1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
// 16bit code to handle system clocks.
//
// Copyright (C) 2008 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include "biosvar.h" // struct bregs
#include "util.h" // debug_enter
#include "disk.h" // floppy_tick
#include "cmos.h" // inb_cmos
static void
init_rtc()
{
outb_cmos(0x26, CMOS_STATUS_A);
outb_cmos(0x02, CMOS_STATUS_B);
inb_cmos(CMOS_STATUS_C);
inb_cmos(CMOS_STATUS_D);
}
static u8
rtc_updating()
{
// This function checks to see if the update-in-progress bit
// is set in CMOS Status Register A. If not, it returns 0.
// If it is set, it tries to wait until there is a transition
// to 0, and will return 0 if such a transition occurs. A 1
// is returned only after timing out. The maximum period
// that this bit should be set is constrained to 244useconds.
// The count I use below guarantees coverage or more than
// this time, with any reasonable IPS setting.
u16 count = 25000;
while (--count != 0) {
if ( (inb_cmos(CMOS_STATUS_A) & 0x80) == 0 )
return 0;
}
return 1; // update-in-progress never transitioned to 0
}
// get current clock count
static void
handle_1a00(struct bregs *regs)
{
u32 ticks = GET_BDA(timer_counter);
regs->cx = ticks >> 16;
regs->dx = ticks;
regs->al = GET_BDA(timer_rollover);
SET_BDA(timer_rollover, 0); // reset flag
set_cf(regs, 0);
}
// Set Current Clock Count
static void
handle_1a01(struct bregs *regs)
{
u32 ticks = (regs->cx << 16) | regs->dx;
SET_BDA(timer_counter, ticks);
SET_BDA(timer_rollover, 0); // reset flag
regs->ah = 0;
set_cf(regs, 0);
}
// Read CMOS Time
static void
handle_1a02(struct bregs *regs)
{
if (rtc_updating()) {
set_cf(regs, 1);
return;
}
regs->dh = inb_cmos(CMOS_RTC_SECONDS);
regs->cl = inb_cmos(CMOS_RTC_MINUTES);
regs->ch = inb_cmos(CMOS_RTC_HOURS);
regs->dl = inb_cmos(CMOS_STATUS_B) & 0x01;
regs->ah = 0;
regs->al = regs->ch;
set_cf(regs, 0);
}
// Set CMOS Time
static void
handle_1a03(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3
// before 1111 1101 0111 1101 0000 0000
// after 0110 0010 0110 0010 0000 0010
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = ((RegB & 01100000b) | 00000010b)
if (rtc_updating()) {
init_rtc();
// fall through as if an update were not in progress
}
outb_cmos(regs->dh, CMOS_RTC_SECONDS);
outb_cmos(regs->cl, CMOS_RTC_MINUTES);
outb_cmos(regs->ch, CMOS_RTC_HOURS);
// Set Daylight Savings time enabled bit to requested value
u8 val8 = (inb_cmos(CMOS_STATUS_B) & 0x60) | 0x02 | (regs->dl & 0x01);
outb_cmos(val8, CMOS_STATUS_B);
regs->ah = 0;
regs->al = val8; // val last written to Reg B
set_cf(regs, 0);
}
// Read CMOS Date
static void
handle_1a04(struct bregs *regs)
{
regs->ah = 0;
if (rtc_updating()) {
set_cf(regs, 1);
return;
}
regs->cl = inb_cmos(CMOS_RTC_YEAR);
regs->dh = inb_cmos(CMOS_RTC_MONTH);
regs->dl = inb_cmos(CMOS_RTC_DAY_MONTH);
regs->ch = inb_cmos(CMOS_CENTURY);
regs->al = regs->ch;
set_cf(regs, 0);
}
// Set CMOS Date
static void
handle_1a05(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3 try#4
// before 1111 1101 0111 1101 0000 0010 0000 0000
// after 0110 1101 0111 1101 0000 0010 0000 0000
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = (RegB & 01111111b)
if (rtc_updating()) {
init_rtc();
set_cf(regs, 1);
return;
}
outb_cmos(regs->cl, CMOS_RTC_YEAR);
outb_cmos(regs->dh, CMOS_RTC_MONTH);
outb_cmos(regs->dl, CMOS_RTC_DAY_MONTH);
outb_cmos(regs->ch, CMOS_CENTURY);
u8 val8 = inb_cmos(CMOS_STATUS_B) & 0x7f; // clear halt-clock bit
outb_cmos(val8, CMOS_STATUS_B);
regs->ah = 0;
regs->al = val8; // AL = val last written to Reg B
set_cf(regs, 0);
}
// Set Alarm Time in CMOS
static void
handle_1a06(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3
// before 1101 1111 0101 1111 0000 0000
// after 0110 1111 0111 1111 0010 0000
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = ((RegB & 01111111b) | 00100000b)
u8 val8 = inb_cmos(CMOS_STATUS_B); // Get Status Reg B
regs->ax = 0;
if (val8 & 0x20) {
// Alarm interrupt enabled already
set_cf(regs, 1);
return;
}
if (rtc_updating()) {
init_rtc();
// fall through as if an update were not in progress
}
outb_cmos(regs->dh, CMOS_RTC_SECONDS_ALARM);
outb_cmos(regs->cl, CMOS_RTC_MINUTES_ALARM);
outb_cmos(regs->ch, CMOS_RTC_HOURS_ALARM);
outb(inb(PORT_PIC2_DATA) & ~PIC2_IRQ8, PORT_PIC2_DATA); // enable IRQ 8
// enable Status Reg B alarm bit, clear halt clock bit
outb_cmos((val8 & 0x7f) | 0x20, CMOS_STATUS_B);
set_cf(regs, 0);
}
// Turn off Alarm
static void
handle_1a07(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3 try#4
// before 1111 1101 0111 1101 0010 0000 0010 0010
// after 0100 0101 0101 0101 0000 0000 0000 0010
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = (RegB & 01010111b)
u8 val8 = inb_cmos(CMOS_STATUS_B); // Get Status Reg B
// clear clock-halt bit, disable alarm bit
outb_cmos(val8 & 0x57, CMOS_STATUS_B); // disable alarm bit
regs->ah = 0;
regs->al = val8; // val last written to Reg B
set_cf(regs, 0);
}
static void
handle_1ab1(struct bregs *regs)
{
// XXX - pcibios stuff
set_cf(regs, 1);
}
// Unsupported
static void
handle_1aXX(struct bregs *regs)
{
set_cf(regs, 1);
}
// INT 1Ah Time-of-day Service Entry Point
void VISIBLE
handle_1a(struct bregs *regs)
{
//debug_enter(regs);
switch (regs->ah) {
case 0x00: handle_1a00(regs); break;
case 0x01: handle_1a01(regs); break;
case 0x02: handle_1a02(regs); break;
case 0x03: handle_1a03(regs); break;
case 0x04: handle_1a04(regs); break;
case 0x05: handle_1a05(regs); break;
case 0x06: handle_1a06(regs); break;
case 0x07: handle_1a07(regs); break;
case 0xb1: handle_1ab1(regs); break;
default: handle_1aXX(regs); break;
}
debug_exit(regs);
}
// User Timer Tick
void VISIBLE
handle_1c(struct bregs *regs)
{
debug_enter(regs);
}
// INT 08h System Timer ISR Entry Point
void VISIBLE
handle_08(struct bregs *regs)
{
// debug_enter(regs);
floppy_tick();
u32 counter = GET_BDA(timer_counter);
counter++;
// compare to one days worth of timer ticks at 18.2 hz
if (counter >= 0x001800B0) {
// there has been a midnight rollover at this point
counter = 0;
SET_BDA(timer_rollover, GET_BDA(timer_rollover) + 1);
}
SET_BDA(timer_counter, counter);
// XXX - int #0x1c
eoi_master_pic();
}
// int70h: IRQ8 - CMOS RTC
void VISIBLE
handle_70(struct bregs *regs)
{
debug_enter(regs);
}
|