aboutsummaryrefslogtreecommitdiffstats
path: root/src/crypto
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto')
-rw-r--r--src/crypto/weierstrass.c877
1 files changed, 877 insertions, 0 deletions
diff --git a/src/crypto/weierstrass.c b/src/crypto/weierstrass.c
new file mode 100644
index 000000000..be3909542
--- /dev/null
+++ b/src/crypto/weierstrass.c
@@ -0,0 +1,877 @@
+/*
+ * Copyright (C) 2024 Michael Brown <mbrown@fensystems.co.uk>.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of the
+ * License, or any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+ * 02110-1301, USA.
+ *
+ * You can also choose to distribute this program under the terms of
+ * the Unmodified Binary Distribution Licence (as given in the file
+ * COPYING.UBDL), provided that you have satisfied its requirements.
+ */
+
+FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
+
+/** @file
+ *
+ * Weierstrass elliptic curves
+ *
+ * The implementation is based upon Algorithm 1 from "Complete
+ * addition formulas for prime order elliptic curves" (Joost Renes,
+ * Craig Costello, and Lejla Batina), available from
+ *
+ * https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/complete-2.pdf
+ *
+ * The steps within the algorithm have been reordered and temporary
+ * variables shuffled to reduce stack usage, and calculations are
+ * carried out modulo small multiples of the field prime in order to
+ * elide reductions after intermediate addition and subtraction
+ * operations.
+ *
+ * The algorithm is encoded using a bytecode representation, since
+ * this substantially reduces the code size compared to direct
+ * implementation of the big integer operations.
+ */
+
+#include <errno.h>
+#include <ipxe/weierstrass.h>
+
+/** Big integer register names */
+enum weierstrass_register {
+
+ /*
+ * Read-only registers
+ */
+
+ /* Curve constant "a" (for multiply), zero (for add/subtract) */
+ WEIERSTRASS_a = 0,
+ /* Curve constant "3b" */
+ WEIERSTRASS_3b,
+ /* Augend (x,y,z) co-ordinates */
+ WEIERSTRASS_x1,
+ WEIERSTRASS_y1,
+ WEIERSTRASS_z1,
+ /* Addend (x,y,z) co-ordinates */
+ WEIERSTRASS_x2,
+ WEIERSTRASS_y2,
+ WEIERSTRASS_z2,
+
+ /*
+ * Read-write registers
+ */
+
+ /* Temporary working registers */
+ WEIERSTRASS_Wt,
+ WEIERSTRASS_Wxy,
+ WEIERSTRASS_Wyz,
+ WEIERSTRASS_Wzx,
+ /* Low half of multiplication product */
+ WEIERSTRASS_Wp,
+ /* Result (x,y,z) co-ordinates */
+ WEIERSTRASS_x3,
+ WEIERSTRASS_y3,
+ WEIERSTRASS_z3,
+
+ /* Number of registers */
+ WEIERSTRASS_NUM_REGISTERS = 16
+};
+
+/** Zero register (for add/subtract operations */
+#define WEIERSTRASS_zero WEIERSTRASS_a
+
+/** Construct big integer register index */
+#define WEIERSTRASS_REGISTER( name ) _C2 ( WEIERSTRASS_, name )
+
+/** Bytecode operation codes */
+enum weierstrass_opcode {
+ /** Subtract big integers (and add nothing)*/
+ WEIERSTRASS_OP_SUB_0N = 0,
+ /** Subtract big integers (and add 2N) */
+ WEIERSTRASS_OP_SUB_2N = WEIERSTRASS_2N,
+ /** Subtract big integers (and add 4N) */
+ WEIERSTRASS_OP_SUB_4N = WEIERSTRASS_4N,
+ /** Add big integers */
+ WEIERSTRASS_OP_ADD,
+ /** Multiply big integers (and perform Montgomery reduction) */
+ WEIERSTRASS_OP_MUL,
+};
+
+/**
+ * Define a bytecode operation
+ *
+ * @v opcode Operation code
+ * @v dest Destination big integer register name
+ * @v left Left source big integer register name
+ * @v right Right source big integer register name
+ */
+#define WEIERSTRASS_OP( opcode, dest, left, right ) \
+ ( ( (opcode) << 12 ) | \
+ ( WEIERSTRASS_REGISTER ( dest ) << 8 ) | \
+ ( WEIERSTRASS_REGISTER ( left ) << 4 ) | \
+ ( WEIERSTRASS_REGISTER ( right ) << 0 ) )
+
+/** Extract bytecode operation code */
+#define WEIERSTRASS_OPCODE( op ) ( ( (op) >> 12 ) & 0xf )
+
+/** Extract destination big integer register */
+#define WEIERSTRASS_DEST( op ) ( ( (op) >> 8 ) & 0xf )
+
+/** Extract left source big integer register */
+#define WEIERSTRASS_LEFT( op ) ( ( (op) >> 4 ) & 0xf )
+
+/** Extract right source big integer register */
+#define WEIERSTRASS_RIGHT( op ) ( ( (op) >> 0 ) & 0xf )
+
+/** Define a three-argument addition operation */
+#define WEIERSTRASS_ADD3( dest, augend, addend ) \
+ WEIERSTRASS_OP ( WEIERSTRASS_OP_ADD, dest, augend, addend )
+
+/** Define a two-argument addition operation */
+#define WEIERSTRASS_ADD2( augend, addend ) \
+ WEIERSTRASS_ADD3 ( augend, augend, addend )
+
+/** Define a move operation */
+#define WEIERSTRASS_MOV( dest, source ) \
+ WEIERSTRASS_ADD3( dest, source, zero )
+
+/** Define a three-argument subtraction operation */
+#define WEIERSTRASS_SUB3( dest, minuend, subtrahend, multiple ) \
+ WEIERSTRASS_OP ( _C2 ( WEIERSTRASS_OP_SUB_, multiple ), \
+ dest, minuend, subtrahend )
+
+/** Define a two-argument subtraction operation */
+#define WEIERSTRASS_SUB2( minuend, subtrahend, multiple ) \
+ WEIERSTRASS_SUB3 ( minuend, minuend, subtrahend, multiple )
+
+/** Define a stop operation */
+#define WEIERSTRASS_STOP WEIERSTRASS_SUB2 ( zero, zero, 0N )
+
+/** Define a three-argument multiplication operation */
+#define WEIERSTRASS_MUL3( dest, multiplicand, multiplier ) \
+ WEIERSTRASS_OP ( WEIERSTRASS_OP_MUL, dest, multiplicand, multiplier )
+
+/** Define a two-argument multiplication operation */
+#define WEIERSTRASS_MUL2( multiplicand, multiplier ) \
+ WEIERSTRASS_MUL3 ( multiplicand, multiplicand, multiplier )
+
+/**
+ * Initialise curve
+ *
+ * @v curve Weierstrass curve
+ */
+static void weierstrass_init ( struct weierstrass_curve *curve ) {
+ unsigned int size = curve->size;
+ bigint_t ( size ) __attribute__ (( may_alias )) *prime =
+ ( ( void * ) curve->prime[0] );
+ bigint_t ( size ) __attribute__ (( may_alias )) *fermat =
+ ( ( void * ) curve->fermat );
+ bigint_t ( size ) __attribute__ (( may_alias )) *square =
+ ( ( void * ) curve->square );
+ bigint_t ( size ) __attribute__ (( may_alias )) *one =
+ ( ( void * ) curve->one );
+ bigint_t ( size ) __attribute__ (( may_alias )) *a =
+ ( ( void * ) curve->a );
+ bigint_t ( size ) __attribute__ (( may_alias )) *b3 =
+ ( ( void * ) curve->b3 );
+ bigint_t ( size ) __attribute__ (( may_alias )) *mont =
+ ( ( void * ) curve->mont[0] );
+ bigint_t ( size ) __attribute__ (( may_alias )) *temp =
+ ( ( void * ) curve->prime[1] );
+ bigint_t ( size * 2 ) __attribute__ (( may_alias )) *prime_double =
+ ( ( void * ) prime );
+ bigint_t ( size * 2 ) __attribute__ (( may_alias )) *square_double =
+ ( ( void * ) square );
+ bigint_t ( size * 2 ) __attribute__ (( may_alias )) *product =
+ ( ( void * ) temp );
+ bigint_t ( size ) __attribute__ (( may_alias )) *two =
+ ( ( void * ) temp );
+ static const uint8_t one_raw[] = { 1 };
+ static const uint8_t two_raw[] = { 2 };
+ size_t len = curve->len;
+ unsigned int i;
+
+ /* Initialise field prime */
+ bigint_init ( prime, curve->prime_raw, len );
+ DBGC ( curve, "WEIERSTRASS %s N = %s\n",
+ curve->name, bigint_ntoa ( prime ) );
+
+ /* Calculate Montgomery constant R^2 mod N
+ *
+ * We rely on the fact that the subsequent big integers in the
+ * cache (i.e. the first prime multiple, and the constant "1")
+ * have not yet been written to, and so can be treated as
+ * being the (zero) upper halves required to hold the
+ * double-width value R^2.
+ */
+ bigint_reduce_supremum ( prime_double, square_double );
+ DBGC ( curve, "WEIERSTRASS %s R^2 = %s mod N\n",
+ curve->name, bigint_ntoa ( square ) );
+
+ /* Calculate constant "3b" */
+ bigint_init ( b3, curve->b_raw, len );
+ DBGC ( curve, "WEIERSTRASS %s b = %s\n",
+ curve->name, bigint_ntoa ( b3 ) );
+ bigint_copy ( b3, a );
+ bigint_add ( b3, b3 );
+ bigint_add ( a, b3 );
+
+ /* Initialise "a" */
+ bigint_init ( a, curve->a_raw, len );
+ DBGC ( curve, "WEIERSTRASS %s a = %s\n",
+ curve->name, bigint_ntoa ( a ) );
+
+ /* Initialise "1" */
+ bigint_init ( one, one_raw, sizeof ( one_raw ) );
+
+ /* Convert relevant constants to Montgomery form
+ *
+ * We rely on the fact that the prime multiples have not yet
+ * been calculated, and so can be used as a temporary buffer.
+ */
+ for ( i = 0 ; i < WEIERSTRASS_NUM_MONT ; i++ ) {
+ static const char *names[] = { " ", " a", "3b" };
+ bigint_multiply ( &mont[i], square, product );
+ bigint_montgomery ( prime, product, &mont[i] );
+ DBGC ( curve, "WEIERSTRASS %s %sR = %s mod N\n",
+ curve->name, names[i], bigint_ntoa ( &mont[i] ) );
+ }
+
+ /* Calculate constant "N-2"
+ *
+ * We rely on the fact that the prime multiples have not yet
+ * been calculated, and so can be used as a temporary buffer.
+ */
+ bigint_copy ( prime, fermat );
+ bigint_init ( two, two_raw, sizeof ( two_raw ) );
+ bigint_subtract ( two, fermat );
+ DBGC ( curve, "WEIERSTRASS %s N-2 = %s\n",
+ curve->name, bigint_ntoa ( fermat ) );
+
+ /* Calculate multiples of field prime */
+ for ( i = 1 ; i < WEIERSTRASS_NUM_MULTIPLES ; i++ ) {
+ bigint_copy ( &prime[ i - 1 ], &prime[i] );
+ bigint_add ( &prime[i], &prime[i] );
+ DBGC ( curve, "WEIERSTRASS %s %dN = %s\n",
+ curve->name, ( 1 << i ), bigint_ntoa ( &prime[i] ) );
+ }
+}
+
+/**
+ * Execute bytecode instruction
+ *
+ * @v curve Weierstrass curve
+ * @v regs Registers
+ * @v size Big integer size
+ * @v op Operation
+ */
+static void weierstrass_exec ( const struct weierstrass_curve *curve,
+ void **regs, unsigned int size,
+ unsigned int op ) {
+ const bigint_t ( size ) __attribute__ (( may_alias ))
+ *prime = ( ( const void * ) curve->prime[0] );
+ bigint_t ( size * 2 ) __attribute__ (( may_alias ))
+ *product = regs[WEIERSTRASS_Wp];
+ bigint_t ( size ) __attribute__ (( may_alias )) *dest;
+ const bigint_t ( size ) __attribute__ (( may_alias )) *left;
+ const bigint_t ( size ) __attribute__ (( may_alias )) *right;
+ const bigint_t ( size ) __attribute__ (( may_alias )) *addend;
+ const bigint_t ( size ) __attribute__ (( may_alias )) *subtrahend;
+ unsigned int op_code;
+ unsigned int op_dest;
+ unsigned int op_left;
+ unsigned int op_right;
+
+ /* Decode instruction */
+ op_code = WEIERSTRASS_OPCODE ( op );
+ op_dest = WEIERSTRASS_DEST ( op );
+ op_left = WEIERSTRASS_LEFT ( op );
+ op_right = WEIERSTRASS_RIGHT ( op );
+ dest = regs[op_dest];
+ left = regs[op_left];
+ right = regs[op_right];
+
+ /* Check destination is a writable register */
+ assert ( op_dest >= WEIERSTRASS_Wt );
+
+ /* Handle multiplications */
+ if ( op_code == WEIERSTRASS_OP_MUL ) {
+ assert ( op_left != WEIERSTRASS_Wp );
+ assert ( op_right != WEIERSTRASS_Wp );
+ bigint_multiply ( left, right, product );
+ bigint_montgomery_relaxed ( prime, product, dest );
+ DBGCP ( curve, "WEIERSTRASS %s R%d := R%d x R%d = %s\n",
+ curve->name, op_dest, op_left, op_right,
+ bigint_ntoa ( dest ) );
+ return;
+ }
+
+ /* Copy left source, if required */
+ if ( op_dest != op_left )
+ bigint_copy ( left, dest );
+
+ /* Do nothing more if addend/subtrahend is zero */
+ if ( ! op_right ) {
+ DBGCP ( curve, "WEIERSTRASS %s R%d := R%d = %s\n",
+ curve->name, op_dest, op_left, bigint_ntoa ( dest ) );
+ return;
+ }
+
+ /* Determine addend and subtrahend */
+ addend = NULL;
+ subtrahend = NULL;
+ if ( op_code == WEIERSTRASS_OP_ADD ) {
+ DBGCP ( curve, "WEIERSTRASS %s R%d := R%d + R%d = ",
+ curve->name, op_dest, op_left, op_right );
+ addend = ( ( const void * ) right );
+ } else {
+ subtrahend = ( ( const void * ) right );
+ if ( op_code > WEIERSTRASS_OP_SUB_0N ) {
+ DBGCP ( curve, "WEIERSTRASS %s R%d := R%d - R%d + "
+ "%dN = ", curve->name, op_dest, op_left,
+ op_right, ( 1 << op_code ) );
+ addend = ( ( const void * ) curve->prime[op_code] );
+ } else {
+ DBGCP ( curve, "WEIERSTRASS %s R%d := R%d - R%d = ",
+ curve->name, op_dest, op_left, op_right );
+ }
+ }
+
+ /* Perform addition and subtraction */
+ if ( addend )
+ bigint_add ( addend, dest );
+ if ( subtrahend )
+ bigint_subtract ( subtrahend, dest );
+ DBGCP ( curve, "%s\n", bigint_ntoa ( dest ) );
+}
+
+/**
+ * Add points on curve
+ *
+ * @v curve Weierstrass curve
+ * @v augend0 Element 0 of point (x1,y1,z1) to be added
+ * @v addend0 Element 0 of point (x2,y2,z2) to be added
+ * @v result0 Element 0 of point (x3,y3,z3) to hold result
+ *
+ * Points are represented in projective coordinates, with all values
+ * in Montgomery form and in the range [0,4N) where N is the field
+ * prime.
+ *
+ * The augend may have the same value as the addend (i.e. this routine
+ * may be used to perform point doubling as well as point addition),
+ * and either or both may be the point at infinity.
+ *
+ * The result may overlap either input, since the inputs are fully
+ * consumed before the result is written.
+ */
+static void weierstrass_add_raw ( const struct weierstrass_curve *curve,
+ const bigint_element_t *augend0,
+ const bigint_element_t *addend0,
+ bigint_element_t *result0 ) {
+ unsigned int size = curve->size;
+ const bigint_t ( size ) __attribute__ (( may_alias ))
+ *prime = ( ( const void * ) curve->prime[0] );
+ const bigint_t ( size ) __attribute__ (( may_alias ))
+ *a = ( ( const void * ) curve->a );
+ const bigint_t ( size ) __attribute__ (( may_alias ))
+ *b3 = ( ( const void * ) curve->b3 );
+ const weierstrass_t ( size ) __attribute__ (( may_alias ))
+ *augend = ( ( const void * ) augend0 );
+ const weierstrass_t ( size ) __attribute__ (( may_alias ))
+ *addend = ( ( const void * ) addend0 );
+ weierstrass_t ( size ) __attribute__ (( may_alias ))
+ *result = ( ( void * ) result0 );
+ struct {
+ bigint_t ( size ) Wt;
+ bigint_t ( size ) Wxy;
+ bigint_t ( size ) Wyz;
+ bigint_t ( size ) Wzx;
+ bigint_t ( size * 2 ) Wp;
+ } temp;
+ void *regs[WEIERSTRASS_NUM_REGISTERS];
+ unsigned int schedule;
+ const uint16_t *op;
+ unsigned int i;
+
+ /* On entry, we assume that x1, x2, y1, y2, z1, z2 are all in
+ * the range [0,4N). Additions will extend the range.
+ * Subtractions will extend the range (and require an addition
+ * of a suitable multiple of the modulus to ensure that the
+ * result is a positive value). Relaxed Montgomery
+ * multiplications will reduce the range to [0,2N). The
+ * outputs x3, y3, z3 will be in the range [0,4N) and
+ * therefore usable as subsequent inputs.
+ */
+ static const uint16_t ops[] = {
+ /* [Wxy] Qxy = (x1+y1)*(x2+y2) (mod 2N) */
+ WEIERSTRASS_ADD3 ( Wt, x1, y1 ),
+ WEIERSTRASS_ADD3 ( Wxy, x2, y2 ),
+ WEIERSTRASS_MUL2 ( Wxy, Wt ),
+ /* [Wyz] Qyz = (y1+z1)*(y2+z2) (mod 2N) */
+ WEIERSTRASS_ADD3 ( Wt, y1, z1 ),
+ WEIERSTRASS_ADD3 ( Wyz, y2, z2 ),
+ WEIERSTRASS_MUL2 ( Wyz, Wt ),
+ /* [Wzx] Qzx = (z1+x1)*(z2+x2) (mod 2N) */
+ WEIERSTRASS_ADD3 ( Wt, z1, x1 ),
+ WEIERSTRASS_ADD3 ( Wzx, z2, x2 ),
+ WEIERSTRASS_MUL2 ( Wzx, Wt ),
+ /* [x3] Px = x1*x2 (mod 2N) */
+ WEIERSTRASS_MUL3 ( x3, x1, x2 ),
+ /* [y3] Py = y1*y2 (mod 2N) */
+ WEIERSTRASS_MUL3 ( y3, y1, y2 ),
+ /* [z3] Pz = z1*z2 (mod 2N) */
+ WEIERSTRASS_MUL3 ( z3, z1, z2 ),
+ /* [Wxy] Rxy = Qxy - Px - Py (mod 6N)
+ * = (x1+y1)*(x2+y2) - x1*x2 - y1*y2 (mod 6N)
+ * = x1*y2 + x2*y1 (mod 6N)
+ */
+ WEIERSTRASS_SUB2 ( Wxy, x3, 0N ),
+ WEIERSTRASS_SUB2 ( Wxy, y3, 4N ),
+ /* [Wyz] Ryz = Qyz - Py - Pz (mod 6N)
+ * = (y1+z1)*(y2+z2) - y1*y2 - z1*z2 (mod 6N)
+ * = y1*z2 + y2*z1 (mod 6N)
+ */
+ WEIERSTRASS_SUB2 ( Wyz, y3, 0N ),
+ WEIERSTRASS_SUB2 ( Wyz, z3, 4N ),
+ /* [Wzx] Rzx = Qzx - Pz - Px (mod 6N)
+ * = (z1+x1)*(z2+x2) - z1*z2 - x1*x2 (mod 6N)
+ * = x1*z2 + x2*z1 (mod 6N)
+ */
+ WEIERSTRASS_SUB2 ( Wzx, z3, 0N ),
+ WEIERSTRASS_SUB2 ( Wzx, x3, 4N ),
+ /* [Wt] aRzx = a * Rzx (mod 2N)
+ * = a * (x1*z2 + x2*z1) (mod 2N)
+ */
+ WEIERSTRASS_MUL3 ( Wt, a, Wzx ),
+ /* [Wp] 3bPz = 3b * Pz (mod 2N)
+ * = 3b*z1*z2 (mod 2N)
+ */
+ WEIERSTRASS_MUL3 ( Wp, 3b, z3 ),
+ /* [Wp] Sy = aRzx + 3bPz (mod 4N)
+ * = a*(x1*z2 + x2*z1) + 3b*z1*z2 (mod 4N)
+ */
+ WEIERSTRASS_ADD2 ( Wp, Wt ),
+ /* [Wt] Syz = Py + Sy (mod 6N)
+ * = y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2 (mod 6N)
+ */
+ WEIERSTRASS_ADD3 ( Wt, y3, Wp ),
+ /* [y3] Sxy = Py - Sy (mod 6N)
+ * = y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2 (mod 6N)
+ */
+ WEIERSTRASS_SUB2 ( y3, Wp, 4N ),
+ /* [z3] aPz = a * Pz (mod 2N)
+ * = a * z1*z2 (mod 2N)
+ */
+ WEIERSTRASS_MUL2 ( z3, a ),
+ /* [Wzx] 3bRzx = 3b * Rzx (mod 2N)
+ * = 3b * (x1*z2 + x2*z1) (mod 2N)
+ */
+ WEIERSTRASS_MUL2 ( Wzx, 3b ),
+ /* [x3] aPzx' = Px - aPz (mod 4N)
+ * = x1*x2 - a*z1*z2 (mod 4N)
+ */
+ WEIERSTRASS_SUB2 ( x3, z3, 2N ),
+ /* [Wp] Szx = a * aPzx' (mod 2N)
+ * = a * (x1*x2 - a*z1*z2) (mod 2N)
+ * = a*x1*x2 - (a^2)*z1*z2 (mod 2N)
+ */
+ WEIERSTRASS_MUL3 ( Wp, a, x3 ),
+ /* [x3] Px = aPzx' + aPz (mod 6N)
+ * = x1*x2 - a*z1*z2 + a*z1*z2 (mod 6N)
+ * = x1*x2 (mod 6N)
+ */
+ WEIERSTRASS_ADD2 ( x3, z3 ),
+ /* [Wzx] Tzx = 3bRzx + Szx (mod 4N)
+ * = a*x1*x2 + 3b*(x1*z2 + x2*z1) -
+ * (a^2)*z1*z2 (mod 4N)
+ */
+ WEIERSTRASS_ADD2 ( Wzx, Wp ),
+ /* [z3] aPzx = Px + aPz (mod 8N)
+ * = x1*x2 + a*z1*z2 (mod 8N)
+ */
+ WEIERSTRASS_ADD2 ( z3, x3 ),
+ /* [x3] 2Px = Px + Px (mod 12N)
+ * = 2*x1*x2 (mod 12N)
+ */
+ WEIERSTRASS_ADD2 ( x3, x3 ),
+ /* [x3] Tyz = 2Px + aPzx (mod 20N)
+ * = 2*x1*x2 + x1*x2 + a*z1*z2 (mod 20N)
+ * = 3*x1*x2 + a*z1*z2 (mod 20N)
+ */
+ WEIERSTRASS_ADD2 ( x3, z3 ),
+ /* [z3] Syz = Syz (mod 6N)
+ * = y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2 (mod 6N)
+ */
+ WEIERSTRASS_MOV ( z3, Wt ),
+ /* [Wt] Tyz = Tyz (mod 20N)
+ * = 3*x1*x2 + a*z1*z2 (mod 20N)
+ */
+ WEIERSTRASS_MOV ( Wt, x3 ),
+ /* [x3] Ux = Rxy * Sxy (mod 2N)
+ * = (x1*y2 + x2*y1) *
+ * (y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2) (mod 2N)
+ */
+ WEIERSTRASS_MUL3 ( x3, Wxy, y3 ),
+ /* [y3] Uy = Syz * Sxy (mod 2N)
+ * = (y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2) *
+ * (y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2) (mod 2N)
+ */
+ WEIERSTRASS_MUL2 ( y3, z3 ),
+ /* [z3] Uz = Ryz * Syz (mod 2N)
+ * = (y1*z2 + y2*z1) *
+ * (y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2) (mod 2N)
+ */
+ WEIERSTRASS_MUL2 ( z3, Wyz ),
+ /* [Wp] Vx = Ryz * Tzx (mod 2N)
+ * = (y1*z2 + y2*z1) *
+ * (a*x1*x2 + 3b*(x1*z2 + x2*z1) - (a^2)*z1*z2)
+ * (mod 2N)
+ */
+ WEIERSTRASS_MUL3 ( Wp, Wyz, Wzx ),
+ /* [x3] x3 = Ux - Vx (mod 4N)
+ * = ((x1*y2 + x2*y1) *
+ * (y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2)) -
+ * ((y1*z2 + y2*z1) *
+ * (a*x1*x2 + 3b*(x1*z2 + x2*z1) - (a^2)*z1*z2))
+ * (mod 4N)
+ */
+ WEIERSTRASS_SUB2 ( x3, Wp, 2N ),
+ /* [Wp] Vy = Tyz * Tzx (mod 2N)
+ * = (3*x1*x2 + a*z1*z2) *
+ * (a*x1*x2 + 3b*(x1*z2 + x2*z1) - (a^2)*z1*z2)
+ * (mod 2N)
+ */
+ WEIERSTRASS_MUL3 ( Wp, Wt, Wzx ),
+ /* [y3] y3 = Vy + Uy (mod 4N)
+ * = ((3*x1*x2 + a*z1*z2) *
+ * (a*x1*x2 + 3b*(x1*z2 + x2*z1) - (a^2)*z1*z2)) +
+ * ((y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2) *
+ * (y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2))
+ * (mod 4N)
+ */
+ WEIERSTRASS_ADD2 ( y3, Wp ),
+ /* [Wp] Vz = Rxy * Tyz (mod 2N)
+ * = (x1*y2 + x2*y1) * (3*x1*x2 + a*z1*z2) (mod 2N)
+ */
+ WEIERSTRASS_MUL3 ( Wp, Wxy, Wt ),
+ /* [z3] z3 = Uz + Vz (mod 4N)
+ * = ((y1*z2 + y2*z1) *
+ * (y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2)) +
+ * ((x1*y2 + x2*y1) * (3*x1*x2 + a*z1*z2))
+ * (mod 4N)
+ */
+ WEIERSTRASS_ADD2 ( z3, Wp ),
+ /* Stop */
+ WEIERSTRASS_STOP
+ };
+
+ /* Initialise register list */
+ regs[WEIERSTRASS_a] = ( ( void * ) a );
+ regs[WEIERSTRASS_3b] = ( ( void * ) b3 );
+ regs[WEIERSTRASS_x1] = ( ( void * ) &augend->x );
+ regs[WEIERSTRASS_x2] = ( ( void * ) &addend->x );
+ regs[WEIERSTRASS_x3] = ( ( void * ) &result->x );
+ regs[WEIERSTRASS_Wt] = &temp;
+ schedule = ( ( ( 1 << WEIERSTRASS_NUM_REGISTERS ) - 1 )
+ - ( 1 << WEIERSTRASS_a )
+ - ( 1 << WEIERSTRASS_3b )
+ - ( 1 << WEIERSTRASS_x1 )
+ - ( 1 << WEIERSTRASS_x2 )
+ - ( 1 << WEIERSTRASS_x3 )
+ - ( 1 << WEIERSTRASS_Wt ) );
+ for ( i = 0 ; schedule ; i++, schedule >>= 1 ) {
+ if ( schedule & 1 )
+ regs[i] = ( regs[ i - 1 ] + sizeof ( *prime ) );
+ }
+ DBGC2 ( curve, "WEIERSTRASS %s augend (%s,",
+ curve->name, bigint_ntoa ( &augend->x ) );
+ DBGC2 ( curve, "%s,", bigint_ntoa ( &augend->y ) );
+ DBGC2 ( curve, "%s)\n", bigint_ntoa ( &augend->z ) );
+ DBGC2 ( curve, "WEIERSTRASS %s addend (%s,",
+ curve->name, bigint_ntoa ( &addend->x ) );
+ DBGC2 ( curve, "%s,", bigint_ntoa ( &addend->y ) );
+ DBGC2 ( curve, "%s)\n", bigint_ntoa ( &addend->z ) );
+
+ /* Sanity checks */
+ assert ( regs[WEIERSTRASS_a] == a );
+ assert ( regs[WEIERSTRASS_3b] == b3 );
+ assert ( regs[WEIERSTRASS_x1] == &augend->x );
+ assert ( regs[WEIERSTRASS_y1] == &augend->y );
+ assert ( regs[WEIERSTRASS_z1] == &augend->z );
+ assert ( regs[WEIERSTRASS_x2] == &addend->x );
+ assert ( regs[WEIERSTRASS_y2] == &addend->y );
+ assert ( regs[WEIERSTRASS_z2] == &addend->z );
+ assert ( regs[WEIERSTRASS_x3] == &result->x );
+ assert ( regs[WEIERSTRASS_y3] == &result->y );
+ assert ( regs[WEIERSTRASS_z3] == &result->z );
+ assert ( regs[WEIERSTRASS_Wt] == &temp.Wt );
+ assert ( regs[WEIERSTRASS_Wxy] == &temp.Wxy );
+ assert ( regs[WEIERSTRASS_Wyz] == &temp.Wyz );
+ assert ( regs[WEIERSTRASS_Wzx] == &temp.Wzx );
+ assert ( regs[WEIERSTRASS_Wp] == &temp.Wp );
+
+ /* Execute bytecode instruction sequence */
+ for ( op = ops ; *op != WEIERSTRASS_STOP ; op++ )
+ weierstrass_exec ( curve, regs, size, *op );
+ DBGC2 ( curve, "WEIERSTRASS %s result (%s,",
+ curve->name, bigint_ntoa ( &result->x ) );
+ DBGC2 ( curve, "%s,", bigint_ntoa ( &result->y ) );
+ DBGC2 ( curve, "%s)\n", bigint_ntoa ( &result->z ) );
+}
+
+/**
+ * Add points on curve
+ *
+ * @v curve Weierstrass curve
+ * @v augend Point (x1,y1,z1) to be added
+ * @v addend Point (x2,y2,z2) to be added
+ * @v result0 Point (x3,y3,z3) to hold result
+ */
+#define weierstrass_add( curve, augend, addend, result ) do { \
+ weierstrass_add_raw ( (curve), (augend)->all.element, \
+ (addend)->all.element, \
+ (result)->all.element ); \
+ } while ( 0 )
+
+/**
+ * Add points on curve as part of a Montgomery ladder
+ *
+ * @v operand Element 0 of first input operand (may overlap result)
+ * @v result Element 0 of second input operand and result
+ * @v size Number of elements in operands and result
+ * @v ctx Operation context
+ * @v tmp Temporary working space (not used)
+ */
+static void weierstrass_add_ladder ( const bigint_element_t *operand0,
+ bigint_element_t *result0,
+ unsigned int size, const void *ctx,
+ void *tmp __unused ) {
+ const struct weierstrass_curve *curve = ctx;
+ const weierstrass_t ( curve->size ) __attribute__ (( may_alias ))
+ *operand = ( ( const void * ) operand0 );
+ weierstrass_t ( curve->size ) __attribute__ (( may_alias ))
+ *result = ( ( void * ) result0 );
+
+ /* Add curve points */
+ assert ( size == bigint_size ( &operand->all ) );
+ assert ( size == bigint_size ( &result->all ) );
+ weierstrass_add ( curve, operand, result, result );
+}
+
+/**
+ * Verify point is on curve
+ *
+ * @v curve Weierstrass curve
+ * @v point0 Element 0 of point (x,y,z) to be verified
+ * @ret rc Return status code
+ *
+ * As with point addition, points are represented in projective
+ * coordinates, with all values in Montgomery form and in the range
+ * [0,4N) where N is the field prime.
+ */
+static int weierstrass_verify_raw ( const struct weierstrass_curve *curve,
+ const bigint_element_t *point0 ) {
+ unsigned int size = curve->size;
+ const bigint_t ( size ) __attribute__ (( may_alias ))
+ *prime = ( ( const void * ) curve->prime[0] );
+ const bigint_t ( size ) __attribute__ (( may_alias ))
+ *a = ( ( const void * ) curve->a );
+ const bigint_t ( size ) __attribute__ (( may_alias ))
+ *b3 = ( ( const void * ) curve->b3 );
+ const weierstrass_t ( size ) __attribute__ (( may_alias ))
+ *point = ( ( const void * ) point0 );
+ struct {
+ bigint_t ( size ) Wt;
+ bigint_t ( size * 2 ) Wp;
+ } temp;
+ void *regs[WEIERSTRASS_NUM_REGISTERS];
+ const uint16_t *op;
+
+ /* Calculate 3*(x^3 + a*x + b - y^2) */
+ static const uint16_t ops[] = {
+ /* [Wt] Tx = x^2 (mod 2N) */
+ WEIERSTRASS_MUL3 ( Wt, x1, x1 ),
+ /* [Wt] Txa = Tx + a (mod 3N)
+ * = x^2 + a (mod 3N)
+ */
+ WEIERSTRASS_MOV ( Wp, a ),
+ WEIERSTRASS_ADD2 ( Wt, Wp ),
+ /* [Wt] Txax = Txa * x (mod 2N)
+ * = (x^2 + a)*x (mod 2N)
+ * = x^3 + a*x (mod 2N)
+ */
+ WEIERSTRASS_MUL2 ( Wt, x1 ),
+ /* [Wp] Ty = y^2 (mod 2N) */
+ WEIERSTRASS_MUL3 ( Wp, y1, y1 ),
+ /* [Wt] Txaxy = Txax - Ty (mod 4N)
+ * = x^3 + a*x - y^2 (mod 4N)
+ */
+ WEIERSTRASS_SUB2 ( Wt, Wp, 2N ),
+ /* [Wp] 2Txaxy = Txaxy + Txaxy (mod 8N)
+ * = 2*(x^3 + a*x - y^2) (mod 8N)
+ */
+ WEIERSTRASS_ADD3 ( Wp, Wt, Wt ),
+ /* [Wt] 3Txaxy = 2Txaxy + Txaxy (mod 12N)
+ * = 3*(x^3 + a*x - y^2) (mod 12N)
+ */
+ WEIERSTRASS_ADD2 ( Wt, Wp ),
+ /* [Wt] 3Txaxyb = 3Txaxy + 3b (mod 13N)
+ * = 3*(x^3 + a*x - y^2) + 3b (mod 13N)
+ * = 3*(x^3 + a*x + b - y^2) (mod 13N)
+ */
+ WEIERSTRASS_ADD2 ( Wt, 3b ),
+ /* Stop */
+ WEIERSTRASS_STOP
+ };
+
+ /* Initialise register list */
+ regs[WEIERSTRASS_a] = ( ( void * ) a );
+ regs[WEIERSTRASS_3b] = ( ( void * ) b3 );
+ regs[WEIERSTRASS_x1] = ( ( void * ) &point->x );
+ regs[WEIERSTRASS_y1] = ( ( void * ) &point->y );
+ regs[WEIERSTRASS_Wt] = &temp.Wt;
+ regs[WEIERSTRASS_Wp] = &temp.Wp;
+
+ /* Execute bytecode instruction sequence */
+ for ( op = ops ; *op != WEIERSTRASS_STOP ; op++ )
+ weierstrass_exec ( curve, regs, size, *op );
+
+ /* Check that result is zero (modulo the field prime) */
+ bigint_grow ( &temp.Wt, &temp.Wp );
+ bigint_montgomery ( prime, &temp.Wp, &temp.Wt );
+ if ( ! bigint_is_zero ( &temp.Wt ) ) {
+ DBGC ( curve, "WEIERSTRASS %s base point is not on curve\n",
+ curve->name );
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * Verify point is on curve
+ *
+ * @v curve Weierstrass curve
+ * @v point Point (x,y,z) to be verified
+ * @ret rc Return status code
+ */
+#define weierstrass_verify( curve, point ) ( { \
+ weierstrass_verify_raw ( (curve), (point)->all.element ); \
+ } )
+
+/**
+ * Multiply curve point by scalar
+ *
+ * @v curve Weierstrass curve
+ * @v base Base point (or NULL to use generator)
+ * @v scalar Scalar multiple
+ * @v result Result point to fill in
+ * @ret rc Return status code
+ */
+int weierstrass_multiply ( struct weierstrass_curve *curve, const void *base,
+ const void *scalar, void *result ) {
+ unsigned int size = curve->size;
+ size_t len = curve->len;
+ const bigint_t ( size ) __attribute__ (( may_alias )) *prime =
+ ( ( const void * ) curve->prime[0] );
+ const bigint_t ( size ) __attribute__ (( may_alias )) *prime2 =
+ ( ( const void * ) curve->prime[WEIERSTRASS_2N] );
+ const bigint_t ( size ) __attribute__ (( may_alias )) *fermat =
+ ( ( const void * ) curve->fermat );
+ const bigint_t ( size ) __attribute__ (( may_alias )) *square =
+ ( ( const void * ) curve->square );
+ const bigint_t ( size ) __attribute__ (( may_alias )) *one =
+ ( ( const void * ) curve->one );
+ struct {
+ union {
+ weierstrass_t ( size ) result;
+ bigint_t ( size * 2 ) product_in;
+ };
+ union {
+ weierstrass_t ( size ) multiple;
+ bigint_t ( size * 2 ) product_out;
+ };
+ bigint_t ( bigint_required_size ( len ) ) scalar;
+ } temp;
+ size_t offset;
+ unsigned int i;
+ int rc;
+
+ /* Initialise curve, if not already done
+ *
+ * The least significant element of the field prime must be
+ * odd, and so the least significant element of the
+ * (initialised) first multiple of the field prime must be
+ * non-zero.
+ */
+ if ( ! prime2->element[0] )
+ weierstrass_init ( curve );
+
+ /* Use generator if applicable */
+ if ( ! base )
+ base = curve->base;
+
+ /* Convert input to projective coordinates in Montgomery form */
+ DBGC ( curve, "WEIERSTRASS %s base (", curve->name );
+ for ( i = 0, offset = 0 ; i < WEIERSTRASS_AXES ; i++, offset += len ) {
+ bigint_init ( &temp.multiple.axis[i], ( base + offset ), len );
+ DBGC ( curve, "%s%s", ( i ? "," : "" ),
+ bigint_ntoa ( &temp.multiple.axis[i] ) );
+ bigint_multiply ( &temp.multiple.axis[i], square,
+ &temp.product_in );
+ bigint_montgomery_relaxed ( prime, &temp.product_in,
+ &temp.multiple.axis[i] );
+ }
+ bigint_copy ( one, &temp.multiple.z );
+ DBGC ( curve, ")\n" );
+
+ /* Verify point is on curve */
+ if ( ( rc = weierstrass_verify ( curve, &temp.multiple ) ) != 0 )
+ return rc;
+
+ /* Construct identity element (the point at infinity) */
+ memset ( &temp.result, 0, sizeof ( temp.result ) );
+ bigint_copy ( one, &temp.result.y );
+
+ /* Initialise scalar */
+ bigint_init ( &temp.scalar, scalar, len );
+ DBGC ( curve, "WEIERSTRASS %s scalar %s\n",
+ curve->name, bigint_ntoa ( &temp.scalar ) );
+
+ /* Perform multiplication via Montgomery ladder */
+ bigint_ladder ( &temp.result.all, &temp.multiple.all, &temp.scalar,
+ weierstrass_add_ladder, curve, NULL );
+
+ /* Invert result Z co-ordinate (via Fermat's little theorem) */
+ bigint_copy ( one, &temp.multiple.z );
+ bigint_ladder ( &temp.multiple.z, &temp.result.z, fermat,
+ bigint_mod_exp_ladder, prime, &temp.product_out );
+
+ /* Convert result back to affine co-ordinates */
+ DBGC ( curve, "WEIERSTRASS %s result (", curve->name );
+ for ( i = 0, offset = 0 ; i < WEIERSTRASS_AXES ; i++, offset += len ) {
+ bigint_multiply ( &temp.result.axis[i], &temp.multiple.z,
+ &temp.product_out );
+ bigint_montgomery_relaxed ( prime, &temp.product_out,
+ &temp.result.axis[i] );
+ bigint_grow ( &temp.result.axis[i], &temp.product_out );
+ bigint_montgomery ( prime, &temp.product_out,
+ &temp.result.axis[i] );
+ DBGC ( curve, "%s%s", ( i ? "," : "" ),
+ bigint_ntoa ( &temp.result.axis[i] ) );
+ bigint_done ( &temp.result.axis[i], ( result + offset ), len );
+ }
+ DBGC ( curve, ")\n" );
+
+ return 0;
+}