1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
// CPU count detection
//
// Copyright (C) 2008 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2006 Fabrice Bellard
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "util.h" // dprintf
#include "config.h" // CONFIG_*
#include "cmos.h" // CMOS_BIOS_SMP_COUNT
#include "paravirt.h"
#define APIC_ICR_LOW ((u8*)BUILD_APIC_ADDR + 0x300)
#define APIC_SVR ((u8*)BUILD_APIC_ADDR + 0x0F0)
#define APIC_LINT0 ((u8*)BUILD_APIC_ADDR + 0x350)
#define APIC_LINT1 ((u8*)BUILD_APIC_ADDR + 0x360)
#define APIC_ENABLED 0x0100
struct { u32 ecx, eax, edx; } smp_mtrr[16] VAR16VISIBLE;
u32 smp_mtrr_count VAR16VISIBLE;
void
wrmsr_smp(u32 index, u64 val)
{
wrmsr(index, val);
if (smp_mtrr_count >= ARRAY_SIZE(smp_mtrr))
return;
smp_mtrr[smp_mtrr_count].ecx = index;
smp_mtrr[smp_mtrr_count].eax = val;
smp_mtrr[smp_mtrr_count].edx = val >> 32;
smp_mtrr_count++;
}
u32 CountCPUs VAR16VISIBLE;
u32 MaxCountCPUs VAR16VISIBLE;
extern void smp_ap_boot_code(void);
ASM16(
" .global smp_ap_boot_code\n"
"smp_ap_boot_code:\n"
// Setup data segment
" movw $" __stringify(SEG_BIOS) ", %ax\n"
" movw %ax, %ds\n"
// MTRR setup
" movl $smp_mtrr, %esi\n"
" movl smp_mtrr_count, %ebx\n"
"1:testl %ebx, %ebx\n"
" jz 2f\n"
" movl 0(%esi), %ecx\n"
" movl 4(%esi), %eax\n"
" movl 8(%esi), %edx\n"
" wrmsr\n"
" addl $12, %esi\n"
" decl %ebx\n"
" jmp 1b\n"
"2:\n"
// Increment the cpu counter
" lock incl CountCPUs\n"
// Halt the processor.
"1:hlt\n"
" jmp 1b\n"
);
// find and initialize the CPUs by launching a SIPI to them
void
smp_probe(void)
{
ASSERT32FLAT();
u32 eax, ebx, ecx, cpuid_features;
cpuid(1, &eax, &ebx, &ecx, &cpuid_features);
if (! (cpuid_features & CPUID_APIC)) {
// No apic - only the main cpu is present.
dprintf(1, "No apic - only the main cpu is present.\n");
CountCPUs= 1;
MaxCountCPUs = 1;
return;
}
// Init the counter.
writel(&CountCPUs, 1);
// Setup jump trampoline to counter code.
u64 old = *(u64*)BUILD_AP_BOOT_ADDR;
// ljmpw $SEG_BIOS, $(smp_ap_boot_code - BUILD_BIOS_ADDR)
u64 new = (0xea | ((u64)SEG_BIOS<<24)
| (((u32)smp_ap_boot_code - BUILD_BIOS_ADDR) << 8));
*(u64*)BUILD_AP_BOOT_ADDR = new;
// enable local APIC
u32 val = readl(APIC_SVR);
writel(APIC_SVR, val | APIC_ENABLED);
if (! CONFIG_COREBOOT) {
/* Set LINT0 as Ext_INT, level triggered */
writel(APIC_LINT0, 0x8700);
/* Set LINT1 as NMI, level triggered */
writel(APIC_LINT1, 0x8400);
}
// broadcast SIPI
barrier();
writel(APIC_ICR_LOW, 0x000C4500);
u32 sipi_vector = BUILD_AP_BOOT_ADDR >> 12;
writel(APIC_ICR_LOW, 0x000C4600 | sipi_vector);
// Wait for other CPUs to process the SIPI.
if (CONFIG_COREBOOT) {
msleep(10);
} else {
u8 cmos_smp_count = inb_cmos(CMOS_BIOS_SMP_COUNT);
while (cmos_smp_count + 1 != readl(&CountCPUs))
yield();
}
// Restore memory.
*(u64*)BUILD_AP_BOOT_ADDR = old;
MaxCountCPUs = qemu_cfg_get_max_cpus();
if (!MaxCountCPUs || MaxCountCPUs < CountCPUs)
MaxCountCPUs = CountCPUs;
dprintf(1, "Found %d cpu(s) max supported %d cpu(s)\n", readl(&CountCPUs),
MaxCountCPUs);
}
// Reset variables to zero
void
smp_probe_setup(void)
{
CountCPUs = 0;
smp_mtrr_count = 0;
}
|