// Implementation of the TCG BIOS extension according to the specification // described in specs found at // http://www.trustedcomputinggroup.org/resources/pc_client_work_group_specific_implementation_specification_for_conventional_bios // // Copyright (C) 2006-2011, 2014, 2015 IBM Corporation // // Authors: // Stefan Berger // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "bregs.h" // struct bregs #include "byteorder.h" // cpu_to_* #include "config.h" // CONFIG_TCGBIOS #include "farptr.h" // MAKE_FLATPTR #include "fw/paravirt.h" // runningOnXen #include "hw/tpm_drivers.h" // tpm_drivers[] #include "output.h" // dprintf #include "sha1.h" // sha1 #include "std/acpi.h" // RSDP_SIGNATURE, rsdt_descriptor #include "std/smbios.h" // struct smbios_entry_point #include "std/tcg.h" // TCG_PC_LOGOVERFLOW #include "string.h" // checksum #include "tcgbios.h"// tpm_*, prototypes #include "util.h" // printf, get_keystroke #include "stacks.h" // wait_threads, reset /**************************************************************** * TPM 1.2 commands ****************************************************************/ static const u8 Startup_ST_CLEAR[] = { 0x00, TPM_ST_CLEAR }; static const u8 Startup_ST_STATE[] = { 0x00, TPM_ST_STATE }; static const u8 PhysicalPresence_CMD_ENABLE[] = { 0x00, 0x20 }; static const u8 PhysicalPresence_PRESENT[] = { 0x00, 0x08 }; static const u8 PhysicalPresence_NOT_PRESENT_LOCK[] = { 0x00, 0x14 }; static const u8 CommandFlag_FALSE[1] = { 0x00 }; static const u8 CommandFlag_TRUE[1] = { 0x01 }; /**************************************************************** * TPM 2 commands ****************************************************************/ static const u8 Startup_SU_CLEAR[] = { 0x00, TPM2_SU_CLEAR}; static const u8 Startup_SU_STATE[] = { 0x00, TPM2_SU_STATE}; static const u8 TPM2_SelfTest_YES[] = { TPM2_YES }; /* full test */ typedef u8 tpm_ppi_code; /**************************************************************** * ACPI TCPA table interface ****************************************************************/ struct { /* length of the TCPA log buffer */ u32 log_area_minimum_length; /* start address of TCPA log buffer */ u8 * log_area_start_address; /* number of log entries written */ u32 entry_count; /* address to write next log entry to */ u8 * log_area_next_entry; /* address of last entry written (need for TCG_StatusCheck) */ u8 * log_area_last_entry; } tpm_state VARLOW; static int TPM_has_physical_presence; static TPMVersion TPM_version; static struct tcpa_descriptor_rev2 * find_tcpa_by_rsdp(struct rsdp_descriptor *rsdp) { if (!rsdp) { dprintf(DEBUG_tcg, "TCGBIOS: RSDP was NOT found! -- Disabling interface.\n"); return NULL; } struct rsdt_descriptor *rsdt = (void*)rsdp->rsdt_physical_address; if (!rsdt) return NULL; u32 length = rsdt->length; u16 off = offsetof(struct rsdt_descriptor, entry); u32 ctr = 0; while ((off + sizeof(rsdt->entry[0])) <= length) { /* try all pointers to structures */ struct tcpa_descriptor_rev2 *tcpa = (void*)rsdt->entry[ctr]; /* valid TCPA ACPI table ? */ if (tcpa->signature == TCPA_SIGNATURE && checksum(tcpa, tcpa->length) == 0) return tcpa; off += sizeof(rsdt->entry[0]); ctr++; } dprintf(DEBUG_tcg, "TCGBIOS: TCPA ACPI was NOT found!\n"); return NULL; } static int tpm_tcpa_probe(void) { struct tcpa_descriptor_rev2 *tcpa = find_tcpa_by_rsdp(RsdpAddr); if (!tcpa) return -1; u8 *log_area_start_address = (u8*)(long)tcpa->log_area_start_address; u32 log_area_minimum_length = tcpa->log_area_minimum_length; if (!log_area_start_address || !log_area_minimum_length) return -1; memset(log_area_start_address, 0, log_area_minimum_length); tpm_state.log_area_start_address = log_area_start_address; tpm_state.log_area_minimum_length = log_area_minimum_length; tpm_state.log_area_next_entry = log_area_start_address; tpm_state.log_area_last_entry = NULL; tpm_state.entry_count = 0; return 0; } /* * Extend the ACPI log with the given entry by copying the * entry data into the log. * Input * pcpes : Pointer to the event 'header' to be copied into the log * event : Pointer to the event 'body' to be copied into the log * * Output: * Returns an error code in case of faiure, 0 in case of success */ static int tpm_log_event(struct tcg_pcr_event2_sha1 *entry, const void *event , TPMVersion tpm_version) { dprintf(DEBUG_tcg, "TCGBIOS: LASA = %p, next entry = %p\n", tpm_state.log_area_start_address, tpm_state.log_area_next_entry); if (tpm_state.log_area_next_entry == NULL) return -1; u32 size = sizeof(*entry) + entry->eventdatasize; u32 logsize = (tpm_state.log_area_next_entry + size - tpm_state.log_area_start_address); if (logsize > tpm_state.log_area_minimum_length) { dprintf(DEBUG_tcg, "TCGBIOS: LOG OVERFLOW: size = %d\n", size); return -1; } switch (tpm_version) { case TPM_VERSION_1_2: ; struct pcpes *pcpes = (void*)tpm_state.log_area_next_entry; pcpes->pcrindex = entry->pcrindex; pcpes->eventtype = entry->eventtype; memcpy(pcpes->digest, entry->digests[0].sha1, sizeof(pcpes->digest)); pcpes->eventdatasize = entry->eventdatasize; memcpy(pcpes->event, event, entry->eventdatasize); size = sizeof(*pcpes) + entry->eventdatasize; break; case TPM_VERSION_2: ; struct tcg_pcr_event2_sha1 *e = (void*)tpm_state.log_area_next_entry; memcpy(e, entry, sizeof(*e)); memcpy(e->event, event, entry->eventdatasize); break; } tpm_state.log_area_last_entry = tpm_state.log_area_next_entry; tpm_state.log_area_next_entry += size; tpm_state.entry_count++; return 0; } /* * Initialize the log; a TPM2 log needs a special TPM 1.2 log entry * as the first entry serving identification purposes */ static void tpm_log_init(void) { struct TCG_EfiSpecIdEventStruct event = { .signature = "Spec ID Event03", .platformClass = TPM_TCPA_ACPI_CLASS_CLIENT, .specVersionMinor = 0, .specVersionMajor = 2, .specErrata = 0, .uintnSize = 2, .numberOfAlgorithms = 1, .digestSizes[0] = { .algorithmId = TPM2_ALG_SHA1, .digestSize = SHA1_BUFSIZE, }, .vendorInfoSize = 0, }; struct tcg_pcr_event2_sha1 entry = { .eventtype = EV_NO_ACTION, .eventdatasize = sizeof(event), }; switch (TPM_version) { case TPM_VERSION_1_2: break; case TPM_VERSION_2: /* write a 1.2 type of entry */ tpm_log_event(&entry, &event, TPM_VERSION_1_2); } } /**************************************************************** * Helper functions ****************************************************************/ u8 TPM_working VARLOW; static int tpm_is_working(void) { return CONFIG_TCGBIOS && TPM_working; } int tpm_can_show_menu(void) { switch (TPM_version) { case TPM_VERSION_1_2: return tpm_is_working() && TPM_has_physical_presence; case TPM_VERSION_2: return tpm_is_working(); } return 0; } /* * Send a TPM command with the given ordinal. Append the given buffer * containing all data in network byte order to the command (this is * the custom part per command) and expect a response of the given size. */ static int tpm_build_and_send_cmd(u8 locty, u32 ordinal, const u8 *append, u32 append_size, enum tpmDurationType to_t) { struct { struct tpm_req_header trqh; u8 cmd[10]; } PACKED req = { .trqh.tag = cpu_to_be16(TPM_TAG_RQU_CMD), .trqh.totlen = cpu_to_be32(sizeof(req.trqh) + append_size), .trqh.ordinal = cpu_to_be32(ordinal), }; switch (TPM_version) { case TPM_VERSION_1_2: req.trqh.tag = cpu_to_be16(TPM_TAG_RQU_CMD); break; case TPM_VERSION_2: req.trqh.tag = cpu_to_be16(TPM2_ST_NO_SESSIONS); break; } u8 obuffer[64]; struct tpm_rsp_header *trsh = (struct tpm_rsp_header *)obuffer; u32 obuffer_len = sizeof(obuffer); memset(obuffer, 0x0, sizeof(obuffer)); if (append_size > sizeof(req.cmd)) { warn_internalerror(); return -1; } if (append_size) memcpy(req.cmd, append, append_size); int ret = tpmhw_transmit(locty, &req.trqh, obuffer, &obuffer_len, to_t); ret = ret ? -1 : be32_to_cpu(trsh->errcode); dprintf(DEBUG_tcg, "Return from build_and_send_cmd(%x, %x %x) = %x\n", ordinal, req.cmd[0], req.cmd[1], ret); return ret; } static int tpm20_hierarchycontrol(u32 hierarchy, u8 state) { /* we will try to deactivate the TPM now - ignoring all errors */ struct tpm2_req_hierarchycontrol trh = { .hdr.tag = cpu_to_be16(TPM2_ST_SESSIONS), .hdr.totlen = cpu_to_be32(sizeof(trh)), .hdr.ordinal = cpu_to_be32(TPM2_CC_HierarchyControl), .authhandle = cpu_to_be32(TPM2_RH_PLATFORM), .authblocksize = cpu_to_be32(sizeof(trh.authblock)), .authblock = { .handle = cpu_to_be32(TPM2_RS_PW), .noncesize = cpu_to_be16(0), .contsession = TPM2_YES, .pwdsize = cpu_to_be16(0), }, .enable = cpu_to_be32(hierarchy), .state = state, }; struct tpm_rsp_header rsp; u32 resp_length = sizeof(rsp); int ret = tpmhw_transmit(0, &trh.hdr, &rsp, &resp_length, TPM_DURATION_TYPE_MEDIUM); if (ret || resp_length != sizeof(rsp) || rsp.errcode) ret = -1; dprintf(DEBUG_tcg, "TCGBIOS: Return value from sending TPM2_CC_HierarchyControl = 0x%08x\n", ret); return ret; } static void tpm_set_failure(void) { switch (TPM_version) { case TPM_VERSION_1_2: /* * We will try to deactivate the TPM now - ignoring all errors * Physical presence is asserted. */ tpm_build_and_send_cmd(0, TPM_ORD_SetTempDeactivated, NULL, 0, TPM_DURATION_TYPE_SHORT); break; case TPM_VERSION_2: tpm20_hierarchycontrol(TPM2_RH_ENDORSEMENT, TPM2_NO); tpm20_hierarchycontrol(TPM2_RH_OWNER, TPM2_NO); break; } TPM_working = 0; } static int tpm12_get_capability(u32 cap, u32 subcap, struct tpm_rsp_header *rsp, u32 rsize) { struct tpm_req_getcap trgc = { .hdr.tag = cpu_to_be16(TPM_TAG_RQU_CMD), .hdr.totlen = cpu_to_be32(sizeof(trgc)), .hdr.ordinal = cpu_to_be32(TPM_ORD_GetCapability), .capArea = cpu_to_be32(cap), .subCapSize = cpu_to_be32(sizeof(trgc.subCap)), .subCap = cpu_to_be32(subcap) }; u32 resp_size = rsize; int ret = tpmhw_transmit(0, &trgc.hdr, rsp, &resp_size, TPM_DURATION_TYPE_SHORT); ret = (ret || resp_size != rsize) ? -1 : be32_to_cpu(rsp->errcode); dprintf(DEBUG_tcg, "TCGBIOS: Return code from TPM_GetCapability(%d, %d)" " = %x\n", cap, subcap, ret); if (ret) { dprintf(DEBUG_tcg, "TCGBIOS: TPM malfunctioning (line %d).\n", __LINE__); tpm_set_failure(); } return ret; } static int tpm12_determine_timeouts(void) { struct tpm_res_getcap_timeouts timeouts; int ret = tpm12_get_capability(TPM_CAP_PROPERTY, TPM_CAP_PROP_TIS_TIMEOUT , &timeouts.hdr, sizeof(timeouts)); if (ret) return ret; struct tpm_res_getcap_durations durations; ret = tpm12_get_capability(TPM_CAP_PROPERTY, TPM_CAP_PROP_DURATION , &durations.hdr, sizeof(durations)); if (ret) return ret; int i; for (i = 0; i < 3; i++) durations.durations[i] = be32_to_cpu(durations.durations[i]); for (i = 0; i < 4; i++) timeouts.timeouts[i] = be32_to_cpu(timeouts.timeouts[i]); dprintf(DEBUG_tcg, "TCGBIOS: timeouts: %u %u %u %u\n", timeouts.timeouts[0], timeouts.timeouts[1], timeouts.timeouts[2], timeouts.timeouts[3]); dprintf(DEBUG_tcg, "TCGBIOS: durations: %u %u %u\n", durations.durations[0], durations.durations[1], durations.durations[2]); tpmhw_set_timeouts(timeouts.timeouts, durations.durations); return 0; } static void tpm20_set_timeouts(void) { u32 durations[3] = { TPM2_DEFAULT_DURATION_SHORT, TPM2_DEFAULT_DURATION_MEDIUM, TPM2_DEFAULT_DURATION_LONG, }; u32 timeouts[4] = { TIS2_DEFAULT_TIMEOUT_A, TIS2_DEFAULT_TIMEOUT_B, TIS2_DEFAULT_TIMEOUT_C, TIS2_DEFAULT_TIMEOUT_D, }; tpmhw_set_timeouts(timeouts, durations); } static int tpm12_extend(u32 pcrindex, const u8 *digest) { struct tpm_req_extend tre = { .hdr.tag = cpu_to_be16(TPM_TAG_RQU_CMD), .hdr.totlen = cpu_to_be32(sizeof(tre)), .hdr.ordinal = cpu_to_be32(TPM_ORD_Extend), .pcrindex = cpu_to_be32(pcrindex), }; memcpy(tre.digest, digest, sizeof(tre.digest)); struct tpm_rsp_extend rsp; u32 resp_length = sizeof(rsp); int ret = tpmhw_transmit(0, &tre.hdr, &rsp, &resp_length, TPM_DURATION_TYPE_SHORT); if (ret || resp_length != sizeof(rsp) || rsp.hdr.errcode) return -1; return 0; } static int tpm20_extend(u32 pcrindex, const u8 *digest) { struct tpm2_req_extend tre = { .hdr.tag = cpu_to_be16(TPM2_ST_SESSIONS), .hdr.totlen = cpu_to_be32(sizeof(tre)), .hdr.ordinal = cpu_to_be32(TPM2_CC_PCR_Extend), .pcrindex = cpu_to_be32(pcrindex), .authblocksize = cpu_to_be32(sizeof(tre.authblock)), .authblock = { .handle = cpu_to_be32(TPM2_RS_PW), .noncesize = cpu_to_be16(0), .contsession = TPM2_YES, .pwdsize = cpu_to_be16(0), }, .digest = { .count = cpu_to_be32(1), .hashalg = cpu_to_be16(TPM2_ALG_SHA1), }, }; memcpy(tre.digest.sha1, digest, sizeof(tre.digest.sha1)); struct tpm_rsp_header rsp; u32 resp_length = sizeof(rsp); int ret = tpmhw_transmit(0, &tre.hdr, &rsp, &resp_length, TPM_DURATION_TYPE_SHORT); if (ret || resp_length != sizeof(rsp) || rsp.errcode) return -1; return 0; } static int tpm_extend(u32 pcrindex, const u8 *digest) { switch (TPM_version) { case TPM_VERSION_1_2: return tpm12_extend(pcrindex, digest); case TPM_VERSION_2: return tpm20_extend(pcrindex, digest); } return -1; } /* * Add a measurement to the log; the data at data_seg:data/length are * appended to the TCG_PCClientPCREventStruct * * Input parameters: * pcrindex : which PCR to extend * event_type : type of event; specs section on 'Event Types' * event : pointer to info (e.g., string) to be added to log as-is * event_length: length of the event * hashdata : pointer to the data to be hashed * hashdata_length: length of the data to be hashed */ static void tpm_add_measurement_to_log(u32 pcrindex, u32 event_type, const char *event, u32 event_length, const u8 *hashdata, u32 hashdata_length) { if (!tpm_is_working()) return; struct tcg_pcr_event2_sha1 entry = { .pcrindex = pcrindex, .eventtype = event_type, .eventdatasize = event_length, .count = 1, .digests[0].hashtype = TPM2_ALG_SHA1, }; sha1(hashdata, hashdata_length, entry.digests[0].sha1); int ret = tpm_extend(entry.pcrindex, entry.digests[0].sha1); if (ret) { tpm_set_failure(); return; } tpm_log_event(&entry, event, TPM_version); } /**************************************************************** * Setup and Measurements ****************************************************************/ // Add an EV_ACTION measurement to the list of measurements static void tpm_add_action(u32 pcrIndex, const char *string) { u32 len = strlen(string); tpm_add_measurement_to_log(pcrIndex, EV_ACTION, string, len, (u8 *)string, len); } /* * Add event separators for PCRs 0 to 7; specs on 'Measuring Boot Events' */ static void tpm_add_event_separators(void) { static const u8 evt_separator[] = {0xff,0xff,0xff,0xff}; u32 pcrIndex; for (pcrIndex = 0; pcrIndex <= 7; pcrIndex++) tpm_add_measurement_to_log(pcrIndex, EV_SEPARATOR, NULL, 0, evt_separator, sizeof(evt_separator)); } static void tpm_smbios_measure(void) { struct pcctes pcctes = { .eventid = 1, .eventdatasize = SHA1_BUFSIZE, }; struct smbios_entry_point *sep = SMBiosAddr; dprintf(DEBUG_tcg, "TCGBIOS: SMBIOS at %p\n", sep); if (!sep) return; sha1((const u8 *)sep->structure_table_address, sep->structure_table_length, pcctes.digest); tpm_add_measurement_to_log(1, EV_EVENT_TAG, (const char *)&pcctes, sizeof(pcctes), (u8 *)&pcctes, sizeof(pcctes)); } static int tpm12_read_permanent_flags(char *buf, int buf_len) { memset(buf, 0, buf_len); struct tpm_res_getcap_perm_flags pf; int ret = tpm12_get_capability(TPM_CAP_FLAG, TPM_CAP_FLAG_PERMANENT , &pf.hdr, sizeof(pf)); if (ret) return -1; memcpy(buf, &pf.perm_flags, buf_len); return 0; } static int tpm12_assert_physical_presence(void) { int ret = tpm_build_and_send_cmd(0, TPM_ORD_PhysicalPresence, PhysicalPresence_PRESENT, sizeof(PhysicalPresence_PRESENT), TPM_DURATION_TYPE_SHORT); if (!ret) return 0; struct tpm_permanent_flags pf; ret = tpm12_read_permanent_flags((char *)&pf, sizeof(pf)); if (ret) return -1; /* check if hardware physical presence is supported */ if (pf.flags[PERM_FLAG_IDX_PHYSICAL_PRESENCE_HW_ENABLE]) { /* HW phys. presence may not be asserted... */ return 0; } if (!pf.flags[PERM_FLAG_IDX_PHYSICAL_PRESENCE_LIFETIME_LOCK] && !pf.flags[PERM_FLAG_IDX_PHYSICAL_PRESENCE_CMD_ENABLE]) { tpm_build_and_send_cmd(0, TPM_ORD_PhysicalPresence, PhysicalPresence_CMD_ENABLE, sizeof(PhysicalPresence_CMD_ENABLE), TPM_DURATION_TYPE_SHORT); return tpm_build_and_send_cmd(0, TPM_ORD_PhysicalPresence, PhysicalPresence_PRESENT, sizeof(PhysicalPresence_PRESENT), TPM_DURATION_TYPE_SHORT); } return -1; } static int tpm12_startup(void) { dprintf(DEBUG_tcg, "TCGBIOS: Starting with TPM_Startup(ST_CLEAR)\n"); int ret = tpm_build_and_send_cmd(0, TPM_ORD_Startup, Startup_ST_CLEAR, sizeof(Startup_ST_CLEAR), TPM_DURATION_TYPE_SHORT); if (CONFIG_COREBOOT && ret == TPM_INVALID_POSTINIT) /* with other firmware on the system the TPM may already have been * initialized */ ret = 0; if (ret) goto err_exit; /* assertion of physical presence is only possible after startup */ ret = tpm12_assert_physical_presence(); if (!ret) TPM_has_physical_presence = 1; ret = tpm12_determine_timeouts(); if (ret) return -1; ret = tpm_build_and_send_cmd(0, TPM_ORD_SelfTestFull, NULL, 0, TPM_DURATION_TYPE_LONG); if (ret) goto err_exit; ret = tpm_build_and_send_cmd(3, TSC_ORD_ResetEstablishmentBit, NULL, 0, TPM_DURATION_TYPE_SHORT); if (ret && ret != TPM_BAD_LOCALITY) goto err_exit; return 0; err_exit: dprintf(DEBUG_tcg, "TCGBIOS: TPM malfunctioning (line %d).\n", __LINE__); tpm_set_failure(); return -1; } static int tpm20_startup(void) { tpm20_set_timeouts(); int ret = tpm_build_and_send_cmd(0, TPM2_CC_Startup, Startup_SU_CLEAR, sizeof(Startup_SU_CLEAR), TPM_DURATION_TYPE_SHORT); dprintf(DEBUG_tcg, "TCGBIOS: Return value from sending TPM2_CC_Startup(SU_CLEAR) = 0x%08x\n", ret); if (CONFIG_COREBOOT && ret == TPM2_RC_INITIALIZE) /* with other firmware on the system the TPM may already have been * initialized */ ret = 0; if (ret) goto err_exit; ret = tpm_build_and_send_cmd(0, TPM2_CC_SelfTest, TPM2_SelfTest_YES, sizeof(TPM2_SelfTest_YES), TPM_DURATION_TYPE_LONG); dprintf(DEBUG_tcg, "TCGBIOS: Return value from sending TPM2_CC_SelfTest = 0x%08x\n", ret); if (ret) goto err_exit; return 0; err_exit: dprintf(DEBUG_tcg, "TCGBIOS: TPM malfunctioning (line %d).\n", __LINE__); tpm_set_failure(); return -1; } static int tpm_startup(void) { switch (TPM_version) { case TPM_VERSION_1_2: return tpm12_startup(); case TPM_VERSION_2: return tpm20_startup(); } return -1; } void tpm_setup(void) { if (!CONFIG_TCGBIOS) return; TPM_version = tpmhw_probe(); if (TPM_version == TPM_VERSION_NONE) return; dprintf(DEBUG_tcg, "TCGBIOS: Detected a TPM %s.\n", (TPM_version == TPM_VERSION_1_2) ? "1.2" : "2"); int ret = tpm_tcpa_probe(); if (ret) return; tpm_log_init(); TPM_working = 1; if (runningOnXen()) return; ret = tpm_startup(); if (ret) return; tpm_smbios_measure(); tpm_add_action(2, "Start Option ROM Scan"); } static int tpm20_stirrandom(void) { struct tpm2b_stir stir = { .size = cpu_to_be16(sizeof(stir.stir)), .stir = rdtscll(), }; /* set more bits to stir with */ stir.stir += swab64(rdtscll()); int ret = tpm_build_and_send_cmd(0, TPM2_CC_StirRandom, (u8 *)&stir, sizeof(stir), TPM_DURATION_TYPE_SHORT); dprintf(DEBUG_tcg, "TCGBIOS: Return value from sending TPM2_CC_StirRandom = 0x%08x\n", ret); return ret; } static int tpm20_getrandom(u8 *buf, u16 buf_len) { struct tpm2_res_getrandom rsp; if (buf_len > sizeof(rsp.rnd.buffer)) return -1; struct tpm2_req_getrandom trgr = { .hdr.tag = cpu_to_be16(TPM2_ST_NO_SESSIONS), .hdr.totlen = cpu_to_be32(sizeof(trgr)), .hdr.ordinal = cpu_to_be32(TPM2_CC_GetRandom), .bytesRequested = cpu_to_be16(buf_len), }; u32 resp_length = sizeof(rsp); int ret = tpmhw_transmit(0, &trgr.hdr, &rsp, &resp_length, TPM_DURATION_TYPE_MEDIUM); if (ret || resp_length != sizeof(rsp) || rsp.hdr.errcode) ret = -1; else memcpy(buf, rsp.rnd.buffer, buf_len); dprintf(DEBUG_tcg, "TCGBIOS: Return value from sending TPM2_CC_GetRandom = 0x%08x\n", ret); return ret; } static int tpm20_hierarchychangeauth(u8 auth[20]) { struct tpm2_req_hierarchychangeauth trhca = { .hdr.tag = cpu_to_be16(TPM2_ST_SESSIONS), .hdr.totlen = cpu_to_be32(sizeof(trhca)), .hdr.ordinal = cpu_to_be32(TPM2_CC_HierarchyChangeAuth), .authhandle = cpu_to_be32(TPM2_RH_PLATFORM), .authblocksize = cpu_to_be32(sizeof(trhca.authblock)), .authblock = { .handle = cpu_to_be32(TPM2_RS_PW), .noncesize = cpu_to_be16(0), .contsession = TPM2_YES, .pwdsize = cpu_to_be16(0), }, .newAuth = { .size = cpu_to_be16(sizeof(trhca.newAuth.buffer)), }, }; memcpy(trhca.newAuth.buffer, auth, sizeof(trhca.newAuth.buffer)); struct tpm_rsp_header rsp; u32 resp_length = sizeof(rsp); int ret = tpmhw_transmit(0, &trhca.hdr, &rsp, &resp_length, TPM_DURATION_TYPE_MEDIUM); if (ret || resp_length != sizeof(rsp) || rsp.errcode) ret = -1; dprintf(DEBUG_tcg, "TCGBIOS: Return value from sending TPM2_CC_HierarchyChangeAuth = 0x%08x\n", ret); return ret; } static void tpm20_prepboot(void) { int ret = tpm20_stirrandom(); if (ret) goto err_exit; u8 auth[20]; ret = tpm20_getrandom(&auth[0], sizeof(auth)); if (ret) goto err_exit; ret = tpm20_hierarchychangeauth(auth); if (ret) goto err_exit; return; err_exit: dprintf(DEBUG_tcg, "TCGBIOS: TPM malfunctioning (line %d).\n", __LINE__); tpm_set_failure(); } void tpm_prepboot(void) { if (!CONFIG_TCGBIOS) return; switch (TPM_version) { case TPM_VERSION_1_2: if (TPM_has_physical_presence) tpm_build_and_send_cmd(0, TPM_ORD_PhysicalPresence, PhysicalPresence_NOT_PRESENT_LOCK, sizeof(PhysicalPresence_NOT_PRESENT_LOCK), TPM_DURATION_TYPE_SHORT); break; case TPM_VERSION_2: tpm20_prepboot(); break; } tpm_add_action(4, "Calling INT 19h"); tpm_add_event_separators(); } /* * Add measurement to the log about an option rom */ void tpm_option_rom(const void *addr, u32 len) { if (!tpm_is_working()) return; struct pcctes_romex pcctes = { .eventid = 7, .eventdatasize = sizeof(u16) + sizeof(u16) + SHA1_BUFSIZE, }; sha1((const u8 *)addr, len, pcctes.digest); tpm_add_measurement_to_log(2, EV_EVENT_TAG, (const char *)&pcctes, sizeof(pcctes), (u8 *)&pcctes, sizeof(pcctes)); } void tpm_add_bcv(u32 bootdrv, const u8 *addr, u32 length) { if (!tpm_is_working()) return; if (length < 0x200) return; const char *string = "Booting BCV device 00h (Floppy)"; if (bootdrv == 0x80) string = "Booting BCV device 80h (HDD)"; tpm_add_action(4, string); /* specs: see section 'Hard Disk Device or Hard Disk-Like Devices' */ /* equivalent to: dd if=/dev/hda ibs=1 count=440 | sha1sum */ string = "MBR"; tpm_add_measurement_to_log(4, EV_IPL, string, strlen(string), addr, 0x1b8); /* equivalent to: dd if=/dev/hda ibs=1 count=72 skip=440 | sha1sum */ string = "MBR PARTITION_TABLE"; tpm_add_measurement_to_log(5, EV_IPL_PARTITION_DATA, string, strlen(string), addr + 0x1b8, 0x48); } void tpm_add_cdrom(u32 bootdrv, const u8 *addr, u32 length) { if (!tpm_is_working()) return; tpm_add_action(4, "Booting from CD ROM device"); /* specs: see section 'El Torito' */ const char *string = "EL TORITO IPL"; tpm_add_measurement_to_log(4, EV_IPL, string, strlen(string), addr, length); } void tpm_add_cdrom_catalog(const u8 *addr, u32 length) { if (!tpm_is_working()) return; tpm_add_action(4, "Booting from CD ROM device"); /* specs: see section 'El Torito' */ const char *string = "BOOT CATALOG"; tpm_add_measurement_to_log(5, EV_IPL_PARTITION_DATA, string, strlen(string), addr, length); } void tpm_s3_resume(void) { if (!tpm_is_working()) return; dprintf(DEBUG_tcg, "TCGBIOS: Resuming with TPM_Startup(ST_STATE)\n"); int ret = -1; switch (TPM_version) { case TPM_VERSION_1_2: ret = tpm_build_and_send_cmd(0, TPM_ORD_Startup, Startup_ST_STATE, sizeof(Startup_ST_STATE), TPM_DURATION_TYPE_SHORT); break; case TPM_VERSION_2: ret = tpm_build_and_send_cmd(0, TPM2_CC_Startup, Startup_SU_STATE, sizeof(Startup_SU_STATE), TPM_DURATION_TYPE_SHORT); dprintf(DEBUG_tcg, "TCGBIOS: Return value from sending TPM2_CC_Startup(SU_STATE) = 0x%08x\n", ret); if (ret) goto err_exit; ret = tpm_build_and_send_cmd(0, TPM2_CC_SelfTest, TPM2_SelfTest_YES, sizeof(TPM2_SelfTest_YES), TPM_DURATION_TYPE_LONG); dprintf(DEBUG_tcg, "TCGBIOS: Return value from sending TPM2_CC_SelfTest() = 0x%08x\n", ret); break; } if (ret) goto err_exit; return; err_exit: dprintf(DEBUG_tcg, "TCGBIOS: TPM malfunctioning (line %d).\n", __LINE__); tpm_set_failure(); } /**************************************************************** * BIOS interface ****************************************************************/ u8 TPM_interface_shutdown VARLOW; static inline void *input_buf32(struct bregs *regs) { return MAKE_FLATPTR(regs->es, regs->di); } static inline void *output_buf32(struct bregs *regs) { return MAKE_FLATPTR(regs->ds, regs->si); } static u32 hash_log_extend(struct pcpes *pcpes, const void *hashdata, u32 hashdata_length , void *event, int extend) { if (pcpes->pcrindex >= 24) return TCG_INVALID_INPUT_PARA; if (hashdata) sha1(hashdata, hashdata_length, pcpes->digest); if (extend) { int ret = tpm_extend(pcpes->pcrindex, pcpes->digest); if (ret) return TCG_TCG_COMMAND_ERROR; } struct tcg_pcr_event2_sha1 entry = { .pcrindex = pcpes->pcrindex, .eventtype = pcpes->eventtype, .eventdatasize = pcpes->eventdatasize, .count = 1, .digests[0].hashtype = TPM2_ALG_SHA1, }; memcpy(entry.digests[0].sha1, pcpes->digest, sizeof(entry.digests[0].sha1)); int ret = tpm_log_event(&entry, pcpes->event, TPM_version); if (ret) return TCG_PC_LOGOVERFLOW; return 0; } static u32 hash_log_extend_event_int(const struct hleei_short *hleei_s, struct hleeo *hleeo) { u32 rc = 0; struct hleo hleo; struct hleei_long *hleei_l = (struct hleei_long *)hleei_s; const void *logdataptr; u32 logdatalen; struct pcpes *pcpes; u32 pcrindex; /* short or long version? */ switch (hleei_s->ipblength) { case sizeof(struct hleei_short): /* short */ logdataptr = hleei_s->logdataptr; logdatalen = hleei_s->logdatalen; pcrindex = hleei_s->pcrindex; break; case sizeof(struct hleei_long): /* long */ logdataptr = hleei_l->logdataptr; logdatalen = hleei_l->logdatalen; pcrindex = hleei_l->pcrindex; break; default: /* bad input block */ rc = TCG_INVALID_INPUT_PARA; goto err_exit; } pcpes = (struct pcpes *)logdataptr; if (pcpes->pcrindex != pcrindex || logdatalen != sizeof(*pcpes) + pcpes->eventdatasize) { rc = TCG_INVALID_INPUT_PARA; goto err_exit; } rc = hash_log_extend(pcpes, hleei_s->hashdataptr, hleei_s->hashdatalen , pcpes->event, 1); if (rc) goto err_exit; hleeo->opblength = sizeof(struct hleeo); hleeo->reserved = 0; hleeo->eventnumber = hleo.eventnumber; memcpy(hleeo->digest, pcpes->digest, sizeof(hleeo->digest)); err_exit: if (rc != 0) { hleeo->opblength = 4; hleeo->reserved = 0; } return rc; } static u32 pass_through_to_tpm_int(struct pttti *pttti, struct pttto *pttto) { u32 rc = 0; struct tpm_req_header *trh = (void*)pttti->tpmopin; if (pttti->ipblength < sizeof(struct pttti) + sizeof(*trh) || pttti->ipblength != sizeof(struct pttti) + be32_to_cpu(trh->totlen) || pttti->opblength < sizeof(struct pttto)) { rc = TCG_INVALID_INPUT_PARA; goto err_exit; } u16 tag = be16_to_cpu(trh->tag); switch (TPM_version) { case TPM_VERSION_1_2: if (tag != TPM_TAG_RQU_CMD && tag != TPM_TAG_RQU_AUTH1_CMD && tag != TPM_TAG_RQU_AUTH2_CMD) { rc = TCG_INVALID_INPUT_PARA; goto err_exit; } break; case TPM_VERSION_2: if (tag != TPM2_ST_NO_SESSIONS && tag != TPM2_ST_SESSIONS) { rc = TCG_INVALID_INPUT_PARA; goto err_exit; } } u32 resbuflen = pttti->opblength - offsetof(struct pttto, tpmopout); int ret = tpmhw_transmit(0, trh, pttto->tpmopout, &resbuflen, TPM_DURATION_TYPE_LONG /* worst case */); if (ret) { rc = TCG_FATAL_COM_ERROR; goto err_exit; } pttto->opblength = offsetof(struct pttto, tpmopout) + resbuflen; pttto->reserved = 0; err_exit: if (rc != 0) { pttto->opblength = 4; pttto->reserved = 0; } return rc; } static u32 shutdown_preboot_interface(void) { TPM_interface_shutdown = 1; return 0; } static u32 hash_log_event_int(const struct hlei *hlei, struct hleo *hleo) { u32 rc = 0; u16 size; struct pcpes *pcpes; size = hlei->ipblength; if (size != sizeof(*hlei)) { rc = TCG_INVALID_INPUT_PARA; goto err_exit; } pcpes = (struct pcpes *)hlei->logdataptr; if (pcpes->pcrindex != hlei->pcrindex || pcpes->eventtype != hlei->logeventtype || hlei->logdatalen != sizeof(*pcpes) + pcpes->eventdatasize) { rc = TCG_INVALID_INPUT_PARA; goto err_exit; } rc = hash_log_extend(pcpes, hlei->hashdataptr, hlei->hashdatalen , pcpes->event, 0); if (rc) goto err_exit; /* updating the log was fine */ hleo->opblength = sizeof(struct hleo); hleo->reserved = 0; hleo->eventnumber = tpm_state.entry_count; err_exit: if (rc != 0) { hleo->opblength = 2; hleo->reserved = 0; } return rc; } static u32 hash_all_int(const struct hai *hai, u8 *hash) { if (hai->ipblength != sizeof(struct hai) || hai->hashdataptr == 0 || hai->hashdatalen == 0 || hai->algorithmid != TPM_ALG_SHA) return TCG_INVALID_INPUT_PARA; sha1((const u8 *)hai->hashdataptr, hai->hashdatalen, hash); return 0; } static u32 tss_int(struct ti *ti, struct to *to) { to->opblength = sizeof(struct to); to->reserved = 0; return TCG_PC_UNSUPPORTED; } static u32 compact_hash_log_extend_event_int(u8 *buffer, u32 info, u32 length, u32 pcrindex, u32 *edx_ptr) { struct pcpes pcpes = { .pcrindex = pcrindex, .eventtype = EV_COMPACT_HASH, .eventdatasize = sizeof(info), }; u32 rc = hash_log_extend(&pcpes, buffer, length, &info, 1); if (rc) return rc; *edx_ptr = tpm_state.entry_count; return 0; } void VISIBLE32FLAT tpm_interrupt_handler32(struct bregs *regs) { if (!CONFIG_TCGBIOS) return; set_cf(regs, 0); if (TPM_interface_shutdown && regs->al) { regs->eax = TCG_INTERFACE_SHUTDOWN; return; } switch ((enum irq_ids)regs->al) { case TCG_StatusCheck: if (!tpmhw_is_present()) { /* no TPM available */ regs->eax = TCG_PC_TPM_NOT_PRESENT; } else { regs->eax = 0; regs->ebx = TCG_MAGIC; regs->ch = TCG_VERSION_MAJOR; regs->cl = TCG_VERSION_MINOR; regs->edx = 0x0; regs->esi = (u32)tpm_state.log_area_start_address; regs->edi = (u32)tpm_state.log_area_last_entry; } break; case TCG_HashLogExtendEvent: regs->eax = hash_log_extend_event_int( (struct hleei_short *)input_buf32(regs), (struct hleeo *)output_buf32(regs)); break; case TCG_PassThroughToTPM: regs->eax = pass_through_to_tpm_int((struct pttti *)input_buf32(regs), (struct pttto *)output_buf32(regs)); break; case TCG_ShutdownPreBootInterface: regs->eax = shutdown_preboot_interface(); break; case TCG_HashLogEvent: regs->eax = hash_log_event_int((struct hlei*)input_buf32(regs), (struct hleo*)output_buf32(regs)); break; case TCG_HashAll: regs->eax = hash_all_int((struct hai*)input_buf32(regs), (u8 *)output_buf32(regs)); break; case TCG_TSS: regs->eax = tss_int((struct ti*)input_buf32(regs), (struct to*)output_buf32(regs)); break; case TCG_CompactHashLogExtendEvent: regs->eax = compact_hash_log_extend_event_int((u8 *)input_buf32(regs), regs->esi, regs->ecx, regs->edx, ®s->edx); break; default: set_cf(regs, 1); } return; } /**************************************************************** * TPM Configuration Menu ****************************************************************/ static int tpm12_read_has_owner(int *has_owner) { struct tpm_res_getcap_ownerauth oauth; int ret = tpm12_get_capability(TPM_CAP_PROPERTY, TPM_CAP_PROP_OWNER , &oauth.hdr, sizeof(oauth)); if (ret) return -1; *has_owner = oauth.flag; return 0; } static int tpm12_enable_tpm(int enable, int verbose) { struct tpm_permanent_flags pf; int ret = tpm12_read_permanent_flags((char *)&pf, sizeof(pf)); if (ret) return -1; if (pf.flags[PERM_FLAG_IDX_DISABLE] && !enable) return 0; ret = tpm_build_and_send_cmd(0, enable ? TPM_ORD_PhysicalEnable : TPM_ORD_PhysicalDisable, NULL, 0, TPM_DURATION_TYPE_SHORT); if (ret) { if (enable) dprintf(DEBUG_tcg, "TCGBIOS: Enabling the TPM failed.\n"); else dprintf(DEBUG_tcg, "TCGBIOS: Disabling the TPM failed.\n"); } return ret; } static int tpm12_activate_tpm(int activate, int allow_reset, int verbose) { struct tpm_permanent_flags pf; int ret = tpm12_read_permanent_flags((char *)&pf, sizeof(pf)); if (ret) return -1; if (pf.flags[PERM_FLAG_IDX_DEACTIVATED] && !activate) return 0; if (pf.flags[PERM_FLAG_IDX_DISABLE]) return 0; ret = tpm_build_and_send_cmd(0, TPM_ORD_PhysicalSetDeactivated, activate ? CommandFlag_FALSE : CommandFlag_TRUE, activate ? sizeof(CommandFlag_FALSE) : sizeof(CommandFlag_TRUE), TPM_DURATION_TYPE_SHORT); if (ret) return ret; if (activate && allow_reset) { if (verbose) { printf("Requiring a reboot to activate the TPM.\n"); msleep(2000); } reset(); } return 0; } static int tpm12_enable_activate(int allow_reset, int verbose) { int ret = tpm12_enable_tpm(1, verbose); if (ret) return ret; return tpm12_activate_tpm(1, allow_reset, verbose); } static int tpm12_force_clear(int enable_activate_before, int enable_activate_after, int verbose) { int has_owner; int ret = tpm12_read_has_owner(&has_owner); if (ret) return -1; if (!has_owner) { if (verbose) printf("TPM does not have an owner.\n"); return 0; } if (enable_activate_before) { ret = tpm12_enable_activate(0, verbose); if (ret) { dprintf(DEBUG_tcg, "TCGBIOS: Enabling/activating the TPM failed.\n"); return ret; } } ret = tpm_build_and_send_cmd(0, TPM_ORD_ForceClear, NULL, 0, TPM_DURATION_TYPE_SHORT); if (ret) return ret; if (!enable_activate_after) { if (verbose) printf("Owner successfully cleared.\n" "You will need to enable/activate the TPM again.\n\n"); return 0; } return tpm12_enable_activate(1, verbose); } static int tpm12_set_owner_install(int allow, int verbose) { int has_owner; int ret = tpm12_read_has_owner(&has_owner); if (ret) return -1; if (has_owner) { if (verbose) printf("Must first remove owner.\n"); return 0; } struct tpm_permanent_flags pf; ret = tpm12_read_permanent_flags((char *)&pf, sizeof(pf)); if (ret) return -1; if (pf.flags[PERM_FLAG_IDX_DISABLE]) { if (verbose) printf("TPM must first be enable.\n"); return 0; } ret = tpm_build_and_send_cmd(0, TPM_ORD_SetOwnerInstall, (allow) ? CommandFlag_TRUE : CommandFlag_FALSE, sizeof(CommandFlag_TRUE), TPM_DURATION_TYPE_SHORT); if (ret) return ret; if (verbose) printf("Installation of owner %s.\n", allow ? "enabled" : "disabled"); return 0; } static int tpm12_process_cfg(tpm_ppi_code msgCode, int verbose) { int ret = 0; switch (msgCode) { case TPM_PPI_OP_NOOP: /* no-op */ break; case TPM_PPI_OP_ENABLE: ret = tpm12_enable_tpm(1, verbose); break; case TPM_PPI_OP_DISABLE: ret = tpm12_enable_tpm(0, verbose); break; case TPM_PPI_OP_ACTIVATE: ret = tpm12_activate_tpm(1, 1, verbose); break; case TPM_PPI_OP_DEACTIVATE: ret = tpm12_activate_tpm(0, 1, verbose); break; case TPM_PPI_OP_CLEAR: ret = tpm12_force_clear(1, 0, verbose); break; case TPM_PPI_OP_SET_OWNERINSTALL_TRUE: ret = tpm12_set_owner_install(1, verbose); break; case TPM_PPI_OP_SET_OWNERINSTALL_FALSE: ret = tpm12_set_owner_install(0, verbose); break; default: break; } if (ret) printf("Op %d: An error occurred: 0x%x\n", msgCode, ret); return ret; } static int tpm20_clearcontrol(u8 disable, int verbose) { struct tpm2_req_clearcontrol trc = { .hdr.tag = cpu_to_be16(TPM2_ST_SESSIONS), .hdr.totlen = cpu_to_be32(sizeof(trc)), .hdr.ordinal = cpu_to_be32(TPM2_CC_ClearControl), .authhandle = cpu_to_be32(TPM2_RH_PLATFORM), .authblocksize = cpu_to_be32(sizeof(trc.authblock)), .authblock = { .handle = cpu_to_be32(TPM2_RS_PW), .noncesize = cpu_to_be16(0), .contsession = TPM2_YES, .pwdsize = cpu_to_be16(0), }, .disable = disable, }; struct tpm_rsp_header rsp; u32 resp_length = sizeof(rsp); int ret = tpmhw_transmit(0, &trc.hdr, &rsp, &resp_length, TPM_DURATION_TYPE_SHORT); if (ret || resp_length != sizeof(rsp) || rsp.errcode) ret = -1; dprintf(DEBUG_tcg, "TCGBIOS: Return value from sending TPM2_CC_ClearControl = 0x%08x\n", ret); return ret; } static int tpm20_clear(void) { struct tpm2_req_clear trq = { .hdr.tag = cpu_to_be16(TPM2_ST_SESSIONS), .hdr.totlen = cpu_to_be32(sizeof(trq)), .hdr.ordinal = cpu_to_be32(TPM2_CC_Clear), .authhandle = cpu_to_be32(TPM2_RH_PLATFORM), .authblocksize = cpu_to_be32(sizeof(trq.authblock)), .authblock = { .handle = cpu_to_be32(TPM2_RS_PW), .noncesize = cpu_to_be16(0), .contsession = TPM2_YES, .pwdsize = cpu_to_be16(0), }, }; struct tpm_rsp_header rsp; u32 resp_length = sizeof(rsp); int ret = tpmhw_transmit(0, &trq.hdr, &rsp, &resp_length, TPM_DURATION_TYPE_MEDIUM); if (ret || resp_length != sizeof(rsp) || rsp.errcode) ret = -1; dprintf(DEBUG_tcg, "TCGBIOS: Return value from sending TPM2_CC_Clear = 0x%08x\n", ret); return ret; } static int tpm20_process_cfg(tpm_ppi_code msgCode, int verbose) { int ret = 0; switch (msgCode) { case TPM_PPI_OP_NOOP: /* no-op */ break; case TPM_PPI_OP_CLEAR: ret = tpm20_clearcontrol(0, verbose); if (!ret) ret = tpm20_clear(); break; } if (ret) printf("Op %d: An error occurred: 0x%x\n", msgCode, ret); return ret; } static int tpm12_get_tpm_state(void) { int state = 0; struct tpm_permanent_flags pf; int has_owner; if (tpm12_read_permanent_flags((char *)&pf, sizeof(pf)) || tpm12_read_has_owner(&has_owner)) return ~0; if (!pf.flags[PERM_FLAG_IDX_DISABLE]) state |= TPM_STATE_ENABLED; if (!pf.flags[PERM_FLAG_IDX_DEACTIVATED]) state |= TPM_STATE_ACTIVE; if (has_owner) { state |= TPM_STATE_OWNED; } else { if (pf.flags[PERM_FLAG_IDX_OWNERSHIP]) state |= TPM_STATE_OWNERINSTALL; } return state; } static void tpm12_show_tpm_menu(int state, int next_scancodes[7]) { int i = 0; printf("\nThe current state of the TPM is:\n"); if (state & TPM_STATE_ENABLED) printf(" Enabled"); else printf(" Disabled"); if (state & TPM_STATE_ACTIVE) printf(" and active\n"); else printf(" and deactivated\n"); if (state & TPM_STATE_OWNED) printf(" Ownership has been taken\n"); else { printf(" Ownership has not been taken\n"); if (state & TPM_STATE_OWNERINSTALL) printf(" A user can take ownership of the TPM\n"); else printf(" Taking ownership of the TPM has been disabled\n"); } if ((state & (TPM_STATE_ENABLED | TPM_STATE_ACTIVE)) != (TPM_STATE_ENABLED | TPM_STATE_ACTIVE)) { printf("\nNote: To make use of all functionality, the TPM must be " "enabled and active.\n"); } printf("\nAvailable options are:\n"); if (state & TPM_STATE_ENABLED) { printf(" d. Disable the TPM\n"); next_scancodes[i++] = 32; if (state & TPM_STATE_ACTIVE) { printf(" v. Deactivate the TPM\n"); next_scancodes[i++] = 47; if (state & TPM_STATE_OWNERINSTALL) { printf(" p. Prevent installation of an owner\n"); next_scancodes[i++] = 25; } else { printf(" s. Allow installation of an owner\n"); next_scancodes[i++] = 31; } } else { printf(" a. Activate the TPM\n"); next_scancodes[i++] = 30; } } else { printf(" e. Enable the TPM\n"); next_scancodes[i++] = 18; } if (state & TPM_STATE_OWNED) { printf(" c. Clear ownership\n"); next_scancodes[i++] = 46; } next_scancodes[i++] = 0; } static void tpm12_menu(void) { int scancode, next_scancodes[7]; tpm_ppi_code msgCode; int state = 0, i; int waitkey; printf("The Trusted Platform Module (TPM) is a hardware device in " "this machine.\n" "It can help verify the integrity of system software.\n\n"); for (;;) { if ((state = tpm12_get_tpm_state()) != ~0) { tpm12_show_tpm_menu(state, next_scancodes); } else { printf("TPM is not working correctly.\n"); return; } printf("\nIf no change is desired or if this menu was reached by " "mistake, press ESC to\n" "reboot the machine.\n"); msgCode = TPM_PPI_OP_NOOP; waitkey = 1; while (waitkey) { while ((scancode = get_keystroke(1000)) == ~0) ; switch (scancode) { case 1: // ESC reset(); break; case 18: /* e. enable */ msgCode = TPM_PPI_OP_ENABLE; break; case 32: /* d. disable */ msgCode = TPM_PPI_OP_DISABLE; break; case 30: /* a. activate */ msgCode = TPM_PPI_OP_ACTIVATE; break; case 47: /* v. deactivate */ msgCode = TPM_PPI_OP_DEACTIVATE; break; case 46: /* c. clear owner */ msgCode = TPM_PPI_OP_CLEAR; break; case 25: /* p. prevent ownerinstall */ msgCode = TPM_PPI_OP_SET_OWNERINSTALL_FALSE; break; case 31: /* s. allow ownerinstall */ msgCode = TPM_PPI_OP_SET_OWNERINSTALL_TRUE; break; default: continue; } /* * Using the next_scancodes array, check whether the * pressed key is currently a valid option. */ for (i = 0; i < sizeof(next_scancodes); i++) { if (next_scancodes[i] == 0) break; if (next_scancodes[i] == scancode) { tpm12_process_cfg(msgCode, 1); waitkey = 0; break; } } } } } static void tpm20_menu(void) { int scan_code; tpm_ppi_code msgCode; for (;;) { printf("1. Clear TPM\n"); printf("\nIf no change is desired or if this menu was reached by " "mistake, press ESC to\n" "reboot the machine.\n"); msgCode = TPM_PPI_OP_NOOP; while ((scan_code = get_keystroke(1000)) == ~0) ; switch (scan_code) { case 1: // ESC reset(); break; case 2: msgCode = TPM_PPI_OP_CLEAR; break; default: continue; } tpm20_process_cfg(msgCode, 0); } } void tpm_menu(void) { if (!CONFIG_TCGBIOS) return; while (get_keystroke(0) >= 0) ; wait_threads(); switch (TPM_version) { case TPM_VERSION_1_2: tpm12_menu(); break; case TPM_VERSION_2: tpm20_menu(); break; } }