1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
|
/*
* Copyright (C) 2012 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* You can also choose to distribute this program under the terms of
* the Unmodified Binary Distribution Licence (as given in the file
* COPYING.UBDL), provided that you have satisfied its requirements.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <stdio.h>
#include <ipxe/bigint.h>
/** @file
*
* Big integer support
*/
/** Minimum number of least significant bytes included in transcription */
#define BIGINT_NTOA_LSB_MIN 16
/**
* Transcribe big integer (for debugging)
*
* @v value0 Element 0 of big integer to be transcribed
* @v size Number of elements
* @ret string Big integer in string form (may be abbreviated)
*/
const char * bigint_ntoa_raw ( const bigint_element_t *value0,
unsigned int size ) {
const bigint_t ( size ) __attribute__ (( may_alias ))
*value = ( ( const void * ) value0 );
bigint_element_t element;
static char buf[256];
unsigned int count;
int threshold;
uint8_t byte;
char *tmp;
int i;
/* Calculate abbreviation threshold, if any */
count = ( size * sizeof ( element ) );
threshold = count;
if ( count >= ( ( sizeof ( buf ) - 1 /* NUL */ ) / 2 /* "xx" */ ) ) {
threshold -= ( ( sizeof ( buf ) - 3 /* "..." */
- ( BIGINT_NTOA_LSB_MIN * 2 /* "xx" */ )
- 1 /* NUL */ ) / 2 /* "xx" */ );
}
/* Transcribe bytes, abbreviating with "..." if necessary */
for ( tmp = buf, i = ( count - 1 ) ; i >= 0 ; i-- ) {
element = value->element[ i / sizeof ( element ) ];
byte = ( element >> ( 8 * ( i % sizeof ( element ) ) ) );
tmp += sprintf ( tmp, "%02x", byte );
if ( i == threshold ) {
tmp += sprintf ( tmp, "..." );
i = BIGINT_NTOA_LSB_MIN;
}
}
assert ( tmp < ( buf + sizeof ( buf ) ) );
return buf;
}
/**
* Conditionally swap big integers (in constant time)
*
* @v first0 Element 0 of big integer to be conditionally swapped
* @v second0 Element 0 of big integer to be conditionally swapped
* @v size Number of elements in big integers
* @v swap Swap first and second big integers
*/
void bigint_swap_raw ( bigint_element_t *first0, bigint_element_t *second0,
unsigned int size, int swap ) {
bigint_element_t mask;
bigint_element_t xor;
unsigned int i;
/* Construct mask */
mask = ( ( bigint_element_t ) ( ! swap ) - 1 );
/* Conditionally swap elements */
for ( i = 0 ; i < size ; i++ ) {
xor = ( mask & ( first0[i] ^ second0[i] ) );
first0[i] ^= xor;
second0[i] ^= xor;
}
}
/**
* Multiply big integers
*
* @v multiplicand0 Element 0 of big integer to be multiplied
* @v multiplicand_size Number of elements in multiplicand
* @v multiplier0 Element 0 of big integer to be multiplied
* @v multiplier_size Number of elements in multiplier
* @v result0 Element 0 of big integer to hold result
*/
void bigint_multiply_raw ( const bigint_element_t *multiplicand0,
unsigned int multiplicand_size,
const bigint_element_t *multiplier0,
unsigned int multiplier_size,
bigint_element_t *result0 ) {
unsigned int result_size = ( multiplicand_size + multiplier_size );
const bigint_t ( multiplicand_size ) __attribute__ (( may_alias ))
*multiplicand = ( ( const void * ) multiplicand0 );
const bigint_t ( multiplier_size ) __attribute__ (( may_alias ))
*multiplier = ( ( const void * ) multiplier0 );
bigint_t ( result_size ) __attribute__ (( may_alias ))
*result = ( ( void * ) result0 );
bigint_element_t multiplicand_element;
const bigint_element_t *multiplier_element;
bigint_element_t *result_element;
bigint_element_t carry_element;
unsigned int i;
unsigned int j;
/* Zero required portion of result
*
* All elements beyond the length of the multiplier will be
* written before they are read, and so do not need to be
* zeroed in advance.
*/
memset ( result, 0, sizeof ( *multiplier ) );
/* Multiply integers one element at a time, adding the low
* half of the double-element product directly into the
* result, and maintaining a running single-element carry.
*
* The running carry can never overflow beyond a single
* element. At each step, the calculation we perform is:
*
* carry:result[i+j] := ( ( multiplicand[i] * multiplier[j] )
* + result[i+j] + carry )
*
* The maximum value (for n-bit elements) is therefore:
*
* (2^n - 1)*(2^n - 1) + (2^n - 1) + (2^n - 1) = 2^(2n) - 1
*
* This is precisely the maximum value for a 2n-bit integer,
* and so the carry out remains within the range of an n-bit
* integer, i.e. a single element.
*/
for ( i = 0 ; i < multiplicand_size ; i++ ) {
multiplicand_element = multiplicand->element[i];
multiplier_element = &multiplier->element[0];
result_element = &result->element[i];
carry_element = 0;
for ( j = 0 ; j < multiplier_size ; j++ ) {
bigint_multiply_one ( multiplicand_element,
*(multiplier_element++),
result_element++,
&carry_element );
}
*result_element = carry_element;
}
}
/**
* Reduce big integer R^2 modulo N
*
* @v modulus0 Element 0 of big integer modulus
* @v result0 Element 0 of big integer to hold result
* @v size Number of elements in modulus and result
*
* Reduce the value R^2 modulo N, where R=2^n and n is the number of
* bits in the representation of the modulus N, including any leading
* zero bits.
*/
void bigint_reduce_raw ( const bigint_element_t *modulus0,
bigint_element_t *result0, unsigned int size ) {
const bigint_t ( size ) __attribute__ (( may_alias ))
*modulus = ( ( const void * ) modulus0 );
bigint_t ( size ) __attribute__ (( may_alias ))
*result = ( ( void * ) result0 );
const unsigned int width = ( 8 * sizeof ( bigint_element_t ) );
unsigned int shift;
int max;
int sign;
int msb;
int carry;
/* We have the constants:
*
* N = modulus
*
* n = number of bits in the modulus (including any leading zeros)
*
* R = 2^n
*
* Let r be the extension of the n-bit result register by a
* separate two's complement sign bit, such that -R <= r < R,
* and define:
*
* x = r * 2^k
*
* as the value being reduced modulo N, where k is a
* non-negative integer bit shift.
*
* We want to reduce the initial value R^2=2^(2n), which we
* may trivially represent using r=1 and k=2n.
*
* We then iterate over decrementing k, maintaining the loop
* invariant:
*
* -N <= r < N
*
* On each iteration we must first double r, to compensate for
* having decremented k:
*
* k' = k - 1
*
* r' = 2r
*
* x = r * 2^k = 2r * 2^(k-1) = r' * 2^k'
*
* Note that doubling the n-bit result register will create a
* value of n+1 bits: this extra bit needs to be handled
* separately during the calculation.
*
* We then subtract N (if r is currently non-negative) or add
* N (if r is currently negative) to restore the loop
* invariant:
*
* 0 <= r < N => r" = 2r - N => -N <= r" < N
* -N <= r < 0 => r" = 2r + N => -N <= r" < N
*
* Note that since N may use all n bits, the most significant
* bit of the n-bit result register is not a valid two's
* complement sign bit for r: the extra sign bit therefore
* also needs to be handled separately.
*
* Once we reach k=0, we have x=r and therefore:
*
* -N <= x < N
*
* After this last loop iteration (with k=0), we may need to
* add a single multiple of N to ensure that x is positive,
* i.e. lies within the range 0 <= x < N.
*
* Since neither the modulus nor the value R^2 are secret, we
* may elide approximately half of the total number of
* iterations by constructing the initial representation of
* R^2 as r=2^m and k=2n-m (for some m such that 2^m < N).
*/
/* Initialise x=R^2 */
memset ( result, 0, sizeof ( *result ) );
max = ( bigint_max_set_bit ( modulus ) - 2 );
if ( max < 0 ) {
/* Degenerate case of N=0 or N=1: return a zero result */
return;
}
bigint_set_bit ( result, max );
shift = ( ( 2 * size * width ) - max );
sign = 0;
/* Iterate as described above */
while ( shift-- ) {
/* Calculate 2r, storing extra bit separately */
msb = bigint_shl ( result );
/* Add or subtract N according to current sign */
if ( sign ) {
carry = bigint_add ( modulus, result );
} else {
carry = bigint_subtract ( modulus, result );
}
/* Calculate new sign of result
*
* We know the result lies in the range -N <= r < N
* and so the tuple (old sign, msb, carry) cannot ever
* take the values (0, 1, 0) or (1, 0, 0). We can
* therefore treat these as don't-care inputs, which
* allows us to simplify the boolean expression by
* ignoring the old sign completely.
*/
assert ( ( sign == msb ) || carry );
sign = ( msb ^ carry );
}
/* Add N to make result positive if necessary */
if ( sign )
bigint_add ( modulus, result );
/* Sanity check */
assert ( ! bigint_is_geq ( result, modulus ) );
}
/**
* Compute inverse of odd big integer modulo any power of two
*
* @v invertend0 Element 0 of odd big integer to be inverted
* @v inverse0 Element 0 of big integer to hold result
* @v size Number of elements in invertend and result
*/
void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
bigint_element_t *inverse0, unsigned int size ) {
const bigint_t ( size ) __attribute__ (( may_alias ))
*invertend = ( ( const void * ) invertend0 );
bigint_t ( size ) __attribute__ (( may_alias ))
*inverse = ( ( void * ) inverse0 );
bigint_element_t accum;
bigint_element_t bit;
unsigned int i;
/* Sanity check */
assert ( bigint_bit_is_set ( invertend, 0 ) );
/* Initialise output */
memset ( inverse, 0xff, sizeof ( *inverse ) );
/* Compute inverse modulo 2^(width)
*
* This method is a lightly modified version of the pseudocode
* presented in "A New Algorithm for Inversion mod p^k (Koç,
* 2017)".
*
* Each inner loop iteration calculates one bit of the
* inverse. The residue value is the two's complement
* negation of the value "b" as used by Koç, to allow for
* division by two using a logical right shift (since we have
* no arithmetic right shift operation for big integers).
*
* The residue is stored in the as-yet uncalculated portion of
* the inverse. The size of the residue therefore decreases
* by one element for each outer loop iteration. Trivial
* inspection of the algorithm shows that any higher bits
* could not contribute to the eventual output value, and so
* we may safely reuse storage this way.
*
* Due to the suffix property of inverses mod 2^k, the result
* represents the least significant bits of the inverse modulo
* an arbitrarily large 2^k.
*/
for ( i = size ; i > 0 ; i-- ) {
const bigint_t ( i ) __attribute__ (( may_alias ))
*addend = ( ( const void * ) invertend );
bigint_t ( i ) __attribute__ (( may_alias ))
*residue = ( ( void * ) inverse );
/* Calculate one element's worth of inverse bits */
for ( accum = 0, bit = 1 ; bit ; bit <<= 1 ) {
if ( bigint_bit_is_set ( residue, 0 ) ) {
accum |= bit;
bigint_add ( addend, residue );
}
bigint_shr ( residue );
}
/* Store in the element no longer required to hold residue */
inverse->element[ i - 1 ] = accum;
}
/* Correct order of inverse elements */
for ( i = 0 ; i < ( size / 2 ) ; i++ ) {
accum = inverse->element[i];
inverse->element[i] = inverse->element[ size - 1 - i ];
inverse->element[ size - 1 - i ] = accum;
}
}
/**
* Perform relaxed Montgomery reduction (REDC) of a big integer
*
* @v modulus0 Element 0 of big integer odd modulus
* @v value0 Element 0 of big integer to be reduced
* @v result0 Element 0 of big integer to hold result
* @v size Number of elements in modulus and result
* @ret carry Carry out
*
* The value to be reduced will be made divisible by the size of the
* modulus while retaining its residue class (i.e. multiples of the
* modulus will be added until the low half of the value is zero).
*
* The result may be expressed as
*
* tR = x + mN
*
* where x is the input value, N is the modulus, R=2^n (where n is the
* number of bits in the representation of the modulus, including any
* leading zero bits), and m is the number of multiples of the modulus
* added to make the result tR divisible by R.
*
* The maximum addend is mN <= (R-1)*N (and such an m can be proven to
* exist since N is limited to being odd and therefore coprime to R).
*
* Since the result of this addition is one bit larger than the input
* value, a carry out bit is also returned. The caller may be able to
* prove that the carry out is always zero, in which case it may be
* safely ignored.
*
* The upper half of the output value (i.e. t) will also be copied to
* the result pointer. It is permissible for the result pointer to
* overlap the lower half of the input value.
*
* External knowledge of constraints on the modulus and the input
* value may be used to prove constraints on the result. The
* constraint on the modulus may be generally expressed as
*
* R > kN
*
* for some positive integer k. The value k=1 is allowed, and simply
* expresses that the modulus fits within the number of bits in its
* own representation.
*
* For classic Montgomery reduction, we have k=1, i.e. R > N and a
* separate constraint that the input value is in the range x < RN.
* This gives the result constraint
*
* tR < RN + (R-1)N
* < 2RN - N
* < 2RN
* t < 2N
*
* A single subtraction of the modulus may therefore be required to
* bring it into the range t < N.
*
* When the input value is known to be a product of two integers A and
* B, with A < aN and B < bN, we get the result constraint
*
* tR < abN^2 + (R-1)N
* < (ab/k)RN + RN - N
* < (1 + ab/k)RN
* t < (1 + ab/k)N
*
* If we have k=a=b=1, i.e. R > N with A < N and B < N, then the
* result is in the range t < 2N and may require a single subtraction
* of the modulus to bring it into the range t < N so that it may be
* used as an input on a subsequent iteration.
*
* If we have k=4 and a=b=2, i.e. R > 4N with A < 2N and B < 2N, then
* the result is in the range t < 2N and may immediately be used as an
* input on a subsequent iteration, without requiring a subtraction.
*
* Larger values of k may be used to allow for larger values of a and
* b, which can be useful to elide intermediate reductions in a
* calculation chain that involves additions and subtractions between
* multiplications (as used in elliptic curve point addition, for
* example). As a general rule: each intermediate addition or
* subtraction will require k to be doubled.
*
* When the input value is known to be a single integer A, with A < aN
* (as used when converting out of Montgomery form), we get the result
* constraint
*
* tR < aN + (R-1)N
* < RN + (a-1)N
*
* If we have a=1, i.e. A < N, then the constraint becomes
*
* tR < RN
* t < N
*
* and so the result is immediately in the range t < N with no
* subtraction of the modulus required.
*
* For any larger value of a, the result value t=N becomes possible.
* Additional external knowledge may potentially be used to prove that
* t=N cannot occur. For example: if the caller is performing modular
* exponentiation with a prime modulus (or, more generally, a modulus
* that is coprime to the base), then there is no way for a non-zero
* base value to end up producing an exact multiple of the modulus.
* If t=N cannot be disproved, then conversion out of Montgomery form
* may require an additional subtraction of the modulus.
*/
int bigint_montgomery_relaxed_raw ( const bigint_element_t *modulus0,
bigint_element_t *value0,
bigint_element_t *result0,
unsigned int size ) {
const bigint_t ( size ) __attribute__ (( may_alias ))
*modulus = ( ( const void * ) modulus0 );
union {
bigint_t ( size * 2 ) full;
struct {
bigint_t ( size ) low;
bigint_t ( size ) high;
} __attribute__ (( packed ));
} __attribute__ (( may_alias )) *value = ( ( void * ) value0 );
bigint_t ( size ) __attribute__ (( may_alias ))
*result = ( ( void * ) result0 );
static bigint_t ( 1 ) cached;
static bigint_t ( 1 ) negmodinv;
bigint_element_t multiple;
bigint_element_t carry;
unsigned int i;
unsigned int j;
int overflow;
/* Sanity checks */
assert ( bigint_bit_is_set ( modulus, 0 ) );
/* Calculate inverse (or use cached version) */
if ( cached.element[0] != modulus->element[0] ) {
bigint_mod_invert ( modulus, &negmodinv );
negmodinv.element[0] = -negmodinv.element[0];
cached.element[0] = modulus->element[0];
}
/* Perform multiprecision Montgomery reduction */
for ( i = 0 ; i < size ; i++ ) {
/* Determine scalar multiple for this round */
multiple = ( value->low.element[i] * negmodinv.element[0] );
/* Multiply value to make it divisible by 2^(width*i) */
carry = 0;
for ( j = 0 ; j < size ; j++ ) {
bigint_multiply_one ( multiple, modulus->element[j],
&value->full.element[ i + j ],
&carry );
}
/* Since value is now divisible by 2^(width*i), we
* know that the current low element must have been
* zeroed.
*/
assert ( value->low.element[i] == 0 );
/* Store the multiplication carry out in the result,
* avoiding the need to immediately propagate the
* carry through the remaining elements.
*/
result->element[i] = carry;
}
/* Add the accumulated carries */
overflow = bigint_add ( result, &value->high );
/* Copy to result buffer */
bigint_copy ( &value->high, result );
return overflow;
}
/**
* Perform classic Montgomery reduction (REDC) of a big integer
*
* @v modulus0 Element 0 of big integer odd modulus
* @v value0 Element 0 of big integer to be reduced
* @v result0 Element 0 of big integer to hold result
* @v size Number of elements in modulus and result
*/
void bigint_montgomery_raw ( const bigint_element_t *modulus0,
bigint_element_t *value0,
bigint_element_t *result0,
unsigned int size ) {
const bigint_t ( size ) __attribute__ (( may_alias ))
*modulus = ( ( const void * ) modulus0 );
union {
bigint_t ( size * 2 ) full;
struct {
bigint_t ( size ) low;
bigint_t ( size ) high;
} __attribute__ (( packed ));
} __attribute__ (( may_alias )) *value = ( ( void * ) value0 );
bigint_t ( size ) __attribute__ (( may_alias ))
*result = ( ( void * ) result0 );
int overflow;
int underflow;
/* Sanity check */
assert ( ! bigint_is_geq ( &value->high, modulus ) );
/* Perform relaxed Montgomery reduction */
overflow = bigint_montgomery_relaxed ( modulus, &value->full, result );
/* Conditionally subtract the modulus once */
underflow = bigint_subtract ( modulus, result );
bigint_swap ( result, &value->high, ( underflow & ~overflow ) );
/* Sanity check */
assert ( ! bigint_is_geq ( result, modulus ) );
}
/**
* Perform generalised exponentiation via a Montgomery ladder
*
* @v result0 Element 0 of result (initialised to identity element)
* @v multiple0 Element 0 of multiple (initialised to generator)
* @v size Number of elements in result and multiple
* @v exponent0 Element 0 of exponent
* @v exponent_size Number of elements in exponent
* @v op Montgomery ladder commutative operation
* @v ctx Operation context (if needed)
* @v tmp Temporary working space (if needed)
*
* The Montgomery ladder may be used to perform any operation that is
* isomorphic to exponentiation, i.e. to compute the result
*
* r = g^e = g * g * g * g * .... * g
*
* for an arbitrary commutative operation "*", generator "g" and
* exponent "e".
*
* The result "r" is computed in constant time (assuming that the
* underlying operation is constant time) in k steps, where k is the
* number of bits in the big integer representation of the exponent.
*
* The result "r" must be initialised to the operation's identity
* element, and the multiple must be initialised to the generator "g".
* On exit, the multiple will contain
*
* m = r * g = g^(e+1)
*
* Note that the terminology used here refers to exponentiation
* defined as repeated multiplication, but that the ladder may equally
* well be used to perform any isomorphic operation (such as
* multiplication defined as repeated addition).
*/
void bigint_ladder_raw ( bigint_element_t *result0,
bigint_element_t *multiple0, unsigned int size,
const bigint_element_t *exponent0,
unsigned int exponent_size, bigint_ladder_op_t *op,
const void *ctx, void *tmp ) {
bigint_t ( size ) __attribute__ (( may_alias ))
*result = ( ( void * ) result0 );
bigint_t ( size ) __attribute__ (( may_alias ))
*multiple = ( ( void * ) multiple0 );
const bigint_t ( exponent_size ) __attribute__ (( may_alias ))
*exponent = ( ( const void * ) exponent0 );
const unsigned int width = ( 8 * sizeof ( bigint_element_t ) );
unsigned int bit = ( exponent_size * width );
int toggle = 0;
int previous;
/* We have two physical storage locations: Rres (the "result"
* register) and Rmul (the "multiple" register).
*
* On entry we have:
*
* Rres = g^0 = 1 (the identity element)
* Rmul = g (the generator)
*
* For calculation purposes, define two virtual registers R[0]
* and R[1], mapped to the underlying physical storage
* locations via a boolean toggle state "t":
*
* R[t] -> Rres
* R[~t] -> Rmul
*
* Define the initial toggle state to be t=0, so that we have:
*
* R[0] = g^0 = 1 (the identity element)
* R[1] = g (the generator)
*
* The Montgomery ladder then iterates over each bit "b" of
* the exponent "e" (from MSB down to LSB), computing:
*
* R[1] := R[0] * R[1], R[0] := R[0] * R[0] (if b=0)
* R[0] := R[1] * R[0], R[1] := R[1] * R[1] (if b=1)
*
* i.e.
*
* R[~b] := R[b] * R[~b], R[b] := R[b] * R[b]
*
* To avoid data-dependent memory access patterns, we
* implement this as:
*
* Rmul := Rres * Rmul
* Rres := Rres * Rres
*
* and update the toggle state "t" (via constant-time
* conditional swaps) as needed to ensure that R[b] always
* maps to Rres and R[~b] always maps to Rmul.
*/
while ( bit-- ) {
/* Update toggle state t := b
*
* If the new toggle state is not equal to the old
* toggle state, then we must swap R[0] and R[1] (in
* constant time).
*/
previous = toggle;
toggle = bigint_bit_is_set ( exponent, bit );
bigint_swap ( result, multiple, ( toggle ^ previous ) );
/* Calculate Rmul = R[~b] := R[b] * R[~b] = Rres * Rmul */
op ( result->element, multiple->element, size, ctx, tmp );
/* Calculate Rres = R[b] := R[b] * R[b] = Rres * Rres */
op ( result->element, result->element, size, ctx, tmp );
}
/* Reset toggle state to zero */
bigint_swap ( result, multiple, toggle );
}
/**
* Perform modular multiplication as part of a Montgomery ladder
*
* @v operand Element 0 of first input operand (may overlap result)
* @v result Element 0 of second input operand and result
* @v size Number of elements in operands and result
* @v ctx Operation context (odd modulus, or NULL)
* @v tmp Temporary working space
*/
void bigint_mod_exp_ladder ( const bigint_element_t *multiplier0,
bigint_element_t *result0, unsigned int size,
const void *ctx, void *tmp ) {
const bigint_t ( size ) __attribute__ (( may_alias ))
*multiplier = ( ( const void * ) multiplier0 );
bigint_t ( size ) __attribute__ (( may_alias ))
*result = ( ( void * ) result0 );
const bigint_t ( size ) __attribute__ (( may_alias ))
*modulus = ( ( const void * ) ctx );
bigint_t ( size * 2 ) __attribute__ (( may_alias ))
*product = ( ( void * ) tmp );
/* Multiply and reduce */
bigint_multiply ( result, multiplier, product );
if ( modulus ) {
bigint_montgomery ( modulus, product, result );
} else {
bigint_shrink ( product, result );
}
}
/**
* Perform modular exponentiation of big integers
*
* @v base0 Element 0 of big integer base
* @v modulus0 Element 0 of big integer modulus
* @v exponent0 Element 0 of big integer exponent
* @v result0 Element 0 of big integer to hold result
* @v size Number of elements in base, modulus, and result
* @v exponent_size Number of elements in exponent
* @v tmp Temporary working space
*/
void bigint_mod_exp_raw ( const bigint_element_t *base0,
const bigint_element_t *modulus0,
const bigint_element_t *exponent0,
bigint_element_t *result0,
unsigned int size, unsigned int exponent_size,
void *tmp ) {
const bigint_t ( size ) __attribute__ (( may_alias )) *base =
( ( const void * ) base0 );
const bigint_t ( size ) __attribute__ (( may_alias )) *modulus =
( ( const void * ) modulus0 );
const bigint_t ( exponent_size ) __attribute__ (( may_alias ))
*exponent = ( ( const void * ) exponent0 );
bigint_t ( size ) __attribute__ (( may_alias )) *result =
( ( void * ) result0 );
const unsigned int width = ( 8 * sizeof ( bigint_element_t ) );
struct {
struct {
bigint_t ( size ) modulus;
bigint_t ( size ) stash;
};
union {
bigint_t ( 2 * size ) full;
bigint_t ( size ) low;
} product;
} *temp = tmp;
const uint8_t one[1] = { 1 };
bigint_element_t submask;
unsigned int subsize;
unsigned int scale;
unsigned int i;
/* Sanity check */
assert ( sizeof ( *temp ) == bigint_mod_exp_tmp_len ( modulus ) );
/* Handle degenerate case of zero modulus */
if ( ! bigint_max_set_bit ( modulus ) ) {
memset ( result, 0, sizeof ( *result ) );
return;
}
/* Factor modulus as (N * 2^scale) where N is odd */
bigint_copy ( modulus, &temp->modulus );
for ( scale = 0 ; ( ! bigint_bit_is_set ( &temp->modulus, 0 ) ) ;
scale++ ) {
bigint_shr ( &temp->modulus );
}
subsize = ( ( scale + width - 1 ) / width );
submask = ( ( 1UL << ( scale % width ) ) - 1 );
if ( ! submask )
submask = ~submask;
/* Calculate (R^2 mod N) */
bigint_reduce ( &temp->modulus, &temp->stash );
/* Initialise result = Montgomery(1, R^2 mod N) */
bigint_grow ( &temp->stash, &temp->product.full );
bigint_montgomery ( &temp->modulus, &temp->product.full, result );
/* Convert base into Montgomery form */
bigint_multiply ( base, &temp->stash, &temp->product.full );
bigint_montgomery ( &temp->modulus, &temp->product.full,
&temp->stash );
/* Calculate x1 = base^exponent modulo N */
bigint_ladder ( result, &temp->stash, exponent, bigint_mod_exp_ladder,
&temp->modulus, &temp->product );
/* Convert back out of Montgomery form */
bigint_grow ( result, &temp->product.full );
bigint_montgomery_relaxed ( &temp->modulus, &temp->product.full,
result );
/* Handle even moduli via Garner's algorithm */
if ( subsize ) {
const bigint_t ( subsize ) __attribute__ (( may_alias ))
*subbase = ( ( const void * ) base );
bigint_t ( subsize ) __attribute__ (( may_alias ))
*submodulus = ( ( void * ) &temp->modulus );
bigint_t ( subsize ) __attribute__ (( may_alias ))
*substash = ( ( void * ) &temp->stash );
bigint_t ( subsize ) __attribute__ (( may_alias ))
*subresult = ( ( void * ) result );
union {
bigint_t ( 2 * subsize ) full;
bigint_t ( subsize ) low;
} __attribute__ (( may_alias ))
*subproduct = ( ( void * ) &temp->product.full );
/* Calculate x2 = base^exponent modulo 2^k */
bigint_init ( substash, one, sizeof ( one ) );
bigint_copy ( subbase, submodulus );
bigint_ladder ( substash, submodulus, exponent,
bigint_mod_exp_ladder, NULL, subproduct );
/* Reconstruct N */
bigint_copy ( modulus, &temp->modulus );
for ( i = 0 ; i < scale ; i++ )
bigint_shr ( &temp->modulus );
/* Calculate N^-1 modulo 2^k */
bigint_mod_invert ( submodulus, &subproduct->low );
bigint_copy ( &subproduct->low, submodulus );
/* Calculate y = (x2 - x1) * N^-1 modulo 2^k */
bigint_subtract ( subresult, substash );
bigint_multiply ( substash, submodulus, &subproduct->full );
subproduct->low.element[ subsize - 1 ] &= submask;
bigint_grow ( &subproduct->low, &temp->stash );
/* Reconstruct N */
bigint_mod_invert ( submodulus, &subproduct->low );
bigint_copy ( &subproduct->low, submodulus );
/* Calculate x = x1 + N * y */
bigint_multiply ( &temp->modulus, &temp->stash,
&temp->product.full );
bigint_add ( &temp->product.low, result );
}
}
|