src/drivers/ as current working directory,
provided '$(grep -rl PCI_ROM)' as argument.
Signed-off-by: Geert Stappers <stappers@stappers.it>
|
|
|
|
|
|
|
|
|
|
|
| |
Inspection of the generated assembly shows that gcc will often emit
standalone implementations of frequently invoked functions such as
digest_update(), which contain no logic and exist only as syntactic
sugar.
Force inlining of these functions to reduce the overall binary size.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
Add an implementation of the authentication portions of the MS-CHAPv2
algorithm as defined in RFC 2759, along with the single test vector
provided therein.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Certificates issued by Let's Encrypt have two options for their chain
of trust: the chain can either terminate in the self-signed ISRG Root
X1 root certificate, or in an intermediate ISRG Root X1 certificate
that is signed in turn by the self-signed DST Root CA X3 root
certificate. This is a historical artifact: when Let's Encrypt first
launched as a project, the chain ending in DST Root CA X3 was used
since existing clients would not have recognised the ISRG Root X1
certificate as a trusted root certificate.
The DST Root CA X3 certificate expired in September 2021, and so is no
longer trusted by clients (such as iPXE) that validate the expiry
times of all certificates in the certificate chain.
In order to maintain usability of certificates on older Android
devices, the default certificate chain provided by Let's Encrypt still
terminates in DST Root CA X3, even though that certificate has now
expired. On newer devices which include ISRG Root X1 as a trusted
root certificate, the intermediate version of ISRG Root X1 in the
certificate chain is ignored and validation is performed as though the
chain had terminated in the self-signed ISRG Root X1 root certificate.
On older Android devices which do not include ISRG Root X1 as a
trusted root certificate, the validation succeeds since Android
chooses to ignore expiry times for root certificates and so continues
to trust the DST Root CA X3 root certificate.
This backwards compatibility hack unfortunately breaks the cross-
signing mechanism used by iPXE, which assumes that the certificate
chain will always terminate in a non-expired root certificate.
Generalise the validator's cross-signed certificate download mechanism
to walk up the certificate chain in the event of a failure, attempting
to find a replacement cross-signed certificate chain starting from the
next level up. This allows the validator to step over the expired
(and hence invalidatable) DST Root CA X3 certificate, and instead
download the cross-signed version of the ISRG Root X1 certificate.
This generalisation also gives us the ability to handle servers that
provide a full certificate chain including their root certificate:
iPXE will step over the untrusted public root certificate and attempt
to find a cross-signed version of it instead.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Downloading a cross-signed certificate chain to partially replace
(rather than simply extend) an existing chain will require the ability
to discard all certificates after a specified link in the chain.
Extract the relevant logic from x509_free_chain() and expose it
separately as x509_truncate().
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some versions of gcc (observed with gcc 4.8.5 in CentOS 7) will report
spurious build_assert() failures for some assertions about structure
layouts. There is no clear pattern as to what causes these spurious
failures, and the build assertion does succeed in that no unresolvable
symbol reference is generated in the compiled code.
Adjust the assertions to work around these apparent compiler issues.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We build with -Werror by default so that any warning is treated as an
error and aborts the build. The build system allows NO_WERROR=1 to be
used to override this behaviour, in order to allow builds to succeed
when spurious warnings occur (e.g. when using a newer compiler that
includes checks for which the codebase is not yet prepared).
Some versions of gcc (observed with gcc 4.8.5 in CentOS 7) will report
spurious build_assert() failures: the compilation will fail due to an
allegedly unelided call to the build assertion's external function
declared with __attribute__((error)) even though the compiler does
manage to successfully elide the call (as verified by the fact that
there are no unresolvable symbol references in the compiler output).
Change build_assert() to declare __attribute__((warning)) instead of
__attribute__((error)) on its extern function. This will still abort
a normal build if the assertion fails, but may be overridden using
NO_WERROR=1 if necessary to work around a spurious assertion failure.
Note that if the build assertion has genuinely failed (i.e. if the
compiler has genuinely not been able to elide the call) then the
object will still contain an unresolvable symbol reference that will
cause the link to fail (which matches the behaviour of the old
linker_assert() mechanism).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Add support for BCM957608 device. Add support for additional link
speeds supported by BCM957608.
Signed-off-by: Joseph Wong <joseph.wong@broadcom.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The DES block cipher dates back to the 1970s. It is no longer
relevant for use in TLS cipher suites, but it is still used by the
MS-CHAPv2 authentication protocol which remains unfortunately common
for 802.1x port authentication.
Add an implementation of the DES block cipher, complete with the
extremely comprehensive test vectors published by NBS (the precursor
to NIST) in the form of an utterly adorable typewritten and hand-drawn
paper document.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
A block cipher in ECB mode has no concept of an initialisation vector,
and any data provided to cipher_setiv() for an ECB cipher will be
ignored. There is no requirement within our cipher algorithm
abstraction for a dummy initialisation vector to be provided.
Remove the entirely spurious dummy 16-byte initialisation vector from
the ECB test cases.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
| |
The CBC_CIPHER() macro contains some accidentally hardcoded references
to an underlying AES cipher, instead of using the cipher specified in
the macro parameters.
Fix by using the macro parameter as required.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Coverity reported that tls_send_plaintext() failed to check the return
status from tls_generate_random(), which could potentially result in
uninitialised random data being used as the block initialisation
vector (instead of intentionally random data).
Add the missing return status check, and separate out the error
handling code paths (since on the successful exit code path there will
be no need to free either the plaintext or the ciphertext anyway).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When ExitBootServices() invokes efi_shutdown_hook(), there may be
nothing to generate an interrupt since the timer is disabled in the
first step of ExitBootServices(). Additionally, for VMs OVMF masks
everything from the PIC (except the timer) by default. This means
that calling cpu_nap() may hang indefinitely. This was seen in
practice in netfront_reset() when running in a VM on XenServer.
Fix this by skipping the halt if an EFI shutdown is in progress.
Signed-off-by: Ross Lagerwall <ross.lagerwall@citrix.com>
Modified-by: Michael Brown <mcb30@ipxe.org>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Add ECDHE variants of the existing cipher suites, and lower the
priority of the non-ECDHE variants.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
| |
Allow the choice of key exchange algorithms to be controlled via build
configuration options in config/crypto.h, as is already done for the
choices of public-key algorithms, cipher algorithms, and digest
algorithms.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
| |
Add support for the Ephemeral Elliptic Curve Diffie-Hellman (ECDHE)
key exchange algorithm.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|