aboutsummaryrefslogtreecommitdiffstats
path: root/src/crypto
diff options
context:
space:
mode:
authorMichael Brown <mcb30@ipxe.org>2024-09-19 16:23:32 +0100
committerMichael Brown <mcb30@ipxe.org>2024-09-23 13:19:58 +0100
commit3def13265d9475c861eed1a101584b761e97ae33 (patch)
tree5ce095cf73fa7fde7baf8ef65fb826a0881d80e2 /src/crypto
parent59d123658bfe25402c4e89bbaf6eea83140d3c1f (diff)
downloadipxe-3def13265d9475c861eed1a101584b761e97ae33.tar.gz
[crypto] Use constant-time big integer multiplication
Big integer multiplication currently performs immediate carry propagation from each step of the long multiplication, relying on the fact that the overall result has a known maximum value to minimise the number of carries performed without ever needing to explicitly check against the result buffer size. This is not a constant-time algorithm, since the number of carries performed will be a function of the input values. We could make it constant-time by always continuing to propagate the carry until reaching the end of the result buffer, but this would introduce a large number of redundant zero carries. Require callers of bigint_multiply() to provide a temporary carry storage buffer, of the same size as the result buffer. This allows the carry-out from the accumulation of each double-element product to be accumulated in the temporary carry space, and then added in via a single call to bigint_add() after the multiplication is complete. Since the structure of big integer multiplication is identical across all current CPU architectures, provide a single shared implementation of bigint_multiply(). The architecture-specific operation then becomes the multiplication of two big integer elements and the accumulation of the double-element product. Note that any intermediate carry arising from accumulating the lower half of the double-element product may be added to the upper half of the double-element product without risk of overflow, since the result of multiplying two n-bit integers can never have all n bits set in its upper half. This simplifies the carry calculations for architectures such as RISC-V and LoongArch64 that do not have a carry flag. Signed-off-by: Michael Brown <mcb30@ipxe.org>
Diffstat (limited to 'src/crypto')
-rw-r--r--src/crypto/bigint.c117
-rw-r--r--src/crypto/x25519.c83
2 files changed, 169 insertions, 31 deletions
diff --git a/src/crypto/bigint.c b/src/crypto/bigint.c
index 656f979e5..5b7116e28 100644
--- a/src/crypto/bigint.c
+++ b/src/crypto/bigint.c
@@ -76,6 +76,115 @@ void bigint_swap_raw ( bigint_element_t *first0, bigint_element_t *second0,
}
/**
+ * Multiply big integers
+ *
+ * @v multiplicand0 Element 0 of big integer to be multiplied
+ * @v multiplicand_size Number of elements in multiplicand
+ * @v multiplier0 Element 0 of big integer to be multiplied
+ * @v multiplier_size Number of elements in multiplier
+ * @v result0 Element 0 of big integer to hold result
+ * @v carry0 Element 0 of big integer to hold temporary carry
+ */
+void bigint_multiply_raw ( const bigint_element_t *multiplicand0,
+ unsigned int multiplicand_size,
+ const bigint_element_t *multiplier0,
+ unsigned int multiplier_size,
+ bigint_element_t *result0,
+ bigint_element_t *carry0 ) {
+ unsigned int result_size = ( multiplicand_size + multiplier_size );
+ const bigint_t ( multiplicand_size ) __attribute__ (( may_alias ))
+ *multiplicand = ( ( const void * ) multiplicand0 );
+ const bigint_t ( multiplier_size ) __attribute__ (( may_alias ))
+ *multiplier = ( ( const void * ) multiplier0 );
+ bigint_t ( result_size ) __attribute__ (( may_alias ))
+ *result = ( ( void * ) result0 );
+ bigint_t ( result_size ) __attribute__ (( may_alias ))
+ *carry = ( ( void * ) carry0 );
+ bigint_element_t multiplicand_element;
+ const bigint_element_t *multiplier_element;
+ bigint_element_t *result_elements;
+ bigint_element_t *carry_element;
+ unsigned int i;
+ unsigned int j;
+
+ /* Zero result and temporary carry space */
+ memset ( result, 0, sizeof ( *result ) );
+ memset ( carry, 0, sizeof ( *carry ) );
+
+ /* Multiply integers one element at a time, adding the double
+ * element directly into the result and accumulating any
+ * overall carry out from this double-element addition into
+ * the temporary carry space.
+ *
+ * We could propagate the carry immediately instead of using a
+ * temporary carry space. However, this would cause the
+ * multiplication to run in non-constant time, which is
+ * undesirable.
+ *
+ * The carry elements can never overflow, provided that the
+ * element size is large enough to accommodate any plausible
+ * big integer. The total number of potential carries (across
+ * all elements) is the sum of the number of elements in the
+ * multiplicand and multiplier. With a 16-bit element size,
+ * this therefore allows for up to a 1Mbit multiplication
+ * result (e.g. a 512kbit integer multiplied by another
+ * 512kbit integer), which is around 100x higher than could be
+ * needed in practice. With a more realistic 32-bit element
+ * size, the limit becomes a totally implausible 128Gbit
+ * multiplication result.
+ */
+ for ( i = 0 ; i < multiplicand_size ; i++ ) {
+ multiplicand_element = multiplicand->element[i];
+ multiplier_element = &multiplier->element[0];
+ result_elements = &result->element[i];
+ carry_element = &carry->element[i];
+ for ( j = 0 ; j < multiplier_size ; j++ ) {
+ bigint_multiply_one ( multiplicand_element,
+ *(multiplier_element++),
+ result_elements++,
+ carry_element++ );
+ }
+ }
+
+ /* Add the temporary carry into the result. The least
+ * significant element of the carry represents the carry out
+ * from multiplying the least significant elements of the
+ * multiplicand and multiplier, and therefore must be added to
+ * the third-least significant element of the result (i.e. the
+ * carry needs to be shifted left by two elements before being
+ * adding to the result).
+ *
+ * The most significant two elements of the carry are
+ * guaranteed to be zero, since:
+ *
+ * a < 2^{n}, b < 2^{m} => ab < 2^{n+m}
+ *
+ * and the overall result of the multiplication (including
+ * adding in the shifted carries) is therefore guaranteed not
+ * to overflow beyond the end of the result.
+ *
+ * We could avoid this shifting by writing the carry directly
+ * into the "correct" element during the element-by-element
+ * multiplication stage above. However, this would add
+ * complexity to the loop since we would have to arrange for
+ * the (provably zero) most significant two carry out results
+ * to be discarded, in order to avoid writing beyond the end
+ * of the temporary carry space.
+ *
+ * Performing the logical shift is essentially free, since we
+ * simply adjust the element pointers.
+ *
+ * To avoid requiring additional checks in each architecture's
+ * implementation of bigint_add_raw(), we explicitly avoid
+ * calling bigint_add_raw() with a size of zero.
+ */
+ if ( result_size > 2 ) {
+ bigint_add_raw ( &carry->element[0], &result->element[2],
+ ( result_size - 2 ) );
+ }
+}
+
+/**
* Perform modular multiplication of big integers
*
* @v multiplicand0 Element 0 of big integer to be multiplied
@@ -100,7 +209,10 @@ void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
( ( void * ) result0 );
struct {
bigint_t ( size * 2 ) result;
- bigint_t ( size * 2 ) modulus;
+ union {
+ bigint_t ( size * 2 ) modulus;
+ bigint_t ( size * 2 ) carry;
+ };
} *temp = tmp;
int rotation;
int i;
@@ -113,7 +225,8 @@ void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
/* Perform multiplication */
profile_start ( &bigint_mod_multiply_multiply_profiler );
- bigint_multiply ( multiplicand, multiplier, &temp->result );
+ bigint_multiply ( multiplicand, multiplier, &temp->result,
+ &temp->carry );
profile_stop ( &bigint_mod_multiply_multiply_profiler );
/* Rescale modulus to match result */
diff --git a/src/crypto/x25519.c b/src/crypto/x25519.c
index d58f7168c..553f43d34 100644
--- a/src/crypto/x25519.c
+++ b/src/crypto/x25519.c
@@ -43,7 +43,7 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
* Storage size of each big integer 128 40
* (in bytes)
*
- * Stack usage for key exchange 1144 360
+ * Stack usage for key exchange 1144 424
* (in bytes, large objects only)
*
* Cost of big integer addition 16 5
@@ -207,35 +207,60 @@ union x25519_multiply_step3 {
* We overlap the buffers used by each step of the multiplication
* calculation to reduce the total stack space required:
*
- * |--------------------------------------------------------|
- * | <- pad -> | <------------ step 1 result -------------> |
- * | | <- low 256 bits -> | <-- high 260 bits --> |
- * | <------- step 2 result ------> | <-- step 3 result --> |
- * |--------------------------------------------------------|
+ * |--------------------------------------------------------------------------|
+ * | <------- step 1 carry ------> | <----------- step 1 result ------------> |
+ * | | <- low 256 bits -> | <- high 260 bits -> |
+ * | <- step 2 carry -> | <-- step 2 result --> | <pad> | |
+ * | <- s3 carry -> | <--------- pad ---------> | <- step 3 result -> | |
+ * |--------------------------------------------------------------------------|
*/
union x25519_multiply_workspace {
- /** Step 1 result */
+ /** Step 1 */
struct {
- /** Padding to avoid collision between steps 1 and 2
- *
- * The step 2 multiplication consumes the high 260
- * bits of step 1, and so the step 2 multiplication
- * result must not overlap this portion of the step 1
- * result.
- */
- uint8_t pad[ sizeof ( union x25519_multiply_step2 ) -
- offsetof ( union x25519_multiply_step1,
- parts.high_260bit ) ];
+ /** Step 1 temporary carry workspace */
+ union x25519_multiply_step1 carry;
/** Step 1 result */
- union x25519_multiply_step1 step1;
- } __attribute__ (( packed ));
- /** Steps 2 and 3 results */
+ union x25519_multiply_step1 result;
+ } __attribute__ (( packed )) step1;
+ /** Step 2
+ *
+ * The step 2 multiplication consumes the high 260 bits of
+ * step 1, and so the step 2 multiplication result (and
+ * temporary carry workspace) must not overlap this portion of
+ * the step 1 result.
+ */
struct {
+ /** Step 2 temporary carry workspace */
+ union x25519_multiply_step2 carry;
/** Step 2 result */
- union x25519_multiply_step2 step2;
+ union x25519_multiply_step2 result;
+ /** Avoid collision between step 1 result and step 2 result */
+ uint8_t pad[ ( int )
+ ( sizeof ( union x25519_multiply_step1 ) +
+ offsetof ( union x25519_multiply_step1,
+ parts.high_260bit ) -
+ sizeof ( union x25519_multiply_step2 ) -
+ sizeof ( union x25519_multiply_step2 ) ) ];
+ } __attribute__ (( packed )) step2;
+ /** Step 3
+ *
+ * The step 3 multiplication consumes the high 11 bits of step
+ * 2, and so the step 3 multiplication result (and temporary
+ * carry workspace) must not overlap this portion of the step
+ * 2 result.
+ */
+ struct {
+ /** Step 3 temporary carry workspace */
+ union x25519_multiply_step3 carry;
+ /** Avoid collision between step 2 result and step 3 carry */
+ uint8_t pad1[ ( int )
+ ( sizeof ( union x25519_multiply_step2 ) -
+ sizeof ( union x25519_multiply_step3 ) ) ];
+ /** Avoid collision between step 2 result and step 3 result */
+ uint8_t pad2[ sizeof ( union x25519_multiply_step2 ) ];
/** Step 3 result */
- union x25519_multiply_step3 step3;
- } __attribute__ (( packed ));
+ union x25519_multiply_step3 result;
+ } __attribute__ (( packed )) step3;
};
/** An X25519 elliptic curve point in projective coordinates
@@ -426,9 +451,9 @@ void x25519_multiply ( const union x25519_oct258 *multiplicand,
const union x25519_oct258 *multiplier,
union x25519_quad257 *result ) {
union x25519_multiply_workspace tmp;
- union x25519_multiply_step1 *step1 = &tmp.step1;
- union x25519_multiply_step2 *step2 = &tmp.step2;
- union x25519_multiply_step3 *step3 = &tmp.step3;
+ union x25519_multiply_step1 *step1 = &tmp.step1.result;
+ union x25519_multiply_step2 *step2 = &tmp.step2.result;
+ union x25519_multiply_step3 *step3 = &tmp.step3.result;
/* Step 1: perform raw multiplication
*
@@ -439,7 +464,7 @@ void x25519_multiply ( const union x25519_oct258 *multiplicand,
*/
static_assert ( sizeof ( step1->product ) >= sizeof ( step1->parts ) );
bigint_multiply ( &multiplicand->value, &multiplier->value,
- &step1->product );
+ &step1->product, &tmp.step1.carry.product );
/* Step 2: reduce high-order 516-256=260 bits of step 1 result
*
@@ -465,7 +490,7 @@ void x25519_multiply ( const union x25519_oct258 *multiplicand,
static_assert ( sizeof ( step2->product ) >= sizeof ( step2->parts ) );
bigint_grow ( &step1->parts.low_256bit, &result->value );
bigint_multiply ( &step1->parts.high_260bit, &x25519_reduce_256,
- &step2->product );
+ &step2->product, &tmp.step2.carry.product );
bigint_add ( &result->value, &step2->value );
/* Step 3: reduce high-order 267-256=11 bits of step 2 result
@@ -503,7 +528,7 @@ void x25519_multiply ( const union x25519_oct258 *multiplicand,
memset ( &step3->value, 0, sizeof ( step3->value ) );
bigint_grow ( &step2->parts.low_256bit, &result->value );
bigint_multiply ( &step2->parts.high_11bit, &x25519_reduce_256,
- &step3->product );
+ &step3->product, &tmp.step3.carry.product );
bigint_add ( &step3->value, &result->value );
/* Step 1 calculates the product of the input operands, and