| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instances of cipher and digest algorithms tend to get called
repeatedly to process substantial amounts of data. This is not true
for public-key algorithms, which tend to get called only once or twice
for a given key.
Simplify the public-key algorithm API so that there is no reusable
algorithm context. In particular, this allows callers to omit the
error handling currently required to handle memory allocation (or key
parsing) errors from pubkey_init(), and to omit the cleanup calls to
pubkey_final().
This change does remove the ability for a caller to distinguish
between a verification failure due to a memory allocation failure and
a verification failure due to a bad signature. This difference is not
material in practice: in both cases, for whatever reason, the caller
was unable to verify the signature and so cannot proceed further, and
the cause of the error will be visible to the user via the return
status code.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Asymmetric keys are invariably encountered within ASN.1 structures
such as X.509 certificates, and the various large integers within an
RSA key are themselves encoded using ASN.1.
Simplify all code handling asymmetric keys by passing keys as a single
ASN.1 cursor, rather than separate data and length pointers.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Record the root of trust used at the point that a certificate is
validated, redefine validation as checking a certificate against a
specific root of trust, and pass an explicit root of trust when
creating a TLS connection.
This allows a custom TLS connection to be used with a custom root of
trust, without causing any validated certificates to be treated as
valid for normal purposes.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
OCSP currently calls x509_validate() with an empty root certificate
list, on the basis that the OCSP signer certificate (if existent) must
be signed directly by the issuer certificate.
Using an empty root certificate list is not required to achieve this
goal, since x509_validate() already accepts an explicit issuer
certificate parameter. The explicit empty root certificate list
merely prevents the signer certificate from being evaluated as a
potential trusted root certificate.
Remove the dummy OCSP root certificate list and use the default root
certificate list when calling x509_validate().
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
| |
There is nothing OID-specific about the ASN1_OID_CURSOR macro. Rename
to allow it to be used for constructing ASN.1 cursors with arbitrary
contents.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Various implementation quirks in OCSP servers make it impractical to
use anything other than SHA1 to construct the issuerNameHash and
issuerKeyHash identifiers in the request certID. For example: both
the OpenCA OCSP responder used by ipxe.org and the Boulder OCSP
responder used by LetsEncrypt will fail if SHA256 is used in the
request certID.
As of commit 6ffe28a ("[ocsp] Accept response certID with missing
hashAlgorithm parameters") we rely on asn1_digest_algorithm() to parse
the algorithm identifier in the response certID. This will fail if
SHA1 is disabled via config/crypto.h.
Fix by using a direct ASN.1 object comparison on the OID within the
algorithm identifier.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
One of the design goals of ASN.1 DER is to provide a canonical
serialization of a data structure, thereby allowing for equality of
values to be tested by simply comparing the serialized bytes.
Some OCSP servers will modify the request certID to omit the optional
(and null) "parameters" portion of the hashAlgorithm. This is
arguably legal but breaks the ability to perform a straightforward
bitwise comparison on the entire certID field between request and
response.
Fix by comparing the OID-identified hashAlgorithm separately from the
remaining certID fields.
Originally-fixed-by: Thilo Fromm <Thilo@kinvolk.io>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The OCSP responder URI included within an X.509 certificate may or may
not include a trailing slash. We currently rely on the fact that
format_uri() incorrectly inserts an initial slash, which we include
unconditionally within the OCSP request URI.
Switch to using uri_encode() directly, and insert a slash only if the
X.509 certificate's OCSP responder URI does not already include a
trailing slash.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently compare the entirety of the KeyHash object (including the
ASN.1 tag and length byte) against the raw SHA-1 hash of the
certificate's public key. This causes OCSP validation to fail for any
responses which identify the responder by key hash rather than by
name, and hence prevents the use of X.509 certificates where any
certificate in the chain has an OCSP responder which chooses to
identify itself via its key hash.
Fix by adding the missing asn1_enter() required to enter the ASN.1
octet string containing the key hash.
Also add a corresponding test case including an OCSP response where
the responder is identified by key hash, to ensure that this
functionality cannot be broken in future.
Debugged-by: Brian Rak <brak@gameservers.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
iPXE currently allocates a copy the certificate's common name as a
string. This string is used by the TLS and CMS code to check
certificate names against an expected name, and also appears in
debugging messages.
Provide a function x509_check_name() to centralise certificate name
checking (in preparation for adding subjectAlternativeName support),
and a function x509_name() to provide a name to be used in debugging
messages, and remove the dynamically allocated string.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
| |
Certificate authorities are not required to send the certificate used
to sign the OCSP response if the response is signed by the original
issuer.
Modified-by: Michael Brown <mcb30@ipxe.org>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for parsing of URIs containing literal IPv6 addresses
(e.g. "http://[fe80::69ff:fe50:5845%25net0]/boot.ipxe").
Duplicate URIs by directly copying the relevant fields, rather than by
formatting and reparsing a URI string. This relaxes the requirements
on the URI formatting code and allows it to focus on generating
human-readable URIs (e.g. by not escaping ':' characters within
literal IPv6 addresses). As a side-effect, this allows relative URIs
containing parameter lists (e.g. "../boot.php##params") to function
as expected.
Add validity check for FTP paths to ensure that only printable
characters are accepted (since FTP is a human-readable line-based
protocol with no support for character escaping).
Construct TFTP next-server+filename URIs directly, rather than parsing
a constructed "tftp://..." string,
Add self-tests for URI functions.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
RFC2560 mandates that a valid OCSP response will contain exactly one
relevant certificate. However, some OCSP responders include
extraneous certificates. iPXE currently assumes that the first
certificate in the OCSP response is the relevant certificate; OCSP
checks will therefore fail if the responder includes the extraneous
certificates before the relevant certificate.
Fix by using the responder ID to identify the relevant certificate.
Reported-by: Christian Stroehmeier <stroemi@mail.uni-paderborn.de>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
iPXE has no concept of the local time zone, mainly because there is no
viable way to obtain time zone information in the absence of local
state. This causes potential problems with newly-issued certificates
and certificates that are about to expire.
Avoid such problems by allowing an error margin of around 12 hours on
certificate validity periods, similar to the error margin already
allowed for OCSP response timestamps.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
|
|
| |
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|
|
Add support for constructing OCSP queries and parsing OCSP responses.
(There is no support yet for actually issuing an OCSP query via an
HTTP POST.)
Signed-off-by: Michael Brown <mcb30@ipxe.org>
|