// SPDX-License-Identifier: GPL-2.0+ /* * Common initialisation for Qualcomm Snapdragon boards. * * Copyright (c) 2024 Linaro Ltd. * Author: Caleb Connolly */ #include "time.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; static struct mm_region rbx_mem_map[CONFIG_NR_DRAM_BANKS + 2] = { { 0 } }; struct mm_region *mem_map = rbx_mem_map; int dram_init(void) { return fdtdec_setup_mem_size_base(); } static int ddr_bank_cmp(const void *v1, const void *v2) { const struct { phys_addr_t start; phys_size_t size; } *res1 = v1, *res2 = v2; if (!res1->size) return 1; if (!res2->size) return -1; return (res1->start >> 24) - (res2->start >> 24); } int dram_init_banksize(void) { int ret; ret = fdtdec_setup_memory_banksize(); if (ret < 0) return ret; if (CONFIG_NR_DRAM_BANKS < 2) return 0; /* Sort our RAM banks -_- */ qsort(gd->bd->bi_dram, CONFIG_NR_DRAM_BANKS, sizeof(gd->bd->bi_dram[0]), ddr_bank_cmp); return 0; } static void show_psci_version(void) { struct arm_smccc_res res; arm_smccc_smc(ARM_PSCI_0_2_FN_PSCI_VERSION, 0, 0, 0, 0, 0, 0, 0, &res); debug("PSCI: v%ld.%ld\n", PSCI_VERSION_MAJOR(res.a0), PSCI_VERSION_MINOR(res.a0)); } void *board_fdt_blob_setup(int *err) { phys_addr_t fdt; /* Return DTB pointer passed by ABL */ *err = 0; fdt = get_prev_bl_fdt_addr(); /* * If we bail then the board will simply not boot, instead let's * try and use the FDT built into U-Boot if there is one... * This avoids having a hard dependency on the previous stage bootloader */ if (IS_ENABLED(CONFIG_OF_SEPARATE) && (!fdt || fdt != ALIGN(fdt, SZ_4K))) { debug("%s: Using built in FDT, bootloader gave us %#llx\n", __func__, fdt); return (void *)gd->fdt_blob; } return (void *)fdt; } void reset_cpu(void) { psci_system_reset(); } /* * Some Qualcomm boards require GPIO configuration when switching USB modes. * Support setting this configuration via pinctrl state. */ int board_usb_init(int index, enum usb_init_type init) { struct udevice *usb; int ret = 0; /* USB device */ ret = uclass_find_device_by_seq(UCLASS_USB, index, &usb); if (ret) { printf("Cannot find USB device\n"); return ret; } ret = dev_read_stringlist_search(usb, "pinctrl-names", "device"); /* No "device" pinctrl state, so just bail */ if (ret < 0) return 0; /* Select "default" or "device" pinctrl */ switch (init) { case USB_INIT_HOST: pinctrl_select_state(usb, "default"); break; case USB_INIT_DEVICE: pinctrl_select_state(usb, "device"); break; default: debug("Unknown usb_init_type %d\n", init); break; } return 0; } /* * Some boards still need board specific init code, they can implement that by * overriding this function. * * FIXME: get rid of board specific init code */ void __weak qcom_board_init(void) { } int board_init(void) { show_psci_version(); qcom_board_init(); return 0; } /* Sets up the "board", and "soc" environment variables as well as constructing the devicetree * path, with a few quirks to handle non-standard dtb filenames. This is not meant to be a * comprehensive solution to automatically picking the DTB, but aims to be correct for the * majority case. For most devices it should be possible to make this algorithm work by * adjusting the root compatible property in the U-Boot DTS. Handling devices with multiple * variants that are all supported by a single U-Boot image will require implementing device- * specific detection. */ static void configure_env(void) { const char *first_compat, *last_compat; char *tmp; char buf[32] = { 0 }; /* * Most DTB filenames follow the scheme: qcom/-[vendor]-.dtb * The vendor is skipped when it's a Qualcomm reference board, or the * db845c. */ char dt_path[64] = { 0 }; int compat_count, ret; ofnode root; root = ofnode_root(); /* This is almost always 2, but be explicit that we want the first and last compatibles * not the first and second. */ compat_count = ofnode_read_string_count(root, "compatible"); if (compat_count < 2) { log_warning("%s: only one root compatible bailing!\n", __func__); return; } /* The most specific device compatible (e.g. "thundercomm,db845c") */ ret = ofnode_read_string_index(root, "compatible", 0, &first_compat); if (ret < 0) { log_warning("Can't read first compatible\n"); return; } /* The last compatible is always the SoC compatible */ ret = ofnode_read_string_index(root, "compatible", compat_count - 1, &last_compat); if (ret < 0) { log_warning("Can't read second compatible\n"); return; } /* Copy the second compat (e.g. "qcom,sdm845") into buf */ strlcpy(buf, last_compat, sizeof(buf) - 1); tmp = buf; /* strsep() is destructive, it replaces the comma with a \0 */ if (!strsep(&tmp, ",")) { log_warning("second compatible '%s' has no ','\n", buf); return; } /* tmp now points to just the "sdm845" part of the string */ env_set("soc", tmp); /* Now figure out the "board" part from the first compatible */ memset(buf, 0, sizeof(buf)); strlcpy(buf, first_compat, sizeof(buf) - 1); tmp = buf; /* The Qualcomm reference boards (RBx, HDK, etc) */ if (!strncmp("qcom", buf, strlen("qcom"))) { /* * They all have the first compatible as "qcom,-" * (e.g. "qcom,qrb5165-rb5"). We extract just the part after * the dash. */ if (!strsep(&tmp, "-")) { log_warning("compatible '%s' has no '-'\n", buf); return; } /* tmp is now "rb5" */ env_set("board", tmp); } else { if (!strsep(&tmp, ",")) { log_warning("compatible '%s' has no ','\n", buf); return; } /* for thundercomm we just want the bit after the comma (e.g. "db845c"), * for all other boards we replace the comma with a '-' and take both * (e.g. "oneplus-enchilada") */ if (!strncmp("thundercomm", buf, strlen("thundercomm"))) { env_set("board", tmp); } else { *(tmp - 1) = '-'; env_set("board", buf); } } /* Now build the full path name */ snprintf(dt_path, sizeof(dt_path), "qcom/%s-%s.dtb", env_get("soc"), env_get("board")); env_set("fdtfile", dt_path); } void __weak qcom_late_init(void) { } #define KERNEL_COMP_SIZE SZ_64M #define addr_alloc(lmb, size) lmb_alloc(lmb, size, SZ_2M) /* Stolen from arch/arm/mach-apple/board.c */ int board_late_init(void) { struct lmb lmb; u32 status = 0; lmb_init_and_reserve(&lmb, gd->bd, (void *)gd->fdt_blob); /* We need to be fairly conservative here as we support boards with just 1G of TOTAL RAM */ status |= env_set_hex("kernel_addr_r", addr_alloc(&lmb, SZ_128M)); status |= env_set_hex("ramdisk_addr_r", addr_alloc(&lmb, SZ_128M)); status |= env_set_hex("kernel_comp_addr_r", addr_alloc(&lmb, KERNEL_COMP_SIZE)); status |= env_set_hex("kernel_comp_size", KERNEL_COMP_SIZE); status |= env_set_hex("scriptaddr", addr_alloc(&lmb, SZ_4M)); status |= env_set_hex("pxefile_addr_r", addr_alloc(&lmb, SZ_4M)); status |= env_set_hex("fdt_addr_r", addr_alloc(&lmb, SZ_2M)); if (status) log_warning("%s: Failed to set run time variables\n", __func__); configure_env(); qcom_late_init(); return 0; } static void build_mem_map(void) { int i, j; /* * Ensure the peripheral block is sized to correctly cover the address range * up to the first memory bank. * Don't map the first page to ensure that we actually trigger an abort on a * null pointer access rather than just hanging. * FIXME: we should probably split this into more precise regions */ mem_map[0].phys = 0x1000; mem_map[0].virt = mem_map[0].phys; mem_map[0].size = gd->bd->bi_dram[0].start - mem_map[0].phys; mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN; for (i = 1, j = 0; i < ARRAY_SIZE(rbx_mem_map) - 1 && gd->bd->bi_dram[j].size; i++, j++) { mem_map[i].phys = gd->bd->bi_dram[j].start; mem_map[i].virt = mem_map[i].phys; mem_map[i].size = gd->bd->bi_dram[j].size; mem_map[i].attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | \ PTE_BLOCK_INNER_SHARE; } mem_map[i].phys = UINT64_MAX; mem_map[i].size = 0; #ifdef DEBUG debug("Configured memory map:\n"); for (i = 0; mem_map[i].size; i++) debug(" 0x%016llx - 0x%016llx: entry %d\n", mem_map[i].phys, mem_map[i].phys + mem_map[i].size, i); #endif } u64 get_page_table_size(void) { return SZ_64K; } static int fdt_cmp_res(const void *v1, const void *v2) { const struct fdt_resource *res1 = v1, *res2 = v2; return res1->start - res2->start; } #define N_RESERVED_REGIONS 32 /* Mark all no-map regions as PTE_TYPE_FAULT to prevent speculative access. * On some platforms this is enough to trigger a security violation and trap * to EL3. */ static void carve_out_reserved_memory(void) { static struct fdt_resource res[N_RESERVED_REGIONS] = { 0 }; int parent, rmem, count, i = 0; phys_addr_t start; size_t size; /* Some reserved nodes must be carved out, as the cache-prefetcher may otherwise * attempt to access them, causing a security exception. */ parent = fdt_path_offset(gd->fdt_blob, "/reserved-memory"); if (parent <= 0) { log_err("No reserved memory regions found\n"); return; } /* Collect the reserved memory regions */ fdt_for_each_subnode(rmem, gd->fdt_blob, parent) { const fdt32_t *ptr; int len; if (!fdt_getprop(gd->fdt_blob, rmem, "no-map", NULL)) continue; if (i == N_RESERVED_REGIONS) { log_err("Too many reserved regions!\n"); break; } /* Read the address and size out from the reg property. Doing this "properly" with * fdt_get_resource() takes ~70ms on SDM845, but open-coding the happy path here * takes <1ms... Oh the woes of no dcache. */ ptr = fdt_getprop(gd->fdt_blob, rmem, "reg", &len); if (ptr) { /* Qualcomm devices use #address/size-cells = <2> but all reserved regions are within * the 32-bit address space. So we can cheat here for speed. */ res[i].start = fdt32_to_cpu(ptr[1]); res[i].end = res[i].start + fdt32_to_cpu(ptr[3]); i++; } } /* Sort the reserved memory regions by address */ count = i; qsort(res, count, sizeof(struct fdt_resource), fdt_cmp_res); /* Now set the right attributes for them. Often a lot of the regions are tightly packed together * so we can optimise the number of calls to mmu_change_region_attr() by combining adjacent * regions. */ start = ALIGN_DOWN(res[0].start, SZ_2M); size = ALIGN(res[0].end - start, SZ_2M); for (i = 1; i <= count; i++) { /* We ideally want to 2M align everything for more efficient pagetables, but we must avoid * overwriting reserved memory regions which shouldn't be mapped as FAULT (like those with * compatible properties). * If within 2M of the previous region, bump the size to include this region. Otherwise * start a new region. */ if (i == count || start + size < res[i].start - SZ_2M) { debug(" 0x%016llx - 0x%016llx: reserved\n", start, start + size); mmu_change_region_attr(start, size, PTE_TYPE_FAULT); /* If this is the final region then quit here before we index * out of bounds... */ if (i == count) break; start = ALIGN_DOWN(res[i].start, SZ_2M); size = ALIGN(res[i].end - start, SZ_2M); } else { /* Bump size if this region is immediately after the previous one */ size = ALIGN(res[i].end - start, SZ_2M); } } } /* This function open-codes setup_all_pgtables() so that we can * insert additional mappings *before* turning on the MMU. */ void enable_caches(void) { u64 tlb_addr = gd->arch.tlb_addr; u64 tlb_size = gd->arch.tlb_size; u64 pt_size; ulong carveout_start; gd->arch.tlb_fillptr = tlb_addr; build_mem_map(); icache_enable(); /* Create normal system page tables */ setup_pgtables(); pt_size = (uintptr_t)gd->arch.tlb_fillptr - (uintptr_t)gd->arch.tlb_addr; debug("Primary pagetable size: %lluKiB\n", pt_size / 1024); /* Create emergency page tables */ gd->arch.tlb_size -= pt_size; gd->arch.tlb_addr = gd->arch.tlb_fillptr; setup_pgtables(); gd->arch.tlb_emerg = gd->arch.tlb_addr; gd->arch.tlb_addr = tlb_addr; gd->arch.tlb_size = tlb_size; carveout_start = get_timer(0); /* Takes ~20-50ms on SDM845 */ carve_out_reserved_memory(); debug("carveout time: %lums\n", get_timer(carveout_start)); dcache_enable(); }